ESERCIZI SULLE EQUAZIONI DIFFERENZIALI

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "ESERCIZI SULLE EQUAZIONI DIFFERENZIALI"

Transcript

1 ESERCII SULLE EQUAIONI DIFFERENIALI PRIMA PARTE VALENTINA CASARINO Esercizi per il corso di Fondamenti di Analisi Matematica 2, (Ingegneria Gestionale, dell Innovazione del Prodotto, Meccanica e Meccatronica, Università degli studi di Padova) () Determinare a 2 R in modo tale che la funzione y(x) =xe ax sia soluzione dell equazione xy 00 (x)+xy 0 (x)+y(x) =0. (2) Data l equazione di erenziale y 0 = e x y, si determini il suo integrale generale. Calcolare poi la soluzione che soddisfa il dato iniziale y(0) = 0. (3) Data l equazione di erenziale y 0 (x) = x (4 x 2 )(y 4), a) determinarne l integrale generale; b) calcolare la soluzione che soddisfa il dato iniziale y(0) = 2. (4) Sia data l equazione di erenziale y 0 =(y 4 )cos3 x. (a) Si calcoli la soluzione dell equazione che soddisfa y(0) =. 4 (b) Determinare, se esistono, soluzioni y e y 2 dell equazione assegnata tali che lim y (x) = x!+ 2 e lim y 2(x) = x!+ 4. (c) Determinare, infine, il dominio delle soluzioni, e stabilire se esistono soluzioni limitate. (5) Si consideri l equazione di erenziale y 0 (x) = 2y 3 x 2 +. a) Si determinino eventuali soluzioni costanti. b) Si determini l integrale generale. c) Si determini la soluzione che soddisfa la condizione iniziale y(0) =, se essa esiste. d) Esistono soluzioni infinitesime per x! +?

2 2 PRIMA PARTE VALENTINA CASARINO (6) Sia y una funzione derivabile due volte su un intervallo, strettamente positiva e soluzione dell equazione di erenziale y 0 (x) =xy(x). Dimostrare che y è c o n v e s s a. (7) Sia y una funzione derivabile due volte su un intervallo contenente l origine, tale che y(0) < 0esoluzionedell equazionedi erenziale y 0 (x) =/y(x). Dimostrare che y è convessa nell origine. (8) Sia y la soluzione del problema di Cauchy ( y 0 (x) =3x 2 log(y +) y(0) = 2. Scrivere (senza risolvere esplicitamente il problema di Cauchy) lo sviluppo di McLaurin di ordine 2 della soluzione. (9) Si consideri l equazione y 0 y = (x)e 2y. (a) Determinare (x) inmodocheunasoluzioney = y(x) soddisfi (y + 2 )e 2y = e x (cos x sin x)+c, ove c 2 R. (b) Per tale valore di (x), stabilire se esistono soluzioni tali che lim y(x) = x!+ 2. (c) Per tale valore di (x), risolvere infine l equazione y 0 y = (x)e x e 2y. (0) Si consideri l equazione y 0 (x) = (x)e 3y(x). (a) Determinare (x) 6= 0inmodotalechelesoluzioniy = y(x) soddisfino ove c è u n a c o s t a n t e r e a l e. (b) Per tale (x), calcolare y(x) = 3 log 3 2 e2x + c, y(x) lim x!+ x, se y è una soluzione qualsiasi. (c) Per tale (x), risolvere infine l equazione di erenziale y 0 (x) =(+x 2 ) e 2x (x)e 3y(x).

3 VALENTINA CASARINO 3 () Dato il problema di Cauchy 8 >< y 0 (x) = 2e2x e 2x +2e x + cos2 y(x) >: y(0) = trovare tutte le soluzioni del problema per =0etrovarnealmenounaper = /2. (2) Si consideri il seguente problema di Cauchy ( y 0 (x) = ky 3 (x) y(0) =. Calcolare lim (y k()) 2. k!+

4 4 PRIMA PARTE VALENTINA CASARINO () Sostituendo nell equazione si ottiene x e ax Soluzioni degli esercizi a 2 x +2a + x e ax (ax +) + xe ax =0, per ogni x 2 I, I intervallo, cioè a 2 x 2 +2ax +(ax 2 + x)+=0, cioè ancora (a a 2 )x 2 +(2 2a)x =0. Icoe cientidix e x 2 devono annullarsi entrambi, quindi a =(osserviamochea =0 porterebbe a 2x =0,manoivogliamochel equazionesiasoddisfattanonsoloperx =0, ma in tutto un intervallo I). (2) L equazione è a variabili separabili. Non esistono soluzioni costanti. Separando le variabili, ci si riduce a calcolare e y dy = e x dx, e y = e x + C, con C costante arbitraria. L integrale generale è quindi y =log(e x + C), C 2 R. Imponendo il dato iniziale y(0) = 0, otteniamo l equazione 0=log(+C), che è soddisfatta solo per C = 0. Quindi la soluzione richiesta è y =log(e x ), cioè y(x) =x. (3) L equazione è a variabili separabili. Osserviamo anche che devono essere verificate le condizioni x 6= ±2ey(x) 6= 4perognix 2 dom y. Non esistono, inoltre, soluzioni costanti. a) Separando le variabili e integrando, otteniamo y 2 (y 4) dy = x 4 x 2 dx, 4y = 2 2 log 4 x2 + C, C2 R. Per esplicitare la soluzione, risolviamo l equazione y 2 8y +log 4 x 2 2C =0, ottenendo y(x) =4± p 6 log 4 x 2 +2C, che rappresenta l integrale generale dell equazione assegnata. b) Poiché la soluzione richiesta deve soddisfare il dato iniziale y(0) = 2 e anche la

5 VALENTINA CASARINO 5 condizione y(x) 6= 4,sicercaunasoluzionetalechey(x) < 4equindidobbiamoimporre il dato iniziale a una soluzione della forma p y(x) =4 6 log 4 x2 +2C, ottenendo C =log2 2=4 p 6 log 4 + 2C, 6. La soluzione richiesta è quindi p y(x) =4 4+2log2 log 4 x2. (4) (a) L equazione assegnata è a variabili separabili. Esiste un unica soluzione costante (y(x) ). Se y 6=,risolviamo 4 4 dy = cos 3 xdx, y 4 ottenendo log y ancora ricaviamo y 4 =sinx 3 sin3 x + C, C2 R, 4 = C0 exp(sin x 3 sin3 x), C 0 > 0, equindi y 4 = C00 exp(sin x 3 sin3 x), C 00 2 R \{0}. Poiché scegliendo C 00 =0ritroviamolasoluzionecostantey =,possiamoconcludere 4 che l integrale generale è dato da y(x) = 4 + k exp(sin x 3 sin3 x), k 2 R,x2 R. Imponendo il dato iniziale y(0) = /4, otteniamo k = /2, quindi la soluzione del problema assegnato è data da y(x) = 4 2 exp(sin x 3 sin3 x), x 2 R. (b) Osserviamo che, se y è una qualsiasi soluzione dell equazione, si ha lim y(x) x!+ x!+ 4 + k exp(sin x 3 sin3 x) = 4 + k lim exp(sin x x!+ 3 sin3 x), quindi il limite non esiste, tranne che nel caso k = 0. Allora una soluzione y tale che lim x!+ y (x) = esiste e coincide con la soluzione costante determinata all inizio, 4 mentre una soluzione y 2 tale che lim x!+ y 2 (x) = non esiste. 2

6 6 PRIMA PARTE VALENTINA CASARINO (c) Poiché le soluzioni hanno tutte la forma y(x) = 4 + k exp(sin x 3 sin3 x), k 2 R,x2 R, esse sono definite su tutto R. Inoltre, data una qualsiasi soluzione, si ha, per esempio, y(x) apple 4 + k exp(sin x 3 sin3 x) apple 4 + k e4/3, quindi tutte le soluzioni sono limitate. (5) a) Esiste un unica soluzione costante, y = 3. 2 b) Se y 6= 3,risulta 2 2y 3 dy = x 2 + dx, Si ha allora log 2y 3 =arctanx + C, C2 R. 2 2y 3 =exp(2arctanx + C) =expc exp(2 arctan x) =K exp(2 arctan x), con K>0. Quindi l integrale generale è dato da y(x) = 3 2 ± K exp(2 arctan x) = K0 exp(2 arctan x),k 0 2 R. c) Imponendo la condizione iniziale y(0) =, otteniamo = K0, cioè K 0 =. La soluzione richiesta è quindi y(x) = 3 exp(2 arctan x). 2 2 d) Dobbiamo in questo caso imporre la condizione 3 lim x! K0 exp(2 arctan x) x!+ 2 + exp( ) 2 K0 =0, cioè 3 + K 0 exp( ) =0,dacuiK 0 = 3/ exp. (6) Derivando entrambi i membri dell equazione di erenziale, otteniamo Osserviamo poi che quindi y è c o n v e s s a s u I. y 00 (x) =y(x)+xy 0 (x), y 00 (x) =y(x)+x 2 y(x). y(x)+x 2 y(x) =y(x) +x 2 > 0,

7 VALENTINA CASARINO 7 (7) Derivando entrambi i membri dell equazione di erenziale, otteniamo Allora quindi y è c o n v e s s a i n 0.. (8) Risulta y(x) =2+o(x 2 )perx! 0. (9) a) Derivando otteniamo y 00 (x) = y 0 (x)/ y(x) 2, y 00 (x) = / y(x) 3. y 00 (0) = / y(0) 3 > 0, (y + 2 )e 2y = e x (cos x sin x)+c, 2y 0 (y + 2 )e 2y + y 0 e 2y = e x ( cos x sin x)+e x (cos x sin x), 2y 0 ye 2y = e x ( 2sinx), cioè yy 0 = e x+2y sin x, quindi (x) =e x sin x. b) Sappiamo che le soluzioni soddisfano (y + 2 )e 2y = e x (cos x sin x)+c. Calcolando il limite per x! + di entrambi i membri e supponendo che lim y(x) = x!+ 2, otteniamo lim e = e x!+ x!+ (ex (cos x sin x)+c). Poiché il limite al secondo membro non esiste, non esistono soluzioni si atte. c) L equazione da risolvere è yy 0 = e 2y sin x, cioè, separando le variabili, ye 2y dy = sin xdx. Integrando per parti otteniamo 4 e 2y (2y +)= cos x + C, cioè e 2y (2y +)=4cosx + C, al variare di C 2 R.

8 8 PRIMA PARTE VALENTINA CASARINO (0) a) Sostituendo y(x) = 3 log 3 2 e2x + c, nell equazione di partenza, si ottiene (x) =e 2x. b) Si ha x!+ y(x) lim x!+ x!+ x x!+ 3x log 3 2 e2x + c = 3 3x log 2 e2x +c 2 3 e 2x x!+ 3x log 3 2 e2x +log +c 2 3 e 2x 3x log 3 2 e2x x!+ 3x log e2x Quindi il limite richiesto vale L = 2 3. c) L equazione da risolvere è x!+ 3x log x log e2x x!+ y 0 (x) =(+x 2 ) e 3y(x), avariabiliseparabili.integrandosiottienesubito 3 e3y = ( + x 2 )dx, cioè 3 e3y = x + 3 x3 + c, e 3y =3x + x 3 +3c, c 2 R. () Il problema dato è del tipo y(x) = 3 log(3x + x3 +3c ), ( y 0 (x) =f(x)g(y) y(0) =, 2x 3x = 2 3. con f(x) = 2e2x e g(y) e 2x +2e x + =cos2 y. Cerchiamo eventuali soluzioni costanti dell equazione y 0 (x) =f(x)g(y). Se esistono soluzioni costanti y = k, sihacos 2 y(x) =cos 2 k =0,cioèk = /2+k, k 2. Per =0sipossonosepararelevariabiliesitrovache y 0 (x) cos 2 y(x) = 2e 2x e 2x +2e x +,

9 dy cos 2 y(x) = 2e 2x e 2x +2e x + dx = Poniamo ora t = e x.otteniamo 2t tan y = dt =2 (t +) 2 VALENTINA CASARINO 9 2e x (e x +) 2 ex dx. t + (t +) 2 dt = =2log t + + t + + C =2log ex + + e x + + C =2log(e x +)+ 2 e x + + C. Imponiamo il dato iniziale y(0) = 0, ottenendo La soluzione è quindi (o anche y(x) =arctan 0=2log2++C. 2log(e x +)+ 2 e x + 2log2 y(x) = arctan[( +log(4)+e x ( + log(4)) 2( + e x )log[+e x ])/( + e x )]) Per = /2, abbiamo già visto che esiste la soluzione costante y(x) = /2. (2) Iniziamo a risolvere l equazione. Essa è a variabili separabili. Osserviamo che y(x) =0 è soluzione costante dell equazione ( ma non del problema di Cauchy ). È quindi lecito supporre d ora in poi che una qualsiasi soluzione dell equazione, denotata con y k,siadiversadazero.separandolevariabilieintegrando,otteniamo dy = kdx, 2y 2 k y 3 k = kx + C, C2 R. Poiché la soluzione richiesta deve soddisfare il dato iniziale y k (0) =, si ha 2 = C. La soluzione richiesta soddisfa quindi cioè 2y 2 k y 2 k = = kx 2kx +. 2,

10 0 PRIMA PARTE VALENTINA CASARINO La soluzione richiesta è quindi y k (x) = p 2kx +. (2) Poichè y k () = p 2k+, il limite richiesto vale lim (y k()) 2 = k!+ lim k!+ 2k + =0.

Soluzioni. 152 Roberto Tauraso - Analisi Risolvere il problema di Cauchy. { y (x) + 2y(x) = 3e 2x y(0) = 1

Soluzioni. 152 Roberto Tauraso - Analisi Risolvere il problema di Cauchy. { y (x) + 2y(x) = 3e 2x y(0) = 1 5 Roberto Tauraso - Analisi Soluzioni. Risolvere il problema di Cauchy y (x) + y(x) = 3e x y() = R. Troviamo la soluzione generale in I = R. Una primitiva di a(x) = è A(x) = a(x) dx = dx = x e il fattore

Dettagli

(1) Determinare l integrale generale dell equazione

(1) Determinare l integrale generale dell equazione FONDAMENTI DI ANALISI MATEMATICA (9 cfu Commissione F. Albertini, V. Casarino, M. Motta Ingegneria Gestionale, Meccanica e Meccatronica, Vicenza Vicenza, 3 settembre 8 Quarto appello Avvertenza: Nella

Dettagli

Alcuni esercizi sulle equazioni di erenziali

Alcuni esercizi sulle equazioni di erenziali Alcuni esercizi sulle equazioni di erenziali Calcolo dell integrale generale Per ciascuna delle seguenti equazioni di erenziali calcolare l insieme di tutte le possibili soluzioni. SUGGERIMENTO: Ricordatevi

Dettagli

EQUAZIONI DIFFERENZIALI Esercizi svolti. y = xy. y(2) = 1.

EQUAZIONI DIFFERENZIALI Esercizi svolti. y = xy. y(2) = 1. EQUAZIONI DIFFERENZIALI Esercizi svolti 1. Determinare la soluzione dell equazione differenziale (x 2 + 1)y + y 2 =. y + x tan y = 2. Risolvere il problema di Cauchy y() = 1 2 π. 3. Risolvere il problema

Dettagli

Corso di Laurea in Ingegneria Informatica Prova di Analisi Matematica 1

Corso di Laurea in Ingegneria Informatica Prova di Analisi Matematica 1 Corso di Laurea in Ingegneria Informatica Prova di Analisi Matematica 1 30 Gennaio 2018 Scrivere subito nome e cognome e matricola sul foglio risposte e preparare il libretto sul banco per il controllo.

Dettagli

TEMI D ESAME DI ANALISI MATEMATICA I

TEMI D ESAME DI ANALISI MATEMATICA I TEMI D ESAME DI ANALISI MATEMATICA I Corso di laurea quadriennale) in Fisica a.a. 003/04 Prova scritta del 3 aprile 003 ] Siano a, c parametri reali. Studiare l esistenza e, in caso affermativo, calcolare

Dettagli

Prima prova in itinere di Analisi Matematica 2 Ingegneria Elettronica. Politecnico di Milano. A.A. 2017/2018. Prof. M. Bramanti.

Prima prova in itinere di Analisi Matematica 2 Ingegneria Elettronica. Politecnico di Milano. A.A. 2017/2018. Prof. M. Bramanti. Prima prova in itinere di Analisi Matematica Ingegneria Elettronica. Politecnico di Milano Es. Punti A.A. 07/08. Prof. M. Bramanti Tema n 4 5 6 Tot. Cognome e nome (in stampatello) codice persona (o n

Dettagli

EQUAZIONI DIFFERENZIALI / ESERCIZI SVOLTI

EQUAZIONI DIFFERENZIALI / ESERCIZI SVOLTI ANALISI MATEMATICA I - A.A. 011/01 EQUAZIONI DIFFERENZIALI / ESERCIZI SVOLTI L asterisco contrassegna gli esercizi più difficili. Determinare l integrale generale dell equazione differenziale y = e x y

Dettagli

Secondo appello 2005/ Tema 1

Secondo appello 2005/ Tema 1 Secondo appello 2005/2006 - Tema Esercizio Risolvere l equazione di variabile complessa determinando le soluzioni in forma algebrica. Ponendo z = x + iy con x, y R, si ottiene z 2 + 2iz + 2 z = 0, () (x

Dettagli

Esercizi con soluzioni dell esercitazione del 31/10/17

Esercizi con soluzioni dell esercitazione del 31/10/17 Esercizi con soluzioni dell esercitazione del 3/0/7 Esercizi. Risolvere graficamente la disequazione 2 x 2 2 cos(πx). 2. Determinare l insieme di definizione della funzione arcsin(exp( x 2 )). 3. Trovare

Dettagli

Prova scritta di Analisi Matematica T-B, Ingegneria Meccanica, 17/06/2014

Prova scritta di Analisi Matematica T-B, Ingegneria Meccanica, 17/06/2014 Prova scritta di Analisi Matematica T-B, Ingegneria Meccanica, 17/06/2014 MATRICOLA:...NOME e COGNOME:............................................. Desidero sostenere la prova orale al prossimo appello

Dettagli

CORSO DI LAUREA IN INFORMATICA ANALISI MATEMATICA I MODULO, I E II MODULO, II MODULO. f(x) = (µx ± 2µ) e 1/x,

CORSO DI LAUREA IN INFORMATICA ANALISI MATEMATICA I MODULO, I E II MODULO, II MODULO. f(x) = (µx ± 2µ) e 1/x, CORSO DI LAUREA IN INFORMATICA ANALISI MATEMATICA I MODULO, I E II MODULO, II MODULO I PROVA SCRITTA DI GIUGNO 2005: SOLUZIONI ESERCIZIO - Data la funzione f(x) = (µx ± 2µ) e 1/x, si chiede di: a) calcolare

Dettagli

Per determinare una soluzione particolare descriveremo un metodo che vale solo nel caso in cui la funzione f(x) abbia una forma particolare:

Per determinare una soluzione particolare descriveremo un metodo che vale solo nel caso in cui la funzione f(x) abbia una forma particolare: 42 Roberto Tauraso - Analisi 2 Ora imponiamo condizione richiesta: ( lim c e 4x + c 2 + c 3 e 2x cos(2x) + c 4 e 2x sin(2x) ) = 3. x + Il limite esiste se e solo c 3 = c 4 = perché le funzioni e 2x cos(2x)

Dettagli

a) Il denominatore dev essere diverso da zero. Studiamo il trinomio x 2 5x + 6. Si ha: x 1,2 = 5 ± se x ], 2[ ]3, + [;

a) Il denominatore dev essere diverso da zero. Studiamo il trinomio x 2 5x + 6. Si ha: x 1,2 = 5 ± se x ], 2[ ]3, + [; ESERCIZIO - Data la funzione f (x) + x2 2x x 2 5x + 6, si chiede di: a) calcolare il dominio di f ; (2 punti) b) studiare la positività e le intersezioni con gli assi; (3 punti) c) stabilire se f ha asintoti

Dettagli

Corso di Analisi Matematica 1 - professore Alberto Valli

Corso di Analisi Matematica 1 - professore Alberto Valli Università di Trento - Corso di Laurea in Ingegneria Civile e Ingegneria per l Ambiente e il Territorio - 8/9 Corso di Analisi Matematica - professore Alberto Valli foglio di esercizi - dicembre 8 Integrali

Dettagli

1) Applicando la definizione di derivata, calcolare la derivata in x = 0 delle funzioni: c) x + 1 d)x sin x.

1) Applicando la definizione di derivata, calcolare la derivata in x = 0 delle funzioni: c) x + 1 d)x sin x. Funzioni derivabili Esercizi svolti 1) Applicando la definizione di derivata, calcolare la derivata in x = 0 delle funzioni: a)2x 5 b) x 3 x 4 c) x + 1 d)x sin x. 2) Scrivere l equazione della retta tangente

Dettagli

y (b) f(x, y) = y log x sin x (c) f(x, y) = tan y (d) f(x, y) = e x y (f) f(x, y) = cos(x 2 + y 2 )

y (b) f(x, y) = y log x sin x (c) f(x, y) = tan y (d) f(x, y) = e x y (f) f(x, y) = cos(x 2 + y 2 ) FUNZIONI DI PIÙ VARIABILI. Siano date le seguenti funzioni: (a) f(x, y) = 3x + y (c) h(x, y) = x y (b) g(x, y) = xy (d) k(x, y) = x + y Determinare e disegnare nel piano cartesiano il dominio delle funzioni

Dettagli

y 3y + 2y = 1 + x x 2.

y 3y + 2y = 1 + x x 2. Università degli Studi della Basilicata Corsi di Laurea in Chimica / Scienze Geologiche Matematica II A. A. 03-04 (dott.ssa Vita Leonessa) Esercizi svolti: Equazioni differenziali ordinarie. Risolvere

Dettagli

Università di Roma Tor Vergata - Corso di Laurea in Ingegneria Analisi Matematica I - Prova scritta del 10 Luglio 2019

Università di Roma Tor Vergata - Corso di Laurea in Ingegneria Analisi Matematica I - Prova scritta del 10 Luglio 2019 Università di Roma Tor Vergata - Corso di Laurea in Ingegneria nalisi Matematica I - Prova scritta del 0 Luglio 09 Esercizio. [5 punti] Calcolare lo sviluppo di Taylor dell ordine n = 5 con centro x 0

Dettagli

Analisi Matematica 2 Ingegneria Gestionale Docenti: B. Rubino e R. Sampalmieri L Aquila, 21 marzo 2005

Analisi Matematica 2 Ingegneria Gestionale Docenti: B. Rubino e R. Sampalmieri L Aquila, 21 marzo 2005 Analisi Matematica 2 Ingegneria Gestionale Docenti: B. Rubino e R. Sampalmieri L Aquila, 21 marzo 2005 Prova orale il: Docente: Determinare, se esistono, il massimo ed il minimo assoluto della funzione

Dettagli

Gruppo esercizi 1: Dominio [E.1] Disegnare nel piano cartesiano il dominio della funzione

Gruppo esercizi 1: Dominio [E.1] Disegnare nel piano cartesiano il dominio della funzione Gruppo esercizi 1: Dominio [E.1] Disegnare nel piano cartesiano il dominio della funzione [E.2] Disegnare nel piano cartesiano il dominio della funzione ( 4 x 2 y 2) ) (1 x 2 y2 y + x 2. 4 1 y ex y y x

Dettagli

Esonero di Analisi Matematica (A)

Esonero di Analisi Matematica (A) Esonero di Analisi Matematica (A) Ingegneria Civile, 26 novembre 2001 () 1. Studiare il seguente limite: lim x x + ( e 1/x cos 1 ). x 2. Studiare gli eventuali massimi e minimi relativi ed assoluti della

Dettagli

ANALISI MATEMATICA 1 Commissione L. Caravenna, V. Casarino, S. Zoccante Ingegneria Gestionale, Meccanica e Meccatronica, Vicenza

ANALISI MATEMATICA 1 Commissione L. Caravenna, V. Casarino, S. Zoccante Ingegneria Gestionale, Meccanica e Meccatronica, Vicenza ANALISI MATEMATICA Commissione L Caravenna, V Casarino, S Zoccante Ingegneria Gestionale, Meccanica e Meccatronica, Vicenza Nome, Cognome, numero di matricola: Vicenza, 7 Luglio 205 TEMA - parte B Esercizio

Dettagli

Analisi Matematica I

Analisi Matematica I Università degli Studi di Genova Facoltà di Ingegneria - Polo di Savona via Cadorna 7-7 Savona Tel. +39 9 264555 - Fax +39 9 264558 Analisi Matematica I Testi d esame e Prove parziali Analisi Matematica

Dettagli

Università degli Studi di Salerno - Facoltà di Ingegneria Matematica II - Prova Scritta - 09/06/2006

Università degli Studi di Salerno - Facoltà di Ingegneria Matematica II - Prova Scritta - 09/06/2006 Matematica II - Prova Scritta - 09/06/2006 f(x, y) = (y x)e x2 y 2, 2. Risolvere le seguenti equazioni differenziali: y 2 = 1 1 (2x y) 2, y 2y + y 2y = e x (x 1). 3. Calcolare il seguente integrale curvilineo

Dettagli

Equazioni differenziali

Equazioni differenziali 4 Equazioni differenziali Determinare le primitive di una funzione f(x) significa risolvere y (x) = f(x) dove l incognita è la funzione y(x). Questa equazione è un semplice esempio di equazione differenziale.

Dettagli

Corso di Laurea in Ingegneria Informatica Prova di Analisi Matematica 1

Corso di Laurea in Ingegneria Informatica Prova di Analisi Matematica 1 Corso di Laurea in Ingegneria Informatica Prova di Analisi Matematica 1 5 Giugno 2018 Scrivere subito nome e cognome e matricola sul foglio risposte e preparare il libretto sul banco per il controllo.

Dettagli

Provetta scritta di Calcolo I Corsi di laurea in Fisica - Scienza e Tecnologia dei Materiali Prova scritta del 7/12/2005 Fila A

Provetta scritta di Calcolo I Corsi di laurea in Fisica - Scienza e Tecnologia dei Materiali Prova scritta del 7/12/2005 Fila A Provetta scritta di Calcolo I Prova scritta del 7/2/25 Fila A ) Calcolare i limiti 3 x 3 x 4 ; b) lim sin(2x) + x2 x( cos(3x)) c) lim + 5 x 7 x 4 x 2 + x. 2) Determinare il massimo di x 3 (2 + x 4 ) 3/2,

Dettagli

1. Riconoscere la natura delle coniche rappresentate dalle seguenti equazioni e disegnarle:

1. Riconoscere la natura delle coniche rappresentate dalle seguenti equazioni e disegnarle: Università degli Studi della Basilicata Corsi di Laurea in Chimica / Scienze Geologiche Matematica II A. A. 204-205 (dott.ssa Vita Leonessa) Esercizi proposti n. 3: Funzioni a due variabili. Riconoscere

Dettagli

Esercizi svolti. a 2 x + 3 se x 0; determinare a in modo che f risulti continua nel suo dominio.

Esercizi svolti. a 2 x + 3 se x 0; determinare a in modo che f risulti continua nel suo dominio. Esercizi svolti 1. Sia sin(x ) f(x) = x ( 1 + x 1 ) se x > 0 a x + 3 se x 0; determinare a in modo che f risulti continua nel suo dominio.. Scrivere l equazione della retta tangente nel punto di ascissa

Dettagli

CORSO DI LAUREA IN INFORMATICA ANALISI MATEMATICA I MODULO, I E II MODULO, II MODULO II PROVA SCRITTA DI GENNAIO 2006: SOLUZIONI

CORSO DI LAUREA IN INFORMATICA ANALISI MATEMATICA I MODULO, I E II MODULO, II MODULO II PROVA SCRITTA DI GENNAIO 2006: SOLUZIONI CORSO DI LAUREA IN INFORMATICA ANALISI MATEMATICA I MODULO, I E II MODULO, II MODULO II PROVA SCRITTA DI GENNAIO 2006: SOLUZIONI Notiamo che lo studio delle funzioni assegnate f,..., f 4 si riduce a considerare

Dettagli

x + 1 2x], g(x) = x x + 2, h(x) = ln(x 1 2x 2 4x).

x + 1 2x], g(x) = x x + 2, h(x) = ln(x 1 2x 2 4x). Funzioni Esercizio Siano f, g due funzioni definite da fx) = x x 2, gx) = ln x Trovare l insieme di definizione di f e g 2 Determinare le funzioni composte f g e g f, precisandone insieme di definizione

Dettagli

Corso di Laurea in Ingegneria Informatica Prova scritta di Analisi Matematica 1

Corso di Laurea in Ingegneria Informatica Prova scritta di Analisi Matematica 1 Corso di Laurea in Ingegneria Informatica Prova scritta di Analisi Matematica 30 gennaio 207 Scrivere subito nome e cognome e matricola sul foglio risposte e preparare il libretto sul banco per il controllo.

Dettagli

CORSO DI LAUREA IN INFORMATICA ANALISI MATEMATICA I MODULO, I E II MODULO, II MODULO. f 1 (x) = arctan(x2 7x + 12) x 2,

CORSO DI LAUREA IN INFORMATICA ANALISI MATEMATICA I MODULO, I E II MODULO, II MODULO. f 1 (x) = arctan(x2 7x + 12) x 2, CORSO DI LAUREA IN INFORMATICA ANALISI MATEMATICA I MODULO, I E II MODULO, II MODULO II PROVA SCRITTA DI GIUGNO 007: SOLUZIONI ESERCIZIO - Data la funzione f 1 (x) = arctan(x 7x + 1) x, 7x + 1 si chiede

Dettagli

Corso di laurea in ingegneria gestionale a.a. 2015/2016 Tutor: Andrea Bendinelli

Corso di laurea in ingegneria gestionale a.a. 2015/2016 Tutor: Andrea Bendinelli Corso di analisi matematica I 12 c.f.u. Facoltà di ingegneria dell'informazione, informatica e statistica Corso di laurea in ingegneria gestionale a.a. 2015/2016 Tutor: Andrea Bendinelli 1 Indice I Esercitazione

Dettagli

Analisi Matematica A e B Soluzioni prova scritta parziale n. 4

Analisi Matematica A e B Soluzioni prova scritta parziale n. 4 Analisi Matematica A e B Soluzioni prova scritta parziale n. Corso di laurea in Fisica, 08-09 7 aprile 09. Determinare le soluzioni u(x) dell equazione differenziale u + u u = sin x + ex + e x. Soluzione.

Dettagli

Soluzioni. Calcolo Integrale Calcolare l integrale indefinito. 1 x + x. dx. R. Procediamo effettuando il cambio di variabile t = x ossia

Soluzioni. Calcolo Integrale Calcolare l integrale indefinito. 1 x + x. dx. R. Procediamo effettuando il cambio di variabile t = x ossia Calcolo Integrale 5 Soluzioni. Calcolare l integrale indefinito x + x dx. R. Procediamo effettuando il cambio di variabile t = x ossia x = t e dx = t dt. Quindi dx = x + x t dt = t + t dt = log + t + c

Dettagli

Corso di Laurea in Ingegneria Biomedica ANALISI MATEMATICA 1. Prova scritta del 25 febbraio 2017 Fila 1.

Corso di Laurea in Ingegneria Biomedica ANALISI MATEMATICA 1. Prova scritta del 25 febbraio 2017 Fila 1. Corso di Laurea in Ingegneria Biomedica ANALISI MATEMATICA Prova scritta del 5 febbraio 07 Fila. Esporre il procedimento di risoluzione degli esercizi in maniera completa e leggibile.. (Punti 7) Posto

Dettagli

SOLUZIONI COMPITO del 13/02/2019 ANALISI MATEMATICA I - 9 CFU ENERGETICA TEMA A

SOLUZIONI COMPITO del 13/02/2019 ANALISI MATEMATICA I - 9 CFU ENERGETICA TEMA A SOLUZIONI COMPITO del /0/09 ANALISI MATEMATICA I - 9 CFU ENERGETICA TEMA A Esercizio Ponendo z = a + ib, da cui z = a + b, ed osservando che e iπ/ = i, l equazione proposta si riscrive nella forma a b

Dettagli

Funzioni derivabili (V. Casarino)

Funzioni derivabili (V. Casarino) Funzioni derivabili (V. Casarino) Esercizi svolti 1) Applicando la definizione di derivata, calcolare la derivata in = 0 delle funzioni: a) 5 b) 3 4 c) + 1 d) sin. ) Scrivere l equazione della retta tangente

Dettagli

Corso di Laurea in Ingegneria Informatica Prova di Analisi Matematica 1

Corso di Laurea in Ingegneria Informatica Prova di Analisi Matematica 1 Corso di Laurea in Ingegneria Informatica Prova di Analisi Matematica 1 27 giugno 2017 Scrivere subito nome e cognome e matricola sul foglio risposte e preparare il libretto sul banco per il controllo.

Dettagli

Equazioni differenziali Corso di Laurea in Scienze Biologiche Istituzioni di Matematiche A.A. 2007-2008. Dott.ssa G. Bellomonte

Equazioni differenziali Corso di Laurea in Scienze Biologiche Istituzioni di Matematiche A.A. 2007-2008. Dott.ssa G. Bellomonte Equazioni differenziali Corso di Laurea in Scienze Biologiche Istituzioni di Matematiche A.A. 2007-2008 Dott.ssa G. Bellomonte Indice 1 Introduzione 2 2 Equazioni differenziali lineari del primo ordine

Dettagli

Le equazioni funzionali sono equazioni in cui l incognita è una funzione.

Le equazioni funzionali sono equazioni in cui l incognita è una funzione. EQUAZIONI DIF F ERENZIALII Le equazioni funzionali sono equazioni in cui l incognita è una funzione. ESEMPIO. Trovare una funzione f : R! R tale che f(x) = f (x) per ogni x R. Come subito si vede, ogni

Dettagli

Corso di Laurea in Ingegneria Informatica Prova di Analisi Matematica 1

Corso di Laurea in Ingegneria Informatica Prova di Analisi Matematica 1 Corso di Laurea in Ingegneria Informatica Prova di Analisi Matematica 1 6 giugno 2017 Scrivere subito nome e cognome e matricola sul foglio risposte e preparare il libretto sul banco per il controllo.

Dettagli

SOLUZIONI COMPITO del 1/02/2013 ANALISI MATEMATICA I - 9 CFU INGEGNERIA MECCANICA - INGEGNERIA ENERGETICA INGEGNERIA AMBIENTE e TERRITORIO TEMA A

SOLUZIONI COMPITO del 1/02/2013 ANALISI MATEMATICA I - 9 CFU INGEGNERIA MECCANICA - INGEGNERIA ENERGETICA INGEGNERIA AMBIENTE e TERRITORIO TEMA A SOLUZIONI COMPITO del /0/0 ANALISI MATEMATICA I - 9 CFU INGEGNERIA MECCANICA - INGEGNERIA ENERGETICA INGEGNERIA AMBIENTE e TERRITORIO TEMA A Esercizio Osserviamo che la serie proposta è a termini di segno

Dettagli

1

1 1 4 5 6 7 8 Analisi Matematica I (Fisica e Astronomia) TEST n. di Esame Scritto (0/01/015) Università di Padova - Lauree in Fisica ed Astronomia - A.A. 014/15 Cognome-Nome Matr. - IN STAMPATELLO SF /

Dettagli

COGNOME... NOME... Matricola... II corso Prof. Camporesi. Esame di ANALISI MATEMATICA - 9 Settembre 2004

COGNOME... NOME... Matricola... II corso Prof. Camporesi. Esame di ANALISI MATEMATICA - 9 Settembre 2004 COGNOME... NOME... Matricola... II corso Prof. Camporesi Esame di ANALISI MATEMATICA - 9 Settembre 2004 A ESERCIZIO 1. (5 punti) 1. Risolvere in campo complesso l equazione z 5 + (1 + i)z = 0. 2. Dimostrare

Dettagli

TEMI D ESAME DI ANALISI MATEMATICA I Corso di laurea (quadriennale) in Fisica a.a. 2002/03

TEMI D ESAME DI ANALISI MATEMATICA I Corso di laurea (quadriennale) in Fisica a.a. 2002/03 I seguenti quesiti ed il relativo svolgimento sono coperti dal diritto d autore, pertanto essi non possono essere sfruttati a fini commerciali o di pubblicazione editoriale senza autorizzazione esplicita

Dettagli

Equazioni differenziali. f(x, u, u,...,u (n) )=0,

Equazioni differenziali. f(x, u, u,...,u (n) )=0, Lezione Equazioni differenziali Un equazione differenziale è una relazione del tipo f(x, u, u,...,u (n) )=, che tiene conto del valori di una funzione (incognita) u e delle sue derivate fino ad un certo

Dettagli

Equazioni differenziali del I ordine. y = y 2 y(0) = 1 e stabilire il più ampio intervalo in cui è definita la soluzione.

Equazioni differenziali del I ordine. y = y 2 y(0) = 1 e stabilire il più ampio intervalo in cui è definita la soluzione. Equazioni differenziali del I ordine 1. Risolvere il seguente problema di Cauchy: y = y 2 y(0) = 1 2. Determinare l integrale generale della seguente equazione differenziale: y = (1 )(1 y). 3. Risolvere

Dettagli

ESERCIZI SULLE EQUAZIONI DIFFERENZIALI

ESERCIZI SULLE EQUAZIONI DIFFERENZIALI ESERCIZI SULLE EQUAZIONI DIFFERENZIALI a cura di Michele Scaglia ESERCIZI SULLE EQUAZIONI DIFFERENZIALI LINEARI DEL PRIMO OR- DINE A VARIABILI SEPARABILI TRATTI DA TEMI D ESAME 3) [TE /0/00] Determinare

Dettagli

ESERCIZI SULLE CURVE

ESERCIZI SULLE CURVE ESERCIZI SULLE CURVE VALENTINA CASARINO Esercizi per il corso di Fondamenti di Analisi Matematica, (Ingegneria Gestionale, dell Innovazione del Prodotto, Meccanica e Meccatronica, Università degli studi

Dettagli

Funzioni implicite - Esercizi svolti

Funzioni implicite - Esercizi svolti Funzioni implicite - Esercizi svolti Esercizio. È data la funzione di due variabili F (x, y) = y(e y + x) log x. Verificare che esiste un intorno I in R del punto di ascissa x 0 = sul quale è definita

Dettagli

Raccolta degli Scritti d Esame di ANALISI MATEMATICA U.D. 3 assegnati nei Corsi di Laurea di Fisica, Fisica Applicata, Matematica

Raccolta degli Scritti d Esame di ANALISI MATEMATICA U.D. 3 assegnati nei Corsi di Laurea di Fisica, Fisica Applicata, Matematica DIPARTIMENTO DI MATEMATICA Università degli Studi di Trento Via Sommarive - Povo (TRENTO) Raccolta degli Scritti d Esame di ANALISI MATEMATICA U.D. 3 assegnati nei Corsi di Laurea di Fisica, Fisica Applicata,

Dettagli

EQUAZIONI DIFFERENZIALI / ESERCIZI SVOLTI

EQUAZIONI DIFFERENZIALI / ESERCIZI SVOLTI ANALISI MATEMATICA I - A.A. 03/0 EQUAZIONI DIFFERENZIALI / ESERCIZI SVOLTI L asterisco contrassegna gli esercizi più difficili. ESERCIZIO. Determinare l integrale generale dell equazione differenziale

Dettagli

1. (4 punti) Calcolare i seguenti limiti: (a) lim. n arctan( n (log n)2 n. Assegnata la funzione f(x) = (3x + 1) e 1

1. (4 punti) Calcolare i seguenti limiti: (a) lim. n arctan( n (log n)2 n. Assegnata la funzione f(x) = (3x + 1) e 1 Matematica, 2 CFU Corso di laurea in Scienze Biologiche- A.A. 2009-200 Laurea Triennale-Corsi A e C 9 Febbraio 200- COMPITO - Totale punti 40, punteggio minimo 24 Nome Cognome. (4 punti) Calcolare i seguenti

Dettagli

Matematica e Statistica (A-E, F-O, P-Z)

Matematica e Statistica (A-E, F-O, P-Z) Matematica e Statistica (A-E, F-O, P-Z) Prova d esame (08/07/20) Università di Verona - Laurea in Biotecnologie - A.A. 200/ Matematica e Statistica (A-E, F-O, P-Z) Prova di MATEMATICA (A-E, F-O, P-Z) (08/07/20)

Dettagli

Analisi Matematica B Soluzioni prova scritta parziale n. 4

Analisi Matematica B Soluzioni prova scritta parziale n. 4 Analisi Matematica B Soluzioni prova scritta parziale n. 4 Corso di laurea in Fisica, 017-018 4 maggio 018 1. Risolvere il problema di Cauchy { u u sin x = sin(x), u(0) = 1. Svolgimento. Si tratta di una

Dettagli

Equazioni differenziali del II ordine. y 5y + 6y = 0 y(0) = 0 y (0) = 1

Equazioni differenziali del II ordine. y 5y + 6y = 0 y(0) = 0 y (0) = 1 Equazioni differenziali del II ordine 1. Risolvere il seguente problema di Cauchy: y 5y + 6y = 0 y (0) = 1. Determinare l integrale generale della seguente equazione differenziale: y 5y + 6y = f(x), con

Dettagli

ANALISI MATEMATICA T-2 (C.d.L. Ing. per l ambiente e il territorio) A.A Prof. G.Cupini

ANALISI MATEMATICA T-2 (C.d.L. Ing. per l ambiente e il territorio) A.A Prof. G.Cupini ANALISI MATEMATICA T-2 (C.d.L. Ing. per l ambiente e il territorio) A.A.2009-2010 - Prof. G.Cupini Equazioni differenziali ordinarie del primo ordine (lineari, a variabili separabili, di Bernoulli) ed

Dettagli

ANALISI MATEMATICA 1 Area dell Ingegneria dell Informazione. Appello del

ANALISI MATEMATICA 1 Area dell Ingegneria dell Informazione. Appello del ANALISI MATEMATICA Area dell Ingegneria dell Informazione Appello del 3..7 TEMA Esercizio Calcolare l integrale log(3) 4 dx Svolgimento. Si ha log(3) 4 dx = (ponendo ex = t, per cui dx = dt/t) e = 4 3

Dettagli

TEMA 1. F (x, y) = e xy + x + y.

TEMA 1. F (x, y) = e xy + x + y. FONDAMENTI DI ANALII MATEMATICA 2 Commissione F. Albertini, V. Casarino, M. Motta Ingegneria Gestionale, Meccanica e Meccatronica, Vicenza Vicenza, 23 gennaio 217 Primo appello Avvertenza: Nella prima

Dettagli

ANNO ACCADEMICO 2017/2018 CORSO di LAUREA in BIOTECNOLOGIE MATEMATICA III compitino 25/5/2018. Esercizio 1. Calcolare il seguente integrale definito:

ANNO ACCADEMICO 2017/2018 CORSO di LAUREA in BIOTECNOLOGIE MATEMATICA III compitino 25/5/2018. Esercizio 1. Calcolare il seguente integrale definito: ANNO ACCADEMICO 17/18 CORSO di LAUREA in BIOTECNOLOGIE MATEMATICA III compitino 5/5/18 Esercizio 1. Calcolare il seguente integrale definito: x cos(x)dx. Esercizio. Si consideri la funzione f : [, + )

Dettagli

Esame di MATEMATICA CORSO BASE del

Esame di MATEMATICA CORSO BASE del Esame di MATEMATICA CORSO BASE del Cognome Matricola Nome Esercizio. Si consideri il seguente sistema x 3y + z =5 x ky +z = k kx y z = Si trovino il numero delle soluzioni al variare del parametro k e

Dettagli

Esonero di Analisi Matematica II (A)

Esonero di Analisi Matematica II (A) Esonero di Analisi Matematica II (A) Ingegneria Edile, 8 aprile 3. Studiare la convergenza del seguente integrale improprio: + x log 3 x (x ) 3 dx.. Studiare la convergenza puntuale ed uniforme della seguente

Dettagli

5π/2. 3π/2. y = f(x) π π. -5π/2-2π -3π/2 -π -π/2 π/2 π 3π/2 2π 5π/2 3π 7π. -π/2

5π/2. 3π/2. y = f(x) π π. -5π/2-2π -3π/2 -π -π/2 π/2 π 3π/2 2π 5π/2 3π 7π. -π/2 Corso di Laurea in Matematica Analisi 4 - SOLUZIONI /9/8) Docente: Claudia Anedda ) Data la funzione yx) x + π, x, π) prolungarla su tutto R in modo tale che sia una funzione π-periodica pari, disegnare

Dettagli

Matematica e Statistica

Matematica e Statistica Matematica e Statistica Prova d esame (25/09/203) Università di Verona - Laurea in Biotecnologie - A.A. 202/3 Matematica e Statistica Prova di MATEMATICA (25/09/203) Università di Verona - Laurea in Biotecnologie

Dettagli

Argomento 14 Esercizi: suggerimenti

Argomento 14 Esercizi: suggerimenti Argomento 4 Esercizi: suggerimenti Ex.. Equazione differenziale lineare del primo ordine, cioè del tipo: y + a(x) y = f(x) il cui integrale generale è dato dalla formula: ] y(x, C) = e [C A(x) + f(x)e

Dettagli

Equazioni differenziali

Equazioni differenziali 4 Equazioni differenziali Determinare le primitive di una funzione f(x) significa risolvere y (x) = f(x) dove l incognita è la funzione y(x). Questa equazione è un semplice esempio di equazione differenziale.

Dettagli

Test in Itinere di Analisi Matematica

Test in Itinere di Analisi Matematica 4 Prove d Esame di Analisi Matematica Versione 2006 Pisa, 5 Novembre 2002 La funzione f(x) = x da R in R è surgettiva Per ogni x 0 si ha che x 1 = x 1 La funzione f(x) = x da [0, + [ in [0, + [ è iniettiva

Dettagli

Equazioni differenziali

Equazioni differenziali Equazioni differenziali Hynek Kovarik Università di Brescia Analisi Matematica 1 Hynek Kovarik (Università di Brescia) Equazioni differenziali Analisi Matematica 1 1 / 30 Formulazione del problema In generale

Dettagli

Analisi - 10 settembre 2008 Corso di Laurea in Fisica - Fisica ed Astrofisica

Analisi - 10 settembre 2008 Corso di Laurea in Fisica - Fisica ed Astrofisica Analisi - 1 settembre 28 Corso di Laurea in Fisica - Fisica ed Astrofisica Chi deve fare lo scritto di Derivate e Integrali (vecchio ordinamento) deve svolgere gli esercizi: 1, 2, 3, 4, 5 Esercizio 1 Data

Dettagli

Matematica per Scienze Biologiche e Biotecnologie. Docente Lucio Damascelli. Università di Tor Vergata. Alcuni recenti compiti di esame

Matematica per Scienze Biologiche e Biotecnologie. Docente Lucio Damascelli. Università di Tor Vergata. Alcuni recenti compiti di esame Matematica per Scienze Biologiche e Biotecnologie Docente Lucio Damascelli Università di Tor Vergata Alcuni recenti compiti di esame Nota Nei compiti di esame si chiedono 6 esercizi da svolgere in (al

Dettagli

Compitino di Analisi Matematica 1 Prima parte, Tema A Ingegneria Civile, Ambientale e Edile COGNOME: NOME: MATR.: RISPOSTE:

Compitino di Analisi Matematica 1 Prima parte, Tema A Ingegneria Civile, Ambientale e Edile COGNOME: NOME: MATR.: RISPOSTE: Compitino di Analisi Matematica 1 Prima parte, Tema A Ingegneria Civile, Ambientale e Edile 20 maggio 2014 COGNOME: NOME: MATR.: RISPOSTE: A B C D E 1 X 2 X 3 X 4 X 5 X 6 X 7 X 8 X 9 X 10 X 1 Prima parte,

Dettagli

6.3 Equazioni lineari del secondo ordine

6.3 Equazioni lineari del secondo ordine si supponga di conoscerne una soluzione ψ(x). Si verifichi che con la sostituzione y(x) = ψ(x) + 1, l equazione diventa lineare nell incognita v(x) v(x). Utilizzando questo metodo, si risolva l equazione

Dettagli

Analisi matematica I. Calcolo integrale. Primitive e integrali indefiniti

Analisi matematica I. Calcolo integrale. Primitive e integrali indefiniti Analisi matematica I Calcolo integrale Regole di integrazione Integrali definiti condo Riemann Teorema fondamentale del calcolo integrale Integrali impropri 2 2006 Politecnico di Torino 1 Calcolo integrale

Dettagli

EQUAZIONI DIFFERENZIALI Esercizi con soluzione

EQUAZIONI DIFFERENZIALI Esercizi con soluzione EQUAZIONI DIFFERENZIALI Esercizi con soluzione 1. Calcolare l integrale generale delle seguenti equazioni differenziali lineari del primo ordine: (a) y 2y = 1 (b) y + y = e x (c) y 2y = x 2 + x (d) 3y

Dettagli

Equazioni differenziali

Equazioni differenziali Capitolo 2 Equazioni differenziali I modelli matematici per lo studio di una popolazione isolata sono equazioni differenziali. Premettiamo dunque allo studio dei modelli di popolazioni isolate una breve

Dettagli

Scritto d esame di Analisi Matematica

Scritto d esame di Analisi Matematica 116 Prove d Esame di Analisi Matematica Versione 2006 Pisa, 15 Gennaio 2000 x 0 sin x 4 x 4 (arctan x x) 4. 2. eterminare, al variare del parametro λ R, il numero di soluzioni dell equazione 2x 2 = λe

Dettagli

ANALISI MATEMATICA I MODULO, I e II MODULO, II MODULO CORSO DI LAUREA IN INFORMATICA

ANALISI MATEMATICA I MODULO, I e II MODULO, II MODULO CORSO DI LAUREA IN INFORMATICA ANALISI MATEMATICA I MODULO, I e II MODULO, II MODULO CORSO DI LAUREA IN INFORMATICA Prova scritta del 2 luglio 2004: soluzioni Data la funzione f() = 3 2 2 arctan + 0, si chiede di: a) calcolare il dominio

Dettagli

Risoluzione del compito n. 2 (Febbraio 2018/1)

Risoluzione del compito n. 2 (Febbraio 2018/1) Risoluzione del compito n. Febbraio 18/1 PROBLEMA 1 Dopo averlo scritto in forma trigonometrica, determinate le radiciquadrate complesse del numero +i 3. Determinate tutte le soluzioni w C dell equazione

Dettagli

Matematica e Statistica

Matematica e Statistica Matematica e Statistica Prova d esame (06/0/03) Università di Verona - Laurea in Biotecnologie - A.A. 0/3 Matematica e Statistica Prova di MATEMATICA (06/0/03) Università di Verona - Laurea in Biotecnologie

Dettagli

Analisi Matematica 1 - a.a. 2017/ Quarto appello

Analisi Matematica 1 - a.a. 2017/ Quarto appello Analisi Matematica - a.a. 07/08 - Quarto appello Soluzione del test Test A E C B B C A D C C D Test B C B C E B A E E D B Test C A A D B E C A C D D Test D D B A A B E A E B D Soluzione della parte di

Dettagli

Equazioni differenziali a variabili separabili e lineari del primo ordine. Esercizi.

Equazioni differenziali a variabili separabili e lineari del primo ordine. Esercizi. Equazioni differenziali a variabili separabili e lineari del primo ordine. Esercizi. Mauro Saita Versione provvisoria. Dicembre 204 Per commenti o segnalazioni di errori scrivere, per favore, a: maurosaita@tiscalinet.it

Dettagli

Università di Bari - Dipartimento di Economia - Prova scritta di Matematica per l Economia L-Z- 19 Dicembre Traccia A

Università di Bari - Dipartimento di Economia - Prova scritta di Matematica per l Economia L-Z- 19 Dicembre Traccia A Università di Bari - Dipartimento di Economia - Prova scritta di Matematica per l Economia L-Z- 9 Dicembre 06 - Traccia A Cognome e nome................................ Numero di matricola............

Dettagli

Capitolo 8. Equazioni di erenziali ordinarie. 8.1 Motivazioni

Capitolo 8. Equazioni di erenziali ordinarie. 8.1 Motivazioni Capitolo 8 Equazioni di erenziali ordinarie In questo capitolo ci occuperemo brevemente delle equazioni di erenziali ordinarie, concentrandoci su alcune tipologie notevoli che ricorrono nelle applicazioni.

Dettagli

Corso di Laurea in Ingegneria delle Telecomunicazioni ANALISI MATEMATICA 1. Prova scritta del 12 giugno 2018

Corso di Laurea in Ingegneria delle Telecomunicazioni ANALISI MATEMATICA 1. Prova scritta del 12 giugno 2018 Corso di Laurea in Ingegneria delle Telecomunicazioni ANALISI MATEMATICA Prova scritta del giugno 08 Esporre il procedimento di risoluzione degli esercizi in maniera completa e leggibile.. (Punti 5) Determinare

Dettagli

Matematica e Statistica

Matematica e Statistica Matematica e Statistica Prova d Esame (04/0/00) Università di Verona - Laurea in Biotecnologie - A.A. 009/0 Matematica e Statistica Prova d Esame di MATEMATICA (04/0/00) Università di Verona - Laurea in

Dettagli

Soluzioni del compito di Istituzioni di Matematiche/Matematica per Chimica F45 e F5X (10/2/11)

Soluzioni del compito di Istituzioni di Matematiche/Matematica per Chimica F45 e F5X (10/2/11) Soluzioni del compito di Istituzioni di Matematiche/Matematica per Chimica F5 e F5X (//). La funzione f(x) = x 3x x + (a) èdefinita purché l argomento della radice sia non negativo cioè perx 3x : quindi

Dettagli

7.1. Esercizio. Assegnata l equazione differenziale lineare di primo

7.1. Esercizio. Assegnata l equazione differenziale lineare di primo ANALISI MATEMATICA I Soluzioni Foglio 7 14 maggio 2009 7.1. Esercizio. Assegnata l equazione differenziale lineare di primo ordine y + y = 1 determinarne tutte le soluzioni, determinare la soluzione y(x)

Dettagli

Es. 1 Es. 2 Es. 3 Es. 4 Totale Teoria

Es. 1 Es. 2 Es. 3 Es. 4 Totale Teoria Es. Es. Es. 3 Es. 4 Totale Teoria Analisi e Geometria Docente: Politecnico di Milano Ingegneria Industriale 5 Settembre Compito A Cognome: Nome: Matricola: Punteggi degli esercizi: Es.: 6 punti; Es.: punti;

Dettagli

APPELLO B AM1C 14 LUGLIO f(x) = xe 1

APPELLO B AM1C 14 LUGLIO f(x) = xe 1 Cognome e nome APPELLO B AM1C 14 LUGLIO 2009 Esercizio 1. Sia data la funzione f(x) = xe 1 log x. (a) Determinarne: insieme di esistenza e di derivabilità, limiti ed eventuali asintoti, eventuali massimi,

Dettagli

ESERCIZI SU MASSIMI E MINIMI DI FUNZIONI IN PIÙ VARIABILI. m(x, y, z) = (2x 2 + y 2 )e x2 y 2, f(x, y) = (y x 2 )(y x2. f(x, y) = x 3 + (x y) 2,

ESERCIZI SU MASSIMI E MINIMI DI FUNZIONI IN PIÙ VARIABILI. m(x, y, z) = (2x 2 + y 2 )e x2 y 2, f(x, y) = (y x 2 )(y x2. f(x, y) = x 3 + (x y) 2, ESERCIZI SU MASSIMI E MINIMI DI FUNZIONI IN PIÙ VARIABILI VALENTINA CASARINO Esercizi per il corso di Analisi Matematica, (Ingegneria Gestionale, dell Innovazione del Prodotto, Meccanica e Meccatronica,

Dettagli

ANALISI MATEMATICA INGEGNERIA GESTIONALE PROF. GIACOMELLI ESEMPI DI ESERCIZI D ESAME

ANALISI MATEMATICA INGEGNERIA GESTIONALE PROF. GIACOMELLI ESEMPI DI ESERCIZI D ESAME ANALISI MATEMATICA INGEGNERIA GESTIONALE PROF. GIACOMELLI ESEMPI DI ESERCIZI D ESAME Contents. Numeri complessi. Funzioni: dominio, estremo superiore e inferiore, massimi e minimi 3. Successioni e serie

Dettagli

exp(x 2 ) 1 (1 + x 2 ) 2/5 1

exp(x 2 ) 1 (1 + x 2 ) 2/5 1 Esame di Matematica II Corso di Laurea Triennale in Scienza dei Materiali Esame di Complementi di Matematica Corso di Laurea Triennale in Scienze e Tecnologie Chimiche 18 Luglio 6 Motivare le soluzioni.

Dettagli

Analisi Matematica 1

Analisi Matematica 1 Michele Campiti Prove scritte di Analisi Matematica Ingegneria Industriale aa 28 29 y f g x La funzione seno e la funzione esponenziale Raccolta delle tracce di Analisi Matematica per Ingegneria Industriale,

Dettagli

Integrazione di funzioni razionali

Integrazione di funzioni razionali Esercitazione n Integrazione di funzioni razionali Consideriamo il rapporto P (x) di due polinomi di gradi n e m rispettivamente. Per determinare una primitiva della funzione f(x) P (x) possiamo procedere

Dettagli

Equazioni differenziali

Equazioni differenziali 1-Risolvi l equazione differenziale y (x)= x+senx con la condizione iniziale y(0)=0 SOLUZIONE: L equazione è a variabili separabili. Si integrano ambo i membri y (x)dx= (x+senx)dx, da cui l integrale generale

Dettagli

Prova scritta di Analisi Matematica 1 Prima parte, Tema A Ingegneria dell Energia, Univ. di Pisa COGNOME: NOME: MATR.: RISPOSTE:

Prova scritta di Analisi Matematica 1 Prima parte, Tema A Ingegneria dell Energia, Univ. di Pisa COGNOME: NOME: MATR.: RISPOSTE: Prova scritta di Analisi Matematica 1 Prima parte, Tema A Ingegneria dell Energia, Univ. di Pisa 12 gennaio 2013 COGNOME: NOME: MATR.: RISPOSTE: A B C D E 1 X 2 X 3 X 4 X 5 X 6 X 7 X 8 X 9 X 10 X 1 Prima

Dettagli

Matematica e Statistica

Matematica e Statistica Matematica e Statistica Prova d esame (08/0/0) Università di Verona - Laurea in Biotecnologie - A.A. 0/ Tema A Matematica e Statistica Prova di MATEMATICA (08/0/0) Università di Verona - Laurea in Biotecnologie

Dettagli