Equazioni differenziali

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Equazioni differenziali"

Transcript

1 1-Risolvi l equazione differenziale y (x)= x+senx con la condizione iniziale y(0)=0 SOLUZIONE: L equazione è a variabili separabili. Si integrano ambo i membri y (x)dx= (x+senx)dx, da cui l integrale generale y(x)=x 2 /2 - cosx +c; si impone la condizione iniziale y(0)= -1 + c= 0, da cui c=1 e quindi la soluzione particolare y*(x)= x 2 /2 - cosx +1

2 2-Risolvi la seguente equazione differenziale s (t)= (3t+1) con la condizione s(0)=1 SOLUZIONE: Analogamente all esercizio 1, si ha s(t)= (3t+1)dt = 2/9(3t+1) 3/2 + c, da cui, imponendo la condizione iniziale, si ha 2/9 + c=1 e quindi c=7/9 si ottiene la soluzione particolare s*(t)= 2/9(3t+1) 3/2 +7/9

3 3-Risolvi la seguente equazione differenziale y (x)= (x+1)/y con la condizione y(0)=2 SOLUZIONE: Separiamo le variabili e integriamo, si ha yy (x)dx= (x+1)dx, da cui ydy= (x+1)dx, quindi y 2 /2=x 2 /2 +x+c; imponendo la condizione y(0)=2 si ricava c=2 e quindi la soluzione particolare y*(x)= sqr(x 2 +2x +4)

4 4 - Sia L(t) la lunghezza di un pesce al tempo t e supponiamo che il pesce cresca in accordo all equazione di von Bertalanffy L = k(34 L(t)) con L(0)=2 a) determina la soluzione dell equazione b) Usa la tua soluzione per determinare k sotto l ipotesi che L(4)=10, disegna il grafico di L(t) per questo valore di k c) Trova la lunghezza del pesce quando t=0 d) Trova la lunghezza asintotica del pesce quando t +

5 SOLUZIONE:a) Ricordando (vedi lezione eq.diff.) che la soluzione generale dell equazione dl/dt =k(a- L) è data da L(t)=A(1-(1-L 0 /A)e -kt ), essendo nel nostro caso A=34 ed L 0 =2, si ottiene L(t)=34(1-(16/17)e -kt ); b) L(4)= 34(1-(16/17)e -4k )=10, da cui 16/17 e -4k =24/34, quindi e -4k =3/4, da cui -4k=ln(3/4), ed infine k=(1/4)ln(4/3), si ha quindi la soluzione L*(t)=34(1-(16/17)(4/3) -1/4t ); c) sappiamo già dalla condizione iniziale che il pesce è lungo 2 per t=0; la lunghezza asintotica è data da A, ed è quindi 34.

6 5- Assegnata l'equazione di Verhulst dx dt = x 2 1- x 10 6 a) determina per quali valori x(0) la soluzione x(t) è decrescente e verso quale limite tende per t + b) determina per quali valori x(0) la soluzione x(t) presenta un punto di flesso.

7 SOLUZIONE: a) avremo x (t) < 0 e quindi x(t) decrescente se e solo se x/2(1-x/10 6 )<0. Poiché l equazione logistica (o di Verhulst) descrive la dinamica di una popolazione, porremo sempre x(0)>0 e quindi per ogni t avremo x(t) > 0 (infatti x(t)=0 per ogni t è una soluzione dell equazione e quindi per ogni altra soluzione, per il teorema di Cauchy, non può esistere t tale che x(t)=0), dunque x/2(1-x/10 6 )<0 se e solo se 1-x/10 6 < 0, se e solo se x > 10 6, dunque le soluzioni saranno decrescenti per x(0) > 10 6 ;

8 poiché la soluzione generale dell equazione x (t)=rx(1-x/k) è (vedi lez. equaz. diff.) x(t)=k/(1-e -rt /C), dove C= x 0 /(x 0 -K) essendo x 0 =x(0), per t + tutte le soluzioni (tranne la soluzione nulla) tendono a K, e quindi, in questo caso a 10 6 ; b) possiamo dimostrare che l eventuale punto di flesso si ha se e solo se esiste t tale che x(t)=k/2, quindi dovrebbe esistere t tale che x(t)=k/(1-e -rt /C)=K/2, quindi C = -e -rt, per cui se e solo se C < 0, per cui si deve avere x 0 < K; si osserva inoltre che il flesso si avrà per un t>0 se e solo se x 0 < K/2, infatti dovendo essere

9 e -rt = x 0 /(K- x 0 ), si ricava t = (1/r)ln((K- x 0 )/ x 0 ) per cui t>0 se e solo se ln((k- x 0 )/ x 0 ) >0, se e solo se (K- x 0 )/ x 0 >1 e quindi se e solo se x 0 <K/2. Osservazione: L eventuale punto di flesso può essere determinato dallo studio del segno della derivata seconda di x(t) e questo può essere fatto sia calcolando, come di consueto, la derivata seconda della soluzione scritta in forma esplicita, oppure, più semplicemente, derivando l equazione differenziale x (t)=rx(1-x/k), infatti si ha

10 x (t)=r(1-x/k)x +rx(-1/k)x =rx (1-2x/K), quindi si ha x (t)=0 se e solo se x =0 oppure x(t)=k/2; x =0 corrisponde alle due soluzioni costanti x=0 e x=k, in tutti gli altri casi x (t) 0 per ogni t, mentre x(t)=k/2 è la soluzione di cui si è detto in precedenza e che si ha se e solo se x 0 <K/2; si osserva che, in tal caso, la x(t) è convessa per t < (1/r)ln((K- x 0 )/ x 0 ) e concava per t > (1/r)ln((K- x 0 )/ x 0 ).

Matematica con elementi di Informatica

Matematica con elementi di Informatica Equazioni differenziali Matematica con elementi di Informatica Tiziano Vargiolu Dipartimento di Matematica vargiolu@math.unipd.it Corso di Laurea Magistrale in Chimica e Tecnologie Farmaceutiche. () Equazioni

Dettagli

Equazioni differenziali

Equazioni differenziali Spesso una teoria biologica (o chimica o fisica) suggerisce una relazione tra una certa quantità, oggetto di studio e la sua variazione. Una equazione differenziale è una equazione in cui l incognita non

Dettagli

ESERCIZI SULLE EQUAZIONI DIFFERENZIALI

ESERCIZI SULLE EQUAZIONI DIFFERENZIALI ESERCII SULLE EQUAIONI DIFFERENIALI PRIMA PARTE VALENTINA CASARINO Esercizi per il corso di Fondamenti di Analisi Matematica 2, (Ingegneria Gestionale, dell Innovazione del Prodotto, Meccanica e Meccatronica,

Dettagli

Analisi Matematica IV modulo Soluzioni prova scritta preliminare n. 1

Analisi Matematica IV modulo Soluzioni prova scritta preliminare n. 1 Analisi Matematica IV modulo Soluzioni prova scritta preinare n. Corso di laurea in Matematica, a.a. 200-2004 24 marzo 2004. Risolvere il prolema di Cauchy y = (y 2x) 2 + y 2x y(log 2) = 2 log 2. Soluzione.

Dettagli

Appunti sul corso di Complementi di Matematica ( modulo Analisi)- prof. B.Bacchelli

Appunti sul corso di Complementi di Matematica ( modulo Analisi)- prof. B.Bacchelli Appunti sul corso di Complementi di Matematica ( modulo Analisi)- prof. B.Bacchelli 01- Equazioni differenziali del primo ordine: variabili separabili Riferimenti: R.Adams, Calcolo Differenziale 2. Casa

Dettagli

Analisi Vettoriale - A.A Foglio di Esercizi n. 4 Soluzioni

Analisi Vettoriale - A.A Foglio di Esercizi n. 4 Soluzioni Analisi Vettoriale - A.A. 2003-2004 Foglio di Esercizi n. 4 Soluzioni. Esercizio Assegnata l equazione differenziale y = y sin(y) disegnare, in modo qualitativo, i grafici delle soluzioni. Si tratta di

Dettagli

Soluzioni del compito di Istituzioni di Matematiche/Matematica per Chimica F45 e F5X (10/2/11)

Soluzioni del compito di Istituzioni di Matematiche/Matematica per Chimica F45 e F5X (10/2/11) Soluzioni del compito di Istituzioni di Matematiche/Matematica per Chimica F5 e F5X (//). La funzione f(x) = x 3x x + (a) èdefinita purché l argomento della radice sia non negativo cioè perx 3x : quindi

Dettagli

Analisi 4 - SOLUZIONI (compito del 29/09/2011)

Analisi 4 - SOLUZIONI (compito del 29/09/2011) Corso di laurea in Matematica Analisi 4 - SOLUZIONI compito del 9/09/0 Docente: Claudia Anedda Calcolare, tramite uno sviluppo in serie noto, la radice quinta di e la radice cubica di 9 Utilizzando la

Dettagli

Dom. 1 Dom 2 Es. 1 Es. 2 Es. 3 Es. 4 Totale. Cognome: Nome: Matricola:

Dom. 1 Dom 2 Es. 1 Es. 2 Es. 3 Es. 4 Totale. Cognome: Nome: Matricola: Dom. Dom 2 Es. Es. 2 Es. 3 Es. Totale Analisi e Geometria Secondo appello 0 luglio 207 Docente: Gianni Arioli Numero Alfabetico: Cognome: Nome: Matricola: Prima parte a. Enunciare e dimostrare la formula

Dettagli

Prima prova in itinere di Analisi Matematica 2 Ingegneria Elettronica. Politecnico di Milano. A.A. 2016/2017. Prof. M. Bramanti.

Prima prova in itinere di Analisi Matematica 2 Ingegneria Elettronica. Politecnico di Milano. A.A. 2016/2017. Prof. M. Bramanti. Prima prova in itinere di Analisi Matematica Ingegneria Elettronica. Politecnico di Milano Es. Punti A.A. 016/017. Prof. M. Bramanti 1 Tema n 1 4 5 6 Tot. Cognome e nome in stampatello) codice persona

Dettagli

Analisi Matematica 1 - a.a. 2017/ Secondo appello

Analisi Matematica 1 - a.a. 2017/ Secondo appello Analisi Matematica - a.a. 27/28 - Secondo appello Soluzione del test Test A 2 3 4 5 6 7 8 9 D D A B C B A E D D Test B 2 3 4 5 6 7 8 9 B A C C B E D E A A Test C 2 3 4 5 6 7 8 9 A C B E E D C B B C Test

Dettagli

1) D0MINIO FUNZIONE. Determinare il dominio della funzione f (x) = 4 x 2 4x + 3 x 2 6x + 8 Deve essere. x 2 6x + 5 (x 1) (x 5)

1) D0MINIO FUNZIONE. Determinare il dominio della funzione f (x) = 4 x 2 4x + 3 x 2 6x + 8 Deve essere. x 2 6x + 5 (x 1) (x 5) ) DMINIO FUNZIONE Determinare il dominio della funzione f (x) = x x + x x + 8 x x + (x ) (x ) Deve essere = quindi x (, ] (, ] (, + ). x x + 8 (x ) (x ) Determinare il dominio della funzione f (x) = x

Dettagli

ANALISI MATEMATICA II-A. Prova scritta del 29/1/2010 TUTTE LE RISPOSTE DEVONO ESSERE MOTIVATE

ANALISI MATEMATICA II-A. Prova scritta del 29/1/2010 TUTTE LE RISPOSTE DEVONO ESSERE MOTIVATE ANALISI MATEMATICA II-A CORSO DI LAUREA IN FISICA Prova scritta del 9//00 TUTTE LE RISPOSTE DEVONO ESSERE MOTIVATE Esercizio.(Punti 6) Calcolare il valore del seguente ite 0+ e cos. Esercizio.(Punti 6)

Dettagli

Es. 1 Es. 2 Es. 3 Es. 4 Totale Teoria

Es. 1 Es. 2 Es. 3 Es. 4 Totale Teoria Es. Es. Es. 3 Es. 4 Totale Teoria Analisi e Geometria Docente: Politecnico di Milano Ingegneria Industriale 5 Settembre Compito A Cognome: Nome: Matricola: Punteggi degli esercizi: Es.: 6 punti; Es.: punti;

Dettagli

19 Marzo Equazioni differenziali.

19 Marzo Equazioni differenziali. 19 Marzo 2019 Equazioni differenziali. Definizione 1. Si chiama equazione differenziale una relazione che coinvolge una o più derivate di una funzione incognita y(x), la funzione stessa, funzioni di x

Dettagli

Modulo di Matematica

Modulo di Matematica Università degli Studi di Udine Anno Accademico /3 Corso di Laurea in Biotecnologie Modulo di Matematica Esame del 9//3 N.B.: scrivere nome, cognome e numero di matricola su ogni foglio consegnato. Tempo

Dettagli

Introduzione alle equazioni differenziali attraverso esempi. 20 Novembre 2018

Introduzione alle equazioni differenziali attraverso esempi. 20 Novembre 2018 Introduzione alle equazioni differenziali attraverso esempi 20 Novembre 2018 Indice: Equazioni separabili. Esistenza e unicità locale della soluzione di un Problemi di Cauchy. Equazioni differenziali lineari

Dettagli

Soluzioni degli esercizi

Soluzioni degli esercizi Equazioni differenziali Soluzioni degli esercizi Premessa: in tutti gli esercizi x denota la variabile indipendente, y la funzione (di x) incognita dell equazione differenziale. Un equazione differenziale

Dettagli

Analisi Vettoriale A.A Soluzioni del foglio 5. y = y 2, dy y 2 = x

Analisi Vettoriale A.A Soluzioni del foglio 5. y = y 2, dy y 2 = x Analisi Vettoriale A.A. 2006-2007 - Soluzioni del foglio 5 5. Esercizio Assegnato il problema di Cauchy y = y 2, y(0) = k determinare per ogni k la soluzione y(x), determinare il suo insieme di esistenza,

Dettagli

(1) Determinare l integrale generale dell equazione

(1) Determinare l integrale generale dell equazione FONDAMENTI DI ANALISI MATEMATICA (9 cfu Commissione F. Albertini, V. Casarino, M. Motta Ingegneria Gestionale, Meccanica e Meccatronica, Vicenza Vicenza, 3 settembre 8 Quarto appello Avvertenza: Nella

Dettagli

1

1 1 4 5 6 7 8 Analisi Matematica I (Fisica e Astronomia) TEST n. di Esame Scritto (0/01/015) Università di Padova - Lauree in Fisica ed Astronomia - A.A. 014/15 Cognome-Nome Matr. - IN STAMPATELLO SF /

Dettagli

Per determinare una soluzione particolare descriveremo un metodo che vale solo nel caso in cui la funzione f(x) abbia una forma particolare:

Per determinare una soluzione particolare descriveremo un metodo che vale solo nel caso in cui la funzione f(x) abbia una forma particolare: 42 Roberto Tauraso - Analisi 2 Ora imponiamo condizione richiesta: ( lim c e 4x + c 2 + c 3 e 2x cos(2x) + c 4 e 2x sin(2x) ) = 3. x + Il limite esiste se e solo c 3 = c 4 = perché le funzioni e 2x cos(2x)

Dettagli

Istituzioni ed Esercitazioni di Matematica 2

Istituzioni ed Esercitazioni di Matematica 2 Università degli Studi di Cagliari Dipartimento di Matematica e Informatica Corso di Laurea in Chimica Istituzioni ed Esercitazioni di Matematica 2 01 Marzo 2017 Schema Prima Lezione Outline Cosa è un

Dettagli

Secondo appello 2005/ Tema 1

Secondo appello 2005/ Tema 1 Secondo appello 2005/2006 - Tema Esercizio Risolvere l equazione di variabile complessa determinando le soluzioni in forma algebrica. Ponendo z = x + iy con x, y R, si ottiene z 2 + 2iz + 2 z = 0, () (x

Dettagli

Esercitazioni di Matematica

Esercitazioni di Matematica Università degli Studi di Udine Anno Accademico 009/00 Facoltà di Agraria Corsi di Laurea in VIT e STAL Esercitazioni di Matematica novembre 009 Trovare le soluzioni della seguente disequazione: x + +

Dettagli

Equazioni separabili. Un esempio importante

Equazioni separabili. Un esempio importante Equazioni separabili. Un esempio importante Esempio La soluzione generale dell equazione y = αy, α R (1) è data da y(x) = Ke αx, K R (2) C è un unica soluzione costante: y = 0: cioè y(x) = 0 per ogni x.

Dettagli

Matematica e Statistica

Matematica e Statistica Matematica e Statistica Prova d Esame (04/0/00) Università di Verona - Laurea in Biotecnologie - A.A. 009/0 Matematica e Statistica Prova d Esame di MATEMATICA (04/0/00) Università di Verona - Laurea in

Dettagli

1) D0MINIO. x x 4x + 3 Determinare il dominio della funzione f (x) = x Deve essere

1) D0MINIO. x x 4x + 3 Determinare il dominio della funzione f (x) = x Deve essere ) DMINIO + 3 Determinare il dominio della funzione f ) + 3 Deve essere Ovviamente, inoltre: se > + 3 ) 3) quindi < o 3 se < + 3, + 3 quindi 7 Determinare il dominio della funzione f ) + 5 Deve essere +

Dettagli

EQUAZIONI DIFFERENZIALI Esercizi svolti. y = xy. y(2) = 1.

EQUAZIONI DIFFERENZIALI Esercizi svolti. y = xy. y(2) = 1. EQUAZIONI DIFFERENZIALI Esercizi svolti 1. Determinare la soluzione dell equazione differenziale (x 2 + 1)y + y 2 =. y + x tan y = 2. Risolvere il problema di Cauchy y() = 1 2 π. 3. Risolvere il problema

Dettagli

Analisi - 10 settembre 2008 Corso di Laurea in Fisica - Fisica ed Astrofisica

Analisi - 10 settembre 2008 Corso di Laurea in Fisica - Fisica ed Astrofisica Analisi - 1 settembre 28 Corso di Laurea in Fisica - Fisica ed Astrofisica Chi deve fare lo scritto di Derivate e Integrali (vecchio ordinamento) deve svolgere gli esercizi: 1, 2, 3, 4, 5 Esercizio 1 Data

Dettagli

Analisi Matematica IV modulo Soluzioni prova scritta preliminare n. 1

Analisi Matematica IV modulo Soluzioni prova scritta preliminare n. 1 Analisi Matematica IV modulo Soluzioni prova scritta preliminare n. 1 Corso di laurea in Matematica, a.a. 2005-2006 27 aprile 2006 1. Disegnare approssimativamente nel piano (x, y) l insieme x 4 6xy 2

Dettagli

SOLUZIONI COMPITO del 10/07/2009 ANALISI 1 - INFORMATICA 12 CFU + AUTOMATICA 5+5 CFU ANLISI 1 (I MODULO) - INFORMATICA + AUTOMATICA 5 CFU TEMA A

SOLUZIONI COMPITO del 10/07/2009 ANALISI 1 - INFORMATICA 12 CFU + AUTOMATICA 5+5 CFU ANLISI 1 (I MODULO) - INFORMATICA + AUTOMATICA 5 CFU TEMA A SOLUZIONI COMPITO del 0/07/009 ANALISI - INFORMATICA CFU + AUTOMATICA 5+5 CFU ANLISI I MODULO) - INFORMATICA + AUTOMATICA 5 CFU Esercizio Osserviamo che possiamo scrivere 0 = z 6 TEMA A + i ) z = [ z richieste

Dettagli

Politecnico di Milano Ingegneria Industriale Analisi e Geometria 1 Seconda prova in itinere 31 gennaio 2011

Politecnico di Milano Ingegneria Industriale Analisi e Geometria 1 Seconda prova in itinere 31 gennaio 2011 Politecnico di Milano Ingegneria Industriale Analisi e Geometria Seconda prova in itinere 3 gennaio Cognome: Nome: Matricola: Compito A Es. : 8 punti Es. : 8 punti Es. 3: 8 punti Es. 4: 8 punti Es. 5:

Dettagli

Matematica e Statistica

Matematica e Statistica Matematica e Statistica Prova d esame (/07/202) Università di Verona - Laurea in Biotecnologie - A.A. 20/2 Matematica e Statistica Prova di MATEMATICA (/07/202) Università di Verona - Laurea in Biotecnologie

Dettagli

ANALISI MATEMATICA I, Compito scritto del 5/07/2016 Corso di Laurea in Matematica. COGNOME e NOME... MATR T

ANALISI MATEMATICA I, Compito scritto del 5/07/2016 Corso di Laurea in Matematica. COGNOME e NOME... MATR T ANALISI MATEMATICA I, Compito scritto del 5/7/6 Corso di Laurea in Matematica COGNOME e NOME... MATR... 3 4 T Nelle risposte devono essere riportati anche i conti principali e le motivazioni principali.

Dettagli

Soluzione scritto 4 marzo 2011

Soluzione scritto 4 marzo 2011 .. Esercizio. Scrivere ANALISI VETTORIALE Soluzione scritto 4 marzo l integrale generale dell equaz. y + y tan(t) =, π < t < π ; un integrale particolare dell equaz. y + y tan(t) = t cos(t); un integrale

Dettagli

Modulo di Matematica

Modulo di Matematica Università degli Studi di Udine Anno Accademico 205/206 Corso di Laurea in Biotecnologie Modulo di Matematica Esame del 4/09/206 N.B.: scrivere nome, cognome e numero di matricola su ogni foglio consegnato.

Dettagli

Equazioni differenziali

Equazioni differenziali 4 Equazioni differenziali Determinare le primitive di una funzione f(x) significa risolvere y (x) = f(x) dove l incognita è la funzione y(x). Questa equazione è un semplice esempio di equazione differenziale.

Dettagli

Soluzioni. 152 Roberto Tauraso - Analisi Risolvere il problema di Cauchy. { y (x) + 2y(x) = 3e 2x y(0) = 1

Soluzioni. 152 Roberto Tauraso - Analisi Risolvere il problema di Cauchy. { y (x) + 2y(x) = 3e 2x y(0) = 1 5 Roberto Tauraso - Analisi Soluzioni. Risolvere il problema di Cauchy y (x) + y(x) = 3e x y() = R. Troviamo la soluzione generale in I = R. Una primitiva di a(x) = è A(x) = a(x) dx = dx = x e il fattore

Dettagli

(ln 5)i 1 i. (c) (d) Scriviamo il numero complesso assegnato in forma algebrica:

(ln 5)i 1 i. (c) (d) Scriviamo il numero complesso assegnato in forma algebrica: Primo parziale Test. L argomento principale del numero complesso (ln 5)i i è (a) 4 π (b) (c) (d) Scriviamo il numero complesso assegnato in forma algebrica: Risposta esatta a) ln 5 i i = ln 5 i( + i) i

Dettagli

Cognome: Nome: Matricola: Prima parte

Cognome: Nome: Matricola: Prima parte Analisi e Geometria 1 Primo appello 14 Febbraio 217 Compito B Docente: Numero di iscrizione all appello: Cognome: Nome: Matricola: Prima parte a. Scrivere la condizione di ortogonalità tra il piano (X

Dettagli

Argomento 14 Esercizi: suggerimenti

Argomento 14 Esercizi: suggerimenti Argomento 4 Esercizi: suggerimenti Ex.. Equazione differenziale lineare del primo ordine, cioè del tipo: y + a(x) y = f(x) il cui integrale generale è dato dalla formula: ] y(x, C) = e [C A(x) + f(x)e

Dettagli

Equazioni differenziali

Equazioni differenziali 4 Equazioni differenziali Determinare le primitive di una funzione f(x) significa risolvere y (x) = f(x) dove l incognita è la funzione y(x). Questa equazione è un semplice esempio di equazione differenziale.

Dettagli

Analisi Matematica A e B Soluzioni prova scritta parziale n. 4

Analisi Matematica A e B Soluzioni prova scritta parziale n. 4 Analisi Matematica A e B Soluzioni prova scritta parziale n. Corso di laurea in Fisica, 08-09 7 aprile 09. Determinare le soluzioni u(x) dell equazione differenziale u + u u = sin x + ex + e x. Soluzione.

Dettagli

Soluzioni dello scritto di Analisi Matematica II - 10/07/09. C.L. in Matematica e Matematica per le Applicazioni

Soluzioni dello scritto di Analisi Matematica II - 10/07/09. C.L. in Matematica e Matematica per le Applicazioni Soluzioni dello scritto di Analisi Matematica II - /7/9 C.L. in Matematica e Matematica per le Applicazioni Proff. K. Payne, C. Tarsi, M. Calanchi Esercizio. a La funzione f è limitata e essendo lim fx

Dettagli

Es. 1: 6 punti Es. 2: 12 punti Es. 3: 6 punti Es. 4: 6 punti Es. 5: 3 punti Totale. sin x arctan x lim. 4 x 2. f(x) = x 2

Es. 1: 6 punti Es. 2: 12 punti Es. 3: 6 punti Es. 4: 6 punti Es. 5: 3 punti Totale. sin x arctan x lim. 4 x 2. f(x) = x 2 Politecnico di Milano Ingegneria Industriale Analisi e Geometria 1 Terzo appello, 1 Luglio 010 Cognome: Nome: Matricola: Compito A Es. 1: 6 punti Es. : 1 punti Es. 3: 6 punti Es. 4: 6 punti Es. 5: 3 punti

Dettagli

Matematica e Statistica

Matematica e Statistica Matematica e Statistica Prova d esame (0/0/03) Università di Verona - Laurea in Biotecnologie - A.A. 0/3 Matematica e Statistica Prova di MATEMATICA (0/0/03) Università di Verona - Laurea in Biotecnologie

Dettagli

Analisi Vettoriale - A.A Foglio di Esercizi n Esercizio. y [17] + y [15] = 0. z + z = 0

Analisi Vettoriale - A.A Foglio di Esercizi n Esercizio. y [17] + y [15] = 0. z + z = 0 Analisi Vettoriale - A.A. 23-24 Foglio di Esercizi n. 5 Determinare l integrale generale di 1. Esercizio y [17] + y [15] = Posto y [15] = z l equazione proposta diventa Il cui integrale generale é z +

Dettagli

Calcolo I - Corso di Laurea in Fisica - 18 Giugno 2019 Soluzioni Scritto. a) Calcolare il dominio, asintoti ed eventuali punti di non derivabilità;

Calcolo I - Corso di Laurea in Fisica - 18 Giugno 2019 Soluzioni Scritto. a) Calcolare il dominio, asintoti ed eventuali punti di non derivabilità; Calcolo I - Corso di Laurea in Fisica - 8 Giugno 209 Soluzioni Scritto Data la funzione fx = x 2 x 6 x /3 a Calcolare il dominio, asintoti ed eventuali punti di non derivabilità; b Calcolare, se esistono,

Dettagli

Esercizio Determinare l integrale generale delle seguenti equazioni differenziali lineari del primo ordine: (i) y = 3y cos(x);

Esercizio Determinare l integrale generale delle seguenti equazioni differenziali lineari del primo ordine: (i) y = 3y cos(x); 134 Capitolo 4. Equazioni differenziali ordinarie del problema di Cauchy (4.28) bisogna risolvere il sistema lineare (nelle incognite c 1,..., c n )) c 1 y 1 (x 0 ) +... + c n y n (x 0 ) = y 0, c 1 y 1

Dettagli

Alcuni esercizi sulle equazioni di erenziali

Alcuni esercizi sulle equazioni di erenziali Alcuni esercizi sulle equazioni di erenziali Calcolo dell integrale generale Per ciascuna delle seguenti equazioni di erenziali calcolare l insieme di tutte le possibili soluzioni. SUGGERIMENTO: Ricordatevi

Dettagli

Modulo di Matematica, Corsi di Laurea in VIT e STAL - Raccolta degli Esami A.A

Modulo di Matematica, Corsi di Laurea in VIT e STAL - Raccolta degli Esami A.A Modulo di Matematica, Corsi di Laurea in VIT e STL - Raccolta degli Esami.. - Facoltà di graria Corsi di Laurea in VIT e STL Modulo di Matematica Esame del //.. / Scritto Teoria Esercizi Voto Istruzioni:

Dettagli

7.1. Esercizio. Assegnata l equazione differenziale lineare di primo

7.1. Esercizio. Assegnata l equazione differenziale lineare di primo ANALISI MATEMATICA I Soluzioni Foglio 7 14 maggio 2009 7.1. Esercizio. Assegnata l equazione differenziale lineare di primo ordine y + y = 1 determinarne tutte le soluzioni, determinare la soluzione y(x)

Dettagli

Equazioni differenziali ordinarie

Equazioni differenziali ordinarie Equazioni differenziali ordinarie Un equazione differenziale ordinaria di ordine n è una relazione tra: 1. una variabile indipendente x R, 2. una funzione incognita y = y(x) a valori reali 3. le derivate

Dettagli

Modulo di Matematica

Modulo di Matematica Università degli Studi di Udine Anno Accademico 205/206 Corso di Laurea in Biotecnologie Modulo di Matematica Esame del 20/07/206 N.B.: scrivere nome, cognome e numero di matricola su ogni foglio consegnato.

Dettagli

SOLUZIONI COMPITO del 13/02/2019 ANALISI MATEMATICA I - 9 CFU ENERGETICA TEMA A

SOLUZIONI COMPITO del 13/02/2019 ANALISI MATEMATICA I - 9 CFU ENERGETICA TEMA A SOLUZIONI COMPITO del /0/09 ANALISI MATEMATICA I - 9 CFU ENERGETICA TEMA A Esercizio Ponendo z = a + ib, da cui z = a + b, ed osservando che e iπ/ = i, l equazione proposta si riscrive nella forma a b

Dettagli

1 Equazioni Differenziali

1 Equazioni Differenziali Equazioni Differenziali Un equazione differenziale è un equazione che esprime un legame tra una variabile indipendente x (o t, quando ci riferiamo al tempo) una variabile dipendente y o incognita che sta

Dettagli

Secondo Compitino di Analisi Matematica Corso di laurea in Informatica, corso B 18 Dicembre 2015 Fila A. i 1 2i. z 2 = (1 + i)(1 i)(1 + 3i).

Secondo Compitino di Analisi Matematica Corso di laurea in Informatica, corso B 18 Dicembre 2015 Fila A. i 1 2i. z 2 = (1 + i)(1 i)(1 + 3i). Secondo Compitino di Analisi Matematica Corso di laurea in Informatica, corso B 8 Dicembre 05 Fila A Esercizio Si considerino i numeri complessi z = i + i i (a) Calcola il modulo di z e il modulo di z.

Dettagli

Es. 1 Es. 2 Es. 3 Es. 4 Totale Teoria

Es. 1 Es. 2 Es. 3 Es. 4 Totale Teoria Es. 1 Es. Es. 3 Es. 4 Totale Teoria Analisi e Geometria 1 Docente: Politecnico di Milano Ingegneria Industriale 1 Luglio 010 Compito A Cognome: Nome: Matricola: Punteggi degli esercizi: Es.1: 6 punti;

Dettagli

Corso di Analisi Matematica 1 - professore Alberto Valli

Corso di Analisi Matematica 1 - professore Alberto Valli Università di Trento - Corso di Laurea in Ingegneria Civile e Ingegneria per l Ambiente e il Territorio - 8/9 Corso di Analisi Matematica - professore Alberto Valli foglio di esercizi - dicembre 8 Integrali

Dettagli

MATEMATICA CORSO A II COMPITINO (Tema 2) 27 Aprile 2011

MATEMATICA CORSO A II COMPITINO (Tema 2) 27 Aprile 2011 MATEMATICA CORSO A II COMPITINO (Tema ) 7 Aprile 011 Soluzioni 1. Trova l espressione analitica di una funzione reale di variabile reale f(x) definita, continua, crescente su tutto R e tale che: lim x

Dettagli

Equazioni differenziali Corso di Laurea in Scienze Biologiche Istituzioni di Matematiche A.A. 2007-2008. Dott.ssa G. Bellomonte

Equazioni differenziali Corso di Laurea in Scienze Biologiche Istituzioni di Matematiche A.A. 2007-2008. Dott.ssa G. Bellomonte Equazioni differenziali Corso di Laurea in Scienze Biologiche Istituzioni di Matematiche A.A. 2007-2008 Dott.ssa G. Bellomonte Indice 1 Introduzione 2 2 Equazioni differenziali lineari del primo ordine

Dettagli

Esame di Complementi di Matematica (STC) e Parziale di Matematica II (SMat). 3 Maggio Soluzioni

Esame di Complementi di Matematica (STC) e Parziale di Matematica II (SMat). 3 Maggio Soluzioni Esame di Complementi di Matematica (STC) e Parziale di Matematica II (SMat). 3 Maggio 2006. Soluzioni In questo documento sono contenuti gli svolgimenti del tema d esame del 05/06/2006. Alcuni esercizi

Dettagli

Equazioni differenziali. f(x, u, u,...,u (n) )=0,

Equazioni differenziali. f(x, u, u,...,u (n) )=0, Lezione Equazioni differenziali Un equazione differenziale è una relazione del tipo f(x, u, u,...,u (n) )=, che tiene conto del valori di una funzione (incognita) u e delle sue derivate fino ad un certo

Dettagli

SOLUZIONI COMPITO del 10/02/2015 ANALISI MATEMATICA I - 9 CFU ENERGETICA TEMA A. 4! x6. 6! + o(x6 ), con x = 1 n

SOLUZIONI COMPITO del 10/02/2015 ANALISI MATEMATICA I - 9 CFU ENERGETICA TEMA A. 4! x6. 6! + o(x6 ), con x = 1 n SOLUZIONI COMPITO del 0/02/205 ANALISI MATEMATICA I - 9 CFU ENERGETICA TEMA A Esercizio Ricordando che per x 0 a n ( sin x x x3 3! (x3, con x cos n, cosx x2 2 + x4 4! x! (x, con x n, [ ( [ ( ] cos cos

Dettagli

Analisi Vettoriale - A.A Foglio di Esercizi n. 6 Soluzioni. 1. Esercizio Determinare l integrale generale dell equazione autonoma.

Analisi Vettoriale - A.A Foglio di Esercizi n. 6 Soluzioni. 1. Esercizio Determinare l integrale generale dell equazione autonoma. Analisi Vettoriale - A.A. 23-24 Foglio di Esercizi n. 6 Soluzioni. Esercizio Determinare l integrale generale dell equazione autonoma.. Soluzione. y = y(y )(y 2) y(y )(y 2) dy = Tenuto conto che y(y )(y

Dettagli

Analisi Matematica 1 - a.a. 2017/ Quarto appello

Analisi Matematica 1 - a.a. 2017/ Quarto appello Analisi Matematica - a.a. 07/08 - Quarto appello Soluzione del test Test A E C B B C A D C C D Test B C B C E B A E E D B Test C A A D B E C A C D D Test D D B A A B E A E B D Soluzione della parte di

Dettagli

Matematica - Prova d esame (25/06/2004)

Matematica - Prova d esame (25/06/2004) Matematica - Prova d esame (/6/4) Università di Verona - Laurea in Biotecnologie AI - A.A. /4. (a) Disegnare sul piano di Gauss i numeri z = i e w = i, e scriverne la forma trigonometrica. Calcolare z

Dettagli

Analisi e Geometria 1 Politecnico di Milano Ingegneria Industriale

Analisi e Geometria 1 Politecnico di Milano Ingegneria Industriale Analisi e Geometria Politecnico di Milano Ingegneria Industriale Docenti: P Antonietti, F Cipriani, F Colombo, F Lastaria G Mola, E Munarini, P Terenzi, C Visigalli Terzo appello, Settembre 9 Compito A

Dettagli

Università di Trieste Facoltà d Ingegneria. Esercizi sulle equazioni differenziali. Dott. Franco Obersnel

Università di Trieste Facoltà d Ingegneria. Esercizi sulle equazioni differenziali. Dott. Franco Obersnel Università di Trieste Facoltà d Ingegneria Esercizi sulle equazioni differenziali Dott Franco Obersnel Esercizio 1 Si classifichino le seguenti equazioni, come ordinarie o alle derivate parziali si dica

Dettagli

Prima prova in itinere di Analisi Matematica 2 Ingegneria Elettronica. Politecnico di Milano. A.A. 2017/2018. Prof. M. Bramanti.

Prima prova in itinere di Analisi Matematica 2 Ingegneria Elettronica. Politecnico di Milano. A.A. 2017/2018. Prof. M. Bramanti. Prima prova in itinere di Analisi Matematica Ingegneria Elettronica. Politecnico di Milano Es. Punti A.A. 07/08. Prof. M. Bramanti Tema n 4 5 6 Tot. Cognome e nome (in stampatello) codice persona (o n

Dettagli

MATEMATICA CORSO A II COMPITINO (Tema 1) 27 Aprile 2011

MATEMATICA CORSO A II COMPITINO (Tema 1) 27 Aprile 2011 MATEMATICA CORSO A II COMPITINO (Tema 1) 7 Aprile 011 Soluzioni 1. Trova l espressione analitica di una funzione reale di variabile reale f(x) definita, continua, decrescente su tutto R e tale che: lim

Dettagli

Esercizio 1, 6 punti [ ] Sapendo che una grandezza P(t) è caratterizzata dalle seguenti proprietà:

Esercizio 1, 6 punti [ ] Sapendo che una grandezza P(t) è caratterizzata dalle seguenti proprietà: Modellistica Ambientale/Modelli Matematici Ambientali - A.A. 2014/2015 Quinta prova scritta, Appello estivo 23 Settembre 2015 Parte comune a Modellistica Ambientale e Modelli Matematici Ambientali Schema

Dettagli

Prima prova in Itinere Ist. Mat. 1, Prima parte, Tema ALFA COGNOME: NOME: MATR.:

Prima prova in Itinere Ist. Mat. 1, Prima parte, Tema ALFA COGNOME: NOME: MATR.: Prima prova in Itinere Ist. Mat. 1, Prima parte, Tema ALFA 1) L applicazione lineare f : R 3 R 2 data da f(x, y, z) = (3x + 2y + z, kx + 2y + kz) è suriettiva A: sempre; B: mai; C: per k 1 D: per k 2;

Dettagli

TEMI D ESAME DI ANALISI MATEMATICA I Corso di laurea in Fisica a.a.2001/02

TEMI D ESAME DI ANALISI MATEMATICA I Corso di laurea in Fisica a.a.2001/02 I seguenti quesiti ed il relativo svolgimento sono coperti dal diritto d autore, pertanto essi non possono essere sfruttati a fini commerciali o di pubblicazione editoriale senza autorizzazione esplicita

Dettagli

FM1 - Equazioni differenziali e meccanica

FM1 - Equazioni differenziali e meccanica Corso di laurea in Matematica - Anno Accademico 2006/2007 FM1 - Equazioni differenziali e meccanica Prima prova d esonero (03-04-2006) CORREZIONE Esercizio 1. Lo spettro Σ(A) della matrice A si trova risolvendo

Dettagli

Esercizi sulle equazioni differenziali a cura di Sisto Baldo, Elisabetta Ossanna e Sandro Innocenti

Esercizi sulle equazioni differenziali a cura di Sisto Baldo, Elisabetta Ossanna e Sandro Innocenti Esercizi sulle equazioni differenziali a cura di Sisto Baldo, Elisabetta Ossanna e Sandro Innocenti 1. Verifica che y(t) = 1 t + e t è una soluzione dell equazione y (t) = y(t) + t.. Scrivi un equazione

Dettagli

Analisi Matematica A e B Soluzioni Prova scritta n. 3

Analisi Matematica A e B Soluzioni Prova scritta n. 3 Analisi Matematica A e B Soluzioni Prova scritta n. Corso di laurea in Fisica, 207-208 9 luglio 208. Si consideri per α =, 2, 5, 8 la seguente funzione funzione F α : R\{0} R F α () = sin t dt. t α 6 Dire

Dettagli

ESERCIZI SULLE CURVE

ESERCIZI SULLE CURVE ESERCIZI SULLE CURVE VALENTINA CASARINO Esercizi per il corso di Fondamenti di Analisi Matematica, (Ingegneria Gestionale, dell Innovazione del Prodotto, Meccanica e Meccatronica, Università degli studi

Dettagli

Matematica e Statistica

Matematica e Statistica Matematica e Statistica Prova d Esame (26/07/2010) Università di Verona - Laurea in Biotecnologie - A.A. 2009/10 1 Matematica e Statistica Prova d Esame di MATEMATICA (26/07/2010) Università di Verona

Dettagli

Modulo di Matematica

Modulo di Matematica Università degli Studi di Udine Anno Accademico 05/06 Corso di Laurea in Biotecnologie Modulo di Matematica Esame del 0/0/06 N.B.: scrivere nome, cognome e numero di matricola su ogni foglio consegnato.

Dettagli

Equazioni differenziali del primo ordine: casi particolari e teorema di esistenza per il problema di Cauchy

Equazioni differenziali del primo ordine: casi particolari e teorema di esistenza per il problema di Cauchy Equazioni differenziali del primo ordine: casi particolari e teorema di esistenza per il problema di Cauchy 10 maggio 2010 Supponiamo che f(x, y) sia una funzione continua definita in un rettangolo del

Dettagli

MATEMATICA CORSO A II APPELLO 21 Luglio 2011

MATEMATICA CORSO A II APPELLO 21 Luglio 2011 MATEMATICA CORSO A II APPELLO 21 Luglio 2011 Soluzioni 1. Da un indagine statistica su un campione di 100 coppie è emersa la seguente tabella di frequenza del numero di figli: NUMERO FIGLI 0 1 2 3 4 5

Dettagli

Equazioni differenziali

Equazioni differenziali Equazioni differenziali Equazioni differenziali ordinarie del primo ordine: Equazioni del tipo x (t) = f(t) Equazioni lineari del tipo x (t) + ax(t) = b Equazioni a variabili separabili del tipo x t =

Dettagli

Equazioni differenziali del II ordine. y 5y + 6y = 0 y(0) = 0 y (0) = 1

Equazioni differenziali del II ordine. y 5y + 6y = 0 y(0) = 0 y (0) = 1 Equazioni differenziali del II ordine 1. Risolvere il seguente problema di Cauchy: y 5y + 6y = 0 y (0) = 1. Determinare l integrale generale della seguente equazione differenziale: y 5y + 6y = f(x), con

Dettagli

Sulle equazioni differenziali ordinarie a variabili separabili

Sulle equazioni differenziali ordinarie a variabili separabili Sulle equazioni differenziali ordinarie a variabili separabili Paolo Bonicatto - Luca Lussardi 9 aprile 2008 Indice Introduzione 2 Metodo classico 2 3 Forme differenziali lineari 4 4 Formalizzazione del

Dettagli

Modulo di Matematica, Corsi di Laurea in VIT e STAL - Raccolta degli Esami A.A

Modulo di Matematica, Corsi di Laurea in VIT e STAL - Raccolta degli Esami A.A Modulo di Matematica, Corsi di Laurea in VIT e STL - Raccolta degli Esami.. 9- Facoltà di graria Corsi di Laurea in VIT e STL Modulo di Matematica Esame del //.. 9/ Scritto Teoria Esercizi Voto Istruzioni:

Dettagli

V = 8. e quindi tale funzione non va bene perché non soddisfa V 13. La funzione f deve avere la forma. (1 x ) 1 k. f(x)dx = 16k.

V = 8. e quindi tale funzione non va bene perché non soddisfa V 13. La funzione f deve avere la forma. (1 x ) 1 k. f(x)dx = 16k. Problemi Problema ) ) La funzione f(x) deve soddisfare f(±) =, f() = e f ( + ) tan π, 76, ove π esprime in radianti un angolo di gradi e f ( + ) indica la derivata destra di f in. Inoltre il volume V del

Dettagli

Appunti della lezione del Prof. Stefano De Marchi del 12/02/16 a cura del Prof. Fernando D Angelo. Equazioni differenziali.

Appunti della lezione del Prof. Stefano De Marchi del 12/02/16 a cura del Prof. Fernando D Angelo. Equazioni differenziali. Appunti della lezione del Prof. Stefano De Marchi del /0/6 a cura del Prof. Fernando D Angelo. Premessa. Equazioni differenziali. In generale un equazione differenziale di ordine n si può scrivere nel

Dettagli

IV Scientifico - 24 Novembre 2014

IV Scientifico - 24 Novembre 2014 SOLUZIONI IV Scientifico - 24 Novembre 204 0 02 03 04 05 06 07 08 09 0 20 D C C C C E E E E C 202 E C C A C D E A A C 203 E A C E C C A C E C 204 D C B E A B A A A A 205 E E D C D B C C E A 206 D D B C

Dettagli

Modulo di Matematica

Modulo di Matematica Università degli Studi di Udine Anno Accademico / Corso di Laurea in Biotecnologie Modulo di Matematica Esame del 9// N.B.: scrivere nome, cognome e numero di matricola su ogni foglio consegnato. Tempo

Dettagli

Matematica Lezione 20

Matematica Lezione 20 Università di Cagliari Corso di Laurea in Farmacia Matematica Lezione 20 Sonia Cannas 7/12/2018 Applicazioni delle derivate: calcolo dei iti Le derivate permettono di calcolare i iti che presentano le

Dettagli

Gruppo esercizi 1: Dominio [E.1] Disegnare nel piano cartesiano il dominio della funzione

Gruppo esercizi 1: Dominio [E.1] Disegnare nel piano cartesiano il dominio della funzione Gruppo esercizi 1: Dominio [E.1] Disegnare nel piano cartesiano il dominio della funzione [E.2] Disegnare nel piano cartesiano il dominio della funzione ( 4 x 2 y 2) ) (1 x 2 y2 y + x 2. 4 1 y ex y y x

Dettagli

Matematica II. Risolvere o integrare una e.d. significa trovarne tutte le soluzione, che costituiscono il cosidetto integrale generale.

Matematica II. Risolvere o integrare una e.d. significa trovarne tutte le soluzione, che costituiscono il cosidetto integrale generale. Definizione Si dice equazione differenziale di ordine n nella funzione incognita y = y (x) una relazione fra y, le sue derivate y,..., y (n), e la variabila indipendente x Risolvere o integrare una e.d.

Dettagli

Analisi Matematica I

Analisi Matematica I Università degli Studi di Genova Facoltà di Ingegneria - Polo di Savona via Cadorna 7-7 Savona Tel. +39 9 264555 - Fax +39 9 264558 Analisi Matematica I Testi d esame e Prove parziali Analisi Matematica

Dettagli

MATEMATICA A Commissione Albertini, Mannucci, Motta, Zanella Ingegneria Gestionale, Meccanica, Meccatronica, Vicenza

MATEMATICA A Commissione Albertini, Mannucci, Motta, Zanella Ingegneria Gestionale, Meccanica, Meccatronica, Vicenza TEMA ( ) f() = log (determinare il dominio D; calcolare i limiti per che tende agli estremi finiti o infiniti z 4 + (3 + 6i)z + 5 + i = 0. ( + 3 ) α α (log + log + ) d. y = e y, y() = α. TEMA ( ) f() =

Dettagli