Cenno sui metodi Monte Carlo
|
|
|
- Franco Maggi
- 10 anni fa
- Visualizzazioni
Transcript
1 Cenno sui metodi Monte Carlo I metodi probabilistici hanno una lunga storia ma solo dopo il 1944 è iniziato un loro studio sistematico che ha portato a notevoli sviluppi. Attualmente è stato valutato che quasi la metà delle applicazioni del calcolo scientifico ad alte prestazioni (basate sull utilizzo di macchine con architettura avanzata o su sistemi per il calcolo parallelo) utilizza l approccio con metodi tipo Monte Carlo o qualche versione più recente quali i metodi quasi-monte Carlo. Come vedremo un problema strettamente collegato all uso di metodi probabilistici è il problema della generazione di numeri casuali. Numeri, casualità e simulazioni Senza addentrarci troppo in discussioni filosofiche sul significato di casualità, accenneremo ad alcune tra le molteplici applicazioni nelle quali intervengono i cosiddetti numeri casuali ed a come la matematica consenta di affrontare problemi legati al concetto di caso.
2 Numeri casuali sono utilizzati per costruire simulazioni di natura probabilistica di fenomeni fisici (reattori nucleari, traffico stradale, aereodinamica), di problemi decisionali e finanziari (econometrica, previsione Dow- Jones), informatica (progettazione VLSI, rendering) o come semplice fonte di divertimento (videogiochi). Il forte legame che esiste tra il gioco e le simulazioni probabilistiche è sottolineato dal fatto che a tali simulazioni viene generalmente dato il nome di metodi Monte Carlo (in onore del famoso casino a Monaco). Breve nota storica L idea di utilizzare in modo sistematico simulazioni di tipo probabilistico per risolvere un problema di natura fisica viene generalmente attribuita al matematico polacco Stanislaw Ulam ( ). Ulam fu uno dei personaggi chiave nel progetto americano per la costruzione della bomba atomica (Manhattan project) durante la seconda guerra mondiale tra il 1943 ed il 1945 a Los Alamos, New Mexico (dopo la guerra, 1 Lorenzo Pareschi ([email protected])
3 Ulam diede contributi essenziali anche nello sviluppo della bomba a fusione di idrogeno o bomba H). Il progetto Manhattan richiedeva infatti la risoluzione di un enorme numero di problemi incredibilmente complessi (nella sua autobiografia Ulam descrive come l idea di utilizzare simulazioni casuali per risolvere tali problemi gli sia venuta mentre giocava a carte) Generatori di numeri casuali Innanzitutto cosa è un numero casuale? Un esempio che tutti conosciamo consiste nel lancio di un dado, in effetti l imprevedibilità del numero ottenuto come punteggio, compreso tra 1 e 6, conferisce allo stesso una forma di casualità. L idea stessa di utilizzare un calcolatore (quindi un oggetto puramente deterministico e di conseguenza prevedibile), per generare un numero casuale quindi imprevedibile sembra costituire una sfida impossibile. 2 Lorenzo Pareschi ([email protected])
4 In effetti nessun calcolatore è in grado di generare numeri puramente casuali, ma solo numeri pseudo-casuali o quasi-casuali ossia numeri generati da algoritmi numerici deterministici in grado di superare una serie di test statistici che conferiscono a tali numeri una apparente casualità. Il metodo middle-square Nei primi anni dell era dei computer (1946) John von Neumann suggerì il famoso metodo middle-square per generare numeri pseudo casuali distribuiti in modo uniforme. In tale distribuzione uniforme ogni possibile numero in un determinato intervallo è ugualmente probabile. Ad esempio se lanciamo un dado un certo numero di volte ognuna delle facce da 1 a 6 si presenterà circa 1/6 delle volte originando così una successione uniforme di numeri casuali compresi tra 1 e 6. 3 Lorenzo Pareschi ([email protected])
5 Oggi il metodo middle-square ha un importanza solamente storica, ma nella sua semplicità evidenzia un aspetto importante nella generazione di numeri pseudo-casuali al computer, ossia la necessità di avere a disposizione molti numeri casuali ed in modo rapido. Esempio 1 [Metodo middle square] Supponiamo di volere generare un numero casuale di 4 cifre, ossia un numero tra 0000 e Il metodo middle-square richiede come tutti i generatori di numeri casuali un valore iniziale, detto seme dal quale vengono generati i successivi valori. Ad esempio a partire da 1234, elevando tale numero al quadrato abbiamo le otto cifre delle quali teniamo solamente le quattro cifre di mezzo Da queste ripetendo il procedimento otteniamo e quindi Lorenzo Pareschi ([email protected])
6 10000 seme= seme= seme= seme= Lorenzo Pareschi ([email protected])
7 Si noti che ogni nuovo numero nella successione è determinato univocamente dal suo predecessore. La successione generata quindi non potrà essere casuale ma avrà solo il carattere di apparente casualità. In particolare ogni successione di numeri generati da questo algoritmo inizierà a ripetersi prima o poi. Il numero di numeri della sequenza prima che intervenga una ripetizione è detto periodo della sequenza. La lunghezza di tale periodo può essere considerata una misura della bontà del generatore di numeri pseudo-casuali. Sfortunatamente il metodo può degenerare in sequenze con periodi molto brevi, ad esempio a partire dal valore 0 la sequenza ha sempre periodo 1, oppure partendo con 43 e numeri a 2 cifre otteniamo la sequenza 43, 84, 05, 02, 00, 00,... Proviamo ad utilizzare il metodo middle-square per effettuare un semplice esperimento di simulazione. Consideriamo la simulazione del lancio di un dado definendo il risultato ottenuto d come d = 1 + [ 5 ms 10 4 ] 6 Lorenzo Pareschi ([email protected])
8 dove ms e il numero generato tramite il metodo middle-square. Simulando 10 lanci consecutivi a partire dal seme 8022 otteniamo risultati che sembrano abbastanza realistici Basta però aumentare il numero di lanci per giungere a risultati insoddisfacenti (la successione ha infatti periodo 38). Generatori lineari congruenziali Nel 1948 venne proposto un generatore di numeri casuali distribuiti uniformemente detto generatore lineare congruenziale o più brevemente LCG che a tutt oggi è ancora utilizzato. Tale generatore venne presentato per la prima volta da D.H. Lemer esperto di teoria dei numeri. Il metodo LCG, analogamente al metodo 7 Lorenzo Pareschi ([email protected])
9 middle-square, ha bisogno di un seme per inizializzare la sequenza di numeri secondo la seguente regola x n+1 = (ax n + c)mod m, n 0, dove a, c ed m sono opportuni numeri interi costanti. La notazione mod m, ossia modulo m, significa che ax n + c viene diviso per m e x n+1 posto uguale al resto intero della divisione. Quindi x n+1 assume valori interi tra 0,1,2,..., m 1. Alcuni esempi Per esempio le scelte a = 13, c = 0 (ossia generatore puramente moltiplicativo) e m = 31 partendo dal valore iniziale x 0 = 1 otteniamo per n = Lorenzo Pareschi ([email protected])
10 Tale successione ha periodo 30 (ossia m 1). Tutti i numeri da 1 a 30 compaiono per poi ripetersi. Questo non dipende dalla scelta del seme iniziale se non è nullo. L uso del seme 0 origina invece la successione costante uguale a 0 per c = 0 indipendentemente da a e m. Quindi il massimo periodo di un generatore puramente moltiplicativo è m 1. Nel caso di c 0 il massimo periodo sarà invece m, in quanto comparirà anche lo 0. Tale periodo massimo non è però raggiunto per tutte le scelte di a, c ed m, ad esempio per a = 7, c = 7 e m = 10 partendo dal seme 7 si ha per n = 8 che ha solo periodo Bontá di un generatore Il problema della scelta dei migliori valori per a, c ed m è quindi il punto cruciale del metodo. Cosa si intende però per migliori? Un aspetto importante è la lunghezza del periodo da cui segue che m dovrà essere molto 9 Lorenzo Pareschi ([email protected])
11 grande. Inoltre per un dato m i valori di a e c dovranno essere tali che la successione abbia periodo massimo (se m è grande la differenza tra m e m 1 è irrilevante e ci si può restringere al caso di generatori moltiplicativi, c = 0, che sono più veloci). Una delle scelte più popolari è m = , a = 7 5, c = 0. Questo garantisce un periodo di = ossia oltre 2 miliardi di numeri pseudo-casuali! (Il fatto che m = sia un numero primo é fondamentale al fine di ottenere il massimo periodo). Istogrammi di frequenza Da un punto di vista pratico i generatori di numeri casuali restituiscono invece di x n+1 il suo valore diviso per m, al fine di evitare numeri troppo grandi. Inoltre evitano di reinizializzare la sequenza ogni volta. 10 Lorenzo Pareschi ([email protected])
12 Generiamo una tabella di valori pseudo-casuali compresi tra 0 ed 1 e verifichiamone l uniforme distribuzione tramite l istogramma di frequenza ottenuto suddividendo l intervallo [0, 1] in N sottointervalli di uguale ampiezza e calcolando quanti valori cadono in un dato intervallo Nel nostro caso tale valore teorico dovrebbe essere esattamente pari a 10000/50 = Lorenzo Pareschi ([email protected])
13 Verificare la casualitá Una richiesta più importante nel valutare la bontà di un generatore uniforme di numeri pseudo-casuali è l assenza di correlazione tra i numeri generati dall algoritmo. In altre parole non deve emergere nessuna relazione tra x n e x n+1 per n > 0. Questa proprietà può essere verificata graficamente realizzando il grafico bidimensionale dei punti (x n, x n+j ) per j > 0. In tale grafico non dovranno comparire linee, forme o altre strutture regolari. In figura riportiamo il risultato per j = 1 con 1000 punti ottenuto con il generatore LCG con scelta ottimale e con lo stesso generatore modificato scegliendo come valori m = 31, a = 13 e c = Lorenzo Pareschi ([email protected])
14 Generatori e MATLAB I generatori di numeri casuali più recenti, come quello incluso nella versione MATLAB successive alla 4, non sono basati sul metodo LCG. Essi sono una combinazione di operazioni di spostamento di registri e manipolazione sui bit che non richiedono nessuna operazione di moltiplicazione o divisione. Questo nuovo approccio risulta estremamente veloce ed inoltre garantisce periodi incredibilmente lunghi. Nelle ultime versioni MATLAB il periodo è , che ad un milione di numeri casuali al secondo richiederebbe anni (circa volte l età dell universo) prima di ripetersi!. Data la coincidenza dell esponente con la data della scoperta delle americhe questo generatore viene comunemente chiamato il generatore di Cristoforo Colombo. Calcolo di integrali Il metodo Monte Carlo può essere applicato nel calcolo di integrali, e risulta competitivo con tecniche deterministiche quando il numero di dimensioni del dominio di integrazione è elevato. 13 Lorenzo Pareschi ([email protected])
15 Esempio 2 [Un metodo probabilistico per il calcolo di π] Supponiamo di lanciare N freccette ad un bersaglio formato da un quadrato di lato L contenete una circonferenza. Assumiamo che le freccette vengano lanciate casualmente all interno del quadrato e che quindi colpiscano il quadrato in ogni posizione con uguale probabilità (si veda la Figura) Il bersaglio per L = 2 e la posizione dei primi 1000 lanci. 14 Lorenzo Pareschi ([email protected])
16 Dopo molti lanci la frazione di freccette che ha colpito la circonferenza sarà circa uguale al rapporto tra l area della circonferenza e quella del quadrato. Quindi πl 2 4L 2 = 1 4 π N c N, dove N è il numero totale di freccette lanciate e N c indica il numero di freccette cadute all interno della circonferenza. Potremo quindi usare il valore 4N c /N come approssimazione di π. Il seguente script MATLAB simula il procedimento % % Calcolo di pigreco con Monte Carlo % rand( seed,654321) NC = 0; PiE = zeros(500,1); for k=1:500 x = -1+2*rand(100,1); y = -1+2*rand(100,1); 15 Lorenzo Pareschi ([email protected])
17 NC = NC + sum(x.^2 + y.^2 <= 1); PiE(k) = (NC/(k*100))*4; end plot(pie) Qualche commento è necessario. È stata utilizzata la funzione MATLAB rand che genera una successione di numeri casuali distribuiti uniformemente nell intervallo (0,1). La sintassi principale per tale funzione è Matrice = rand(righe, Colonne), che genera una matrice n m di numeri casuali distribuiti uniformemente. 16 Lorenzo Pareschi ([email protected])
18 Stima di π tramite il metodo Monte Carlo. Si vede che la stima di π migliora all aumentare di N ma che la convergenza è tutt altro che veloce e uniforme. La presenza di fluttuazioni dovute all approccio probabilistico è infatti una caratteristica dei metodi Monte Carlo. L istruzione rand( seed,numero) assegna il valore Numero detto seme al generatore di numeri pseudo-casuali. In questo modo ci possiamo rendere conto che in realtà non stiamo utilizzando veri numeri casuali ma una loro approssimazione generata tramite un opportuno algoritmo. 17 Lorenzo Pareschi ([email protected])
19 Infatti lanciando nuovamente il programma otteniamo sempre lo stesso identico grafico fino a che non cambiamo il seme o commentiamo tale istruzione. La bontà di tale generatore è di importanza fondamentale in molte applicazioni basate su tecniche di tipo Monte Carlo. Si noti inoltre che il metodo Monte Carlo precedente avrebbe potuto essere utilizzato per calcolare l area della circonferenza. Infatti indicando con A c tale area si ha A c 4L 2N c N. In modo analogo si puó procedere per il calcolo di aree di altre figure piane o di integrali di funzioni non negative. Ad esempio abbiamo b a f(x)dx (b a) f N c N, dove f = max [a,b] f(x) ed N c rappresenta il numero di punti (x, y) estratti uniformemente sul rettangolo [a, b] [0, f] aventi y f(x). 18 Lorenzo Pareschi ([email protected])
20 Un integrale del tipo b I[f] = w(x) f(x) dx a dove w(x) 0 è la funzione peso, può essere interpretato come il valore medio della funzione f(x) = W f(x), relativo ad una variabile aleatoria x con densità di probabilità p(x) = w(x)/w, dove W = b a w(x) dx. Uno stimatore del valor medio di f è dunque dato da f N = 1 N N i=1 f(x i ) dove x 1, x 2,..., x n rappresentano un campionamento della variabile aleatoria X con densità p(x). 19 Lorenzo Pareschi ([email protected])
matematica probabilmente
IS science centre immaginario scientifico Laboratorio dell'immaginario Scientifico - Trieste tel. 040224424 - fax 040224439 - e-mail: [email protected] - www.immaginarioscientifico.it indice Altezze e
OSSERVAZIONI TEORICHE Lezione n. 4
OSSERVAZIONI TEORICHE Lezione n. 4 Finalità: Sistematizzare concetti e definizioni. Verificare l apprendimento. Metodo: Lettura delle OSSERVAZIONI e risoluzione della scheda di verifica delle conoscenze
Probabilità discreta
Probabilità discreta Daniele A. Gewurz 1 Che probabilità c è che succeda...? Una delle applicazioni della combinatoria è nel calcolo di probabilità discrete. Quando abbiamo a che fare con un fenomeno che
APPUNTI DI MATEMATICA LE FRAZIONI ALGEBRICHE ALESSANDRO BOCCONI
APPUNTI DI MATEMATICA LE FRAZIONI ALGEBRICHE ALESSANDRO BOCCONI Indice 1 Le frazioni algebriche 1.1 Il minimo comune multiplo e il Massimo Comun Divisore fra polinomi........ 1. Le frazioni algebriche....................................
UNIVERSITÀ DEGLI STUDI DI BERGAMO. Corso di Risk Management
UNIVERSITÀ DEGLI STUDI DI BERGAMO Corso di Prof. Filippo Stefanini A.A. Corso 60012 Corso di Laurea Specialistica in Ingegneria Edile Il casinò di Monte-Carlo Il casinò di Monte-Carlo, Principato di Monaco,
Introduzione all analisi dei segnali digitali.
Introduzione all analisi dei segnali digitali. Lezioni per il corso di Laboratorio di Fisica IV Isidoro Ferrante A.A. 2001/2002 1 Segnali analogici Si dice segnale la variazione di una qualsiasi grandezza
Un gioco con tre dadi
Un gioco con tre dadi Livello scolare: biennio Abilità interessate Costruire lo spazio degli eventi in casi semplici e determinarne la cardinalità. Valutare la probabilità in diversi contesti problematici.
La variabile casuale Binomiale
La variabile casuale Binomiale Si costruisce a partire dalla nozione di esperimento casuale Bernoulliano che consiste in un insieme di prove ripetute con le seguenti caratteristiche: i) ad ogni singola
Siamo così arrivati all aritmetica modulare, ma anche a individuare alcuni aspetti di come funziona l aritmetica del calcolatore come vedremo.
DALLE PESATE ALL ARITMETICA FINITA IN BASE 2 Si è trovato, partendo da un problema concreto, che con la base 2, utilizzando alcune potenze della base, operando con solo addizioni, posso ottenere tutti
Test statistici di verifica di ipotesi
Test e verifica di ipotesi Test e verifica di ipotesi Il test delle ipotesi consente di verificare se, e quanto, una determinata ipotesi (di carattere biologico, medico, economico,...) è supportata dall
Il concetto di valore medio in generale
Il concetto di valore medio in generale Nella statistica descrittiva si distinguono solitamente due tipi di medie: - le medie analitiche, che soddisfano ad una condizione di invarianza e si calcolano tenendo
E naturale chiedersi alcune cose sulla media campionaria x n
Supponiamo che un fabbricante stia introducendo un nuovo tipo di batteria per un automobile elettrica. La durata osservata x i delle i-esima batteria è la realizzazione (valore assunto) di una variabile
Una sperimentazione. Probabilità. Una previsione. Calcolo delle probabilità. Nonostante ciò, è possibile dire qualcosa.
Una sperimentazione Probabilità Si sta sperimentando l efficacia di un nuovo farmaco per il morbo di Parkinson. Duemila pazienti partecipano alla sperimentazione: metà di essi vengono trattati con il nuovo
Elementi di Psicometria con Laboratorio di SPSS 1
Elementi di Psicometria con Laboratorio di SPSS 1 12-Il t-test per campioni appaiati vers. 1.2 (7 novembre 2014) Germano Rossi 1 [email protected] 1 Dipartimento di Psicologia, Università di Milano-Bicocca
LE FUNZIONI A DUE VARIABILI
Capitolo I LE FUNZIONI A DUE VARIABILI In questo primo capitolo introduciamo alcune definizioni di base delle funzioni reali a due variabili reali. Nel seguito R denoterà l insieme dei numeri reali mentre
I sistemi di numerazione
I sistemi di numerazione 01-INFORMAZIONE E SUA RAPPRESENTAZIONE Sia dato un insieme finito di caratteri distinti, che chiameremo alfabeto. Utilizzando anche ripetutamente caratteri di un alfabeto, si possono
Esercizio 1: trading on-line
Esercizio 1: trading on-line Si realizzi un programma Java che gestisca le operazioni base della gestione di un fondo per gli investimenti on-line Creazione del fondo (con indicazione della somma in inizialmente
f(x) = 1 x. Il dominio di questa funzione è il sottoinsieme proprio di R dato da
Data una funzione reale f di variabile reale x, definita su un sottoinsieme proprio D f di R (con questo voglio dire che il dominio di f è un sottoinsieme di R che non coincide con tutto R), ci si chiede
PROGRAMMA SVOLTO NELLA SESSIONE N.
Università C. Cattaneo Liuc, Corso di Statistica, Sessione n. 1, 2014 Laboratorio Excel Sessione n. 1 Venerdì 031014 Gruppo PZ Lunedì 061014 Gruppo AD Martedì 071014 Gruppo EO PROGRAMMA SVOLTO NELLA SESSIONE
Complemento al corso di Fondamenti di Informatica I corsi di laurea in ingegneria, settore dell informazione Università la Sapienza Consorzio Nettuno
Rappresentazione di numeri Complemento al corso di Fondamenti di Informatica I corsi di laurea in ingegneria, settore dell informazione Università la Sapienza Consorzio Nettuno Un numero e un entità teorica,
Corso di Matematica per la Chimica
Dott.ssa Maria Carmela De Bonis a.a. 203-4 I sistemi lineari Generalità sui sistemi lineari Molti problemi dell ingegneria, della fisica, della chimica, dell informatica e dell economia, si modellizzano
Un po di statistica. Christian Ferrari. Laboratorio di Matematica
Un po di statistica Christian Ferrari Laboratorio di Matematica 1 Introduzione La statistica è una parte della matematica applicata che si occupa della raccolta, dell analisi e dell interpretazione di
(concetto classico di probabilità)
Probabilità matematica (concetto classico di probabilità) Teoria ed esempi Introduzione Il calcolo delle probabilità è la parte della matematica che si occupa di prevedere, sulla base di regole e leggi
PROBABILITÀ - SCHEDA N. 2 LE VARIABILI ALEATORIE
Matematica e statistica: dai dati ai modelli alle scelte www.dima.unige/pls_statistica Responsabili scientifici M.P. Rogantin e E. Sasso (Dipartimento di Matematica Università di Genova) PROBABILITÀ -
Appunti di informatica. Lezione 2 anno accademico 2015-2016 Mario Verdicchio
Appunti di informatica Lezione 2 anno accademico 2015-2016 Mario Verdicchio Sistema binario e logica C è un legame tra i numeri binari (0,1) e la logica, ossia la disciplina che si occupa del ragionamento
4 3 4 = 4 x 10 2 + 3 x 10 1 + 4 x 10 0 aaa 10 2 10 1 10 0
Rappresentazione dei numeri I numeri che siamo abituati ad utilizzare sono espressi utilizzando il sistema di numerazione decimale, che si chiama così perché utilizza 0 cifre (0,,2,3,4,5,6,7,8,9). Si dice
Logica Numerica Approfondimento 1. Minimo Comune Multiplo e Massimo Comun Divisore. Il concetto di multiplo e di divisore. Il Minimo Comune Multiplo
Logica Numerica Approfondimento E. Barbuto Minimo Comune Multiplo e Massimo Comun Divisore Il concetto di multiplo e di divisore Considerato un numero intero n, se esso viene moltiplicato per un numero
Capitolo 2. Operazione di limite
Capitolo 2 Operazione di ite In questo capitolo vogliamo occuparci dell operazione di ite, strumento indispensabile per scoprire molte proprietà delle funzioni. D ora in avanti riguarderemo i domini A
CAPITOLO 16 SUCCESSIONI E SERIE DI FUNZIONI
CAPITOLO 16 SUCCESSIONI E SERIE DI FUNZIONI Abbiamo studiato successioni e serie numeriche, ora vogliamo studiare successioni e serie di funzioni. Dato un insieme A R, chiamiamo successione di funzioni
Ing. Simone Giovannetti
Università degli Studi di Firenze Dipartimento di Elettronica e Telecomunicazioni Ing. Simone Giovannetti Firenze, 29 Maggio 2012 1 Incertezza di Misura (1/3) La necessità di misurare nasce dall esigenza
Corrispondenze e funzioni
Corrispondenze e funzioni L attività fondamentale della mente umana consiste nello stabilire corrispondenze e relazioni tra oggetti; è anche per questo motivo che il concetto di corrispondenza è uno dei
1.5. ISTOGRAMMA 17. Figura 1.3: Istogramma ottenuto mediante campionamento da VA Gaussiana (η x =0, σ 2 X =1).
.5. ISTOGRAMMA 7.5 Istogramma A partire dalle considerazioni svolte nel paragrafo precedente, posto x m = min(x,,x N e x M = max(x,,x N, possiamo ottenere una stima della densità di probabilità p (x suddividendo
La distribuzione Normale. La distribuzione Normale
La Distribuzione Normale o Gaussiana è la distribuzione più importante ed utilizzata in tutta la statistica La curva delle frequenze della distribuzione Normale ha una forma caratteristica, simile ad una
Tasso di interesse e capitalizzazione
Tasso di interesse e capitalizzazione Tasso di interesse = i = somma che devo restituire dopo un anno per aver preso a prestito un euro, in aggiunta alla restituzione dell euro iniziale Quindi: prendo
Slide Cerbara parte1 5. Le distribuzioni teoriche
Slide Cerbara parte1 5 Le distribuzioni teoriche I fenomeni biologici, demografici, sociali ed economici, che sono il principale oggetto della statistica, non sono retti da leggi matematiche. Però dalle
Probabilità condizionata: p(a/b) che avvenga A, una volta accaduto B. Evento prodotto: Evento in cui si verifica sia A che B ; p(a&b) = p(a) x p(b/a)
Probabilità condizionata: p(a/b) che avvenga A, una volta accaduto B Eventi indipendenti: un evento non influenza l altro Eventi disgiunti: il verificarsi di un evento esclude l altro Evento prodotto:
Statistica e biometria. D. Bertacchi. Variabili aleatorie. V.a. discrete e continue. La densità di una v.a. discreta. Esempi.
Iniziamo con definizione (capiremo fra poco la sua utilità): DEFINIZIONE DI VARIABILE ALEATORIA Una variabile aleatoria (in breve v.a.) X è funzione che ha come dominio Ω e come codominio R. In formule:
Statistica. Lezione 6
Università degli Studi del Piemonte Orientale Corso di Laurea in Infermieristica Corso integrato in Scienze della Prevenzione e dei Servizi sanitari Statistica Lezione 6 a.a 011-01 Dott.ssa Daniela Ferrante
Funzioni. Funzioni /2
Funzioni Una funzione f è una corrispondenza tra due insiemi A e B che a ciascun elemento di A associa un unico elemento di B. Si scrive: f : A B l'insieme A si chiama il dominio della funzione f, l'insieme
Informatica. Rappresentazione dei numeri Numerazione binaria
Informatica Rappresentazione dei numeri Numerazione binaria Sistemi di numerazione Non posizionali: numerazione romana Posizionali: viene associato un peso a ciascuna posizione all interno della rappresentazione
Corso di Automazione Industriale 1. Capitolo 4
Simona Sacone - DIST 1 Corso di Automazione Corso Industriale di 1 Automazione Industriale 1 Capitolo 4 Analisi delle prestazioni tramite l approccio simulativo Aspetti statistici della simulazione: analisi
Lezione 8. La macchina universale
Lezione 8 Algoritmi La macchina universale Un elaboratore o computer è una macchina digitale, elettronica, automatica capace di effettuare trasformazioni o elaborazioni su i dati digitale= l informazione
1. PRIME PROPRIETÀ 2
RELAZIONI 1. Prime proprietà Il significato comune del concetto di relazione è facilmente intuibile: due elementi sono in relazione se c è un legame tra loro descritto da una certa proprietà; ad esempio,
Corso di Psicometria Progredito
Corso di Psicometria Progredito 3.1 Introduzione all inferenza statistica Prima Parte Gianmarco Altoè Dipartimento di Pedagogia, Psicologia e Filosofia Università di Cagliari, Anno Accademico 2013-2014
Statistica inferenziale
Statistica inferenziale Popolazione e campione Molto spesso siamo interessati a trarre delle conclusioni su persone che hanno determinate caratteristiche (pazienti, atleti, bambini, gestanti, ) Osserveremo
Corso di. Dott.ssa Donatella Cocca
Corso di Statistica medica e applicata Dott.ssa Donatella Cocca 1 a Lezione Cos'è la statistica? Come in tutta la ricerca scientifica sperimentale, anche nelle scienze mediche e biologiche è indispensabile
Cosa dobbiamo già conoscere?
Cosa dobbiamo già conoscere? Insiemistica (operazioni, diagrammi...). Insiemi finiti/numerabili/non numerabili. Perché la probabilità? In molti esperimenti l esito non è noto a priori tuttavia si sa dire
1) Si consideri un esperimento che consiste nel lancio di 5 dadi. Lo spazio campionario:
Esempi di domande risposta multipla (Modulo II) 1) Si consideri un esperimento che consiste nel lancio di 5 dadi. Lo spazio campionario: 1) ha un numero di elementi pari a 5; 2) ha un numero di elementi
Esercizi di Probabilità e Statistica
Esercizi di Probabilità e Statistica Samuel Rota Bulò 19 marzo 2007 Spazi di probabilità finiti e uniformi Esercizio 1 Un urna contiene due palle nere e una rossa. Una seconda urna ne contiene una bianca
Matematica generale CTF
Successioni numeriche 19 agosto 2015 Definizione di successione Monotonìa e limitatezza Forme indeterminate Successioni infinitesime Comportamento asintotico Criterio del rapporto per le successioni Definizione
3. Confronto tra medie di due campioni indipendenti o appaiati
BIOSTATISTICA 3. Confronto tra medie di due campioni indipendenti o appaiati Marta Blangiardo, Imperial College, London Department of Epidemiology and Public Health [email protected] MARTA BLANGIARDO
LA STATISTICA si interessa del rilevamento, dell elaborazione e dello studio dei dati; studia ciò che accade o come è fatto un gruppo numeroso di
STATISTICA LA STATISTICA si interessa del rilevamento, dell elaborazione e dello studio dei dati; studia ciò che accade o come è fatto un gruppo numeroso di oggetti; cerca, attraverso l uso della matematica
Metodi statistici per l economia (Prof. Capitanio) Slide n. 9. Materiale di supporto per le lezioni. Non sostituisce il libro di testo
Metodi statistici per l economia (Prof. Capitanio) Slide n. 9 Materiale di supporto per le lezioni. Non sostituisce il libro di testo 1 TEST D IPOTESI Partiamo da un esempio presente sul libro di testo.
Viene lanciata una moneta. Se esce testa vinco 100 euro, se esce croce non vinco niente. Quale è il valore della mia vincita?
Viene lanciata una moneta. Se esce testa vinco 00 euro, se esce croce non vinco niente. Quale è il valore della mia vincita? Osserviamo che il valore della vincita dipende dal risultato dell esperimento
Facciamo qualche precisazione
Abbiamo introdotto alcuni indici statistici (di posizione, di variabilità e di forma) ottenibili da Excel con la funzione Riepilogo Statistiche Facciamo qualche precisazione Al fine della partecipazione
SISTEMI DI NUMERAZIONE E CODICI
SISTEMI DI NUMERAZIONE E CODICI Il Sistema di Numerazione Decimale Il sistema decimale o sistema di numerazione a base dieci usa dieci cifre, dette cifre decimali, da O a 9. Il sistema decimale è un sistema
Un modello matematico di investimento ottimale
Un modello matematico di investimento ottimale Tiziano Vargiolu 1 1 Università degli Studi di Padova Liceo Scientifico Benedetti Venezia, giovedì 30 marzo 2011 Outline 1 Investimento per un singolo agente
11. Analisi statistica degli eventi idrologici estremi
. Analisi statistica degli eventi idrologici estremi I processi idrologici evolvono, nello spazio e nel tempo, secondo modalità che sono in parte predicibili (deterministiche) ed in parte casuali (stocastiche
1 Giochi a due, con informazione perfetta e somma zero
1 Giochi a due, con informazione perfetta e somma zero Nel gioco del Nim, se semplificato all estremo, ci sono due giocatori I, II e una pila di 6 pedine identiche In ogni turno di gioco I rimuove una
( x) ( x) 0. Equazioni irrazionali
Equazioni irrazionali Definizione: si definisce equazione irrazionale un equazione in cui compaiono uno o più radicali contenenti l incognita. Esempio 7 Ricordiamo quanto visto sulle condizioni di esistenza
Come visto precedentemente l equazione integro differenziale rappresentativa dell equilibrio elettrico di un circuito RLC è la seguente: 1 = (1)
Transitori Analisi nel dominio del tempo Ricordiamo che si definisce transitorio il periodo di tempo che intercorre nel passaggio, di un sistema, da uno stato energetico ad un altro, non è comunque sempre
Introduzione al MATLAB c Parte 2
Introduzione al MATLAB c Parte 2 Lucia Gastaldi Dipartimento di Matematica, http://dm.ing.unibs.it/gastaldi/ 18 gennaio 2008 Outline 1 M-file di tipo Script e Function Script Function 2 Costrutti di programmazione
La grafica. La built-in funzione grafica plot. x spezzata poligonale. discretizzato
La grafica. Il Matlab possiede un ambiente grafico abbastanza potente paragonabile a software grafici operanti in altri contesti. In questo corso ci limiteremo ad illustrare solo una funzione grafica,
Informatica. Rappresentazione binaria Per esempio +101010000 diventa +0.10101 10 18/10/2007. Introduzione ai sistemi informatici 1
Informatica Pietro Storniolo [email protected] http://www.pa.icar.cnr.it/storniolo/info200708 Numeri razionali Cifre più significative: : sono le cifre associate ai pesi maggiori per i numeri maggiori
Corso di Informatica
Corso di Informatica Modulo T3 1-Sottoprogrammi 1 Prerequisiti Tecnica top-down Programmazione elementare 2 1 Introduzione Lo scopo di questa Unità è utilizzare la metodologia di progettazione top-down
CAPACITÀ DI PROCESSO (PROCESS CAPABILITY)
CICLO DI LEZIONI per Progetto e Gestione della Qualità Facoltà di Ingegneria CAPACITÀ DI PROCESSO (PROCESS CAPABILITY) Carlo Noè Università Carlo Cattaneo e-mail: [email protected] 1 CAPACITÀ DI PROCESSO Il
Il sapere tende oggi a caratterizzarsi non più come un insieme di contenuti ma come un insieme di metodi e di strategie per risolvere problemi.
E. Calabrese: Fondamenti di Informatica Problemi-1 Il sapere tende oggi a caratterizzarsi non più come un insieme di contenuti ma come un insieme di metodi e di strategie per risolvere problemi. L'informatica
Sistemi Informativi Territoriali. Map Algebra
Paolo Mogorovich Sistemi Informativi Territoriali Appunti dalle lezioni Map Algebra Cod.735 - Vers.E57 1 Definizione di Map Algebra 2 Operatori locali 3 Operatori zonali 4 Operatori focali 5 Operatori
Pro e contro delle RNA
Pro e contro delle RNA Pro: - flessibilità: le RNA sono approssimatori universali; - aggiornabilità sequenziale: la stima dei pesi della rete può essere aggiornata man mano che arriva nuova informazione;
Computational Game Theory
Computational Game Theory Vincenzo Bonifaci 24 maggio 2012 5 Regret Minimization Consideriamo uno scenario in cui un agente deve selezionare, più volte nel tempo, una decisione tra un insieme di N disponibili:
Statistiche campionarie
Statistiche campionarie Sul campione si possono calcolare le statistiche campionarie (come media campionaria, mediana campionaria, varianza campionaria,.) Le statistiche campionarie sono stimatori delle
INTRODUZIONE AGLI ALGORITMI INTRODUZIONE AGLI ALGORITMI INTRODUZIONE AGLI ALGORITMI INTRODUZIONE AGLI ALGORITMI
INTRODUZIONE AGLI ALGORITMI Prima di riuscire a scrivere un programma, abbiamo bisogno di conoscere un metodo risolutivo, cioè un metodo che a partire dai dati di ingresso fornisce i risultati attesi.
PROGETTO INDAGINE DI OPINIONE SUL PROCESSO DI FUSIONE DEI COMUNI NEL PRIMIERO
PROGETTO INDAGINE DI OPINIONE SUL PROCESSO DI FUSIONE DEI COMUNI NEL PRIMIERO L indagine si è svolta nel periodo dal 26 agosto al 16 settembre 2014 con l obiettivo di conoscere l opinione dei residenti
Obiettivi dell Analisi Numerica. Avviso. Risoluzione numerica di un modello. Analisi Numerica e Calcolo Scientifico
M. Annunziato, DIPMAT Università di Salerno - Queste note non sono esaustive ai fini del corso p. 3/43 M. Annunziato, DIPMAT Università di Salerno - Queste note non sono esaustive ai fini del corso p.
SOLUZIONI ESERCITAZIONE NR. 6 Variabili casuali binomiale e normale
SOLUZIONI ESERCITAZIONE NR. 6 Variabili casuali binomiale e normale ESERCIZIO nr. 1 I Presidi delle scuole medie superiori di una certa cittá italiana hanno indetto tra gli studenti dell ultimo anno una
INdAM QUESITI A RISPOSTA MULTIPLA
INdAM Prova scritta per il concorso a 40 borse di studio, 2 borse aggiuntive e a 40 premi per l iscrizione ai Corsi di Laurea in Matematica, anno accademico 2011/2012. Piano Lauree Scientifiche. La prova
Corso integrato di informatica, statistica e analisi dei dati sperimentali Altri esercizi_esercitazione V
Corso integrato di informatica, statistica e analisi dei dati sperimentali Altri esercizi_esercitazione V Sui PC a disposizione sono istallati diversi sistemi operativi. All accensione scegliere Windows.
4. Operazioni aritmetiche con i numeri binari
I Numeri Binari 4. Operazioni aritmetiche con i numeri binari Contare con i numeri binari Prima di vedere quali operazioni possiamo effettuare con i numeri binari, iniziamo ad imparare a contare in binario:
Ulteriori problemi di fisica e matematica
Facoltà di Medicina e Chirurgia Università degli Studi di Firenze Agosto 2010 Ulteriori problemi di fisica e matematica Giovanni Romano Perché un raggio di luce proveniente dal Sole e fatto passare attraverso
Moto circolare uniforme
Moto circolare uniforme 01 - Moto circolare uniforme. Il moto di un corpo che avviene su una traiettoria circolare (una circonferenza) con velocità (in modulo, intensità) costante si dice moto circolare
Corso di Informatica Generale (C. L. Economia e Commercio) Ing. Valerio Lacagnina Rappresentazione in virgola mobile
Problemi connessi all utilizzo di un numero di bit limitato Abbiamo visto quali sono i vantaggi dell utilizzo della rappresentazione in complemento alla base: corrispondenza biunivoca fra rappresentazione
Il confronto fra proporzioni
L. Boni Il rapporto Un rapporto (ratio), attribuendo un ampio significato al termine, è il risultato della divisione di una certa quantità a per un altra quantità b Il rapporto Spesso, in maniera più specifica,
INTEGRALI DEFINITI. Tale superficie viene detta trapezoide e la misura della sua area si ottiene utilizzando il calcolo di un integrale definito.
INTEGRALI DEFINITI Sia nel campo scientifico che in quello tecnico si presentano spesso situazioni per affrontare le quali è necessario ricorrere al calcolo dell integrale definito. Vi sono infatti svariati
Calcolo delle probabilità
Calcolo delle probabilità Laboratorio di Bioinformatica Corso A aa 2005-2006 Statistica Dai risultati di un esperimento si determinano alcune caratteristiche della popolazione Calcolo delle probabilità
Primi esercizi per gli studenti del corso di Statistica ed Elementi di Probabilita
Primi esercizi per gli studenti del corso di Statistica ed Elementi di Probabilita NOTA 1 Gli esercizi sono presi da compiti degli scorsi appelli, oppure da testi o dispense di colleghi. A questi ultimi
COMPITO DI SCIENZE NATURALI 23 gennaio 2012. Modulo di probabilità e statistica
COMPITO DI SCIENZE NATURALI 23 gennaio 2012 Modulo di probabilità e statistica 1. In Svizzera, al primo gennaio di ogni anno, tutti i cittadini vengono sottoposti a vaccinazione contro l influenza annuale.
Regressione non lineare con un modello neurale feedforward
Reti Neurali Artificiali per lo studio del mercato Università degli studi di Brescia - Dipartimento di metodi quantitativi Marco Sandri ([email protected]) Regressione non lineare con un modello neurale
Metodi Stocastici per la Finanza
Metodi Stocastici per la Finanza Tiziano Vargiolu [email protected] 1 1 Università degli Studi di Padova Anno Accademico 2011-2012 Lezione 6 Indice 1 Il metodo bootstrap 2 Esercitazione 3 Interpolazione
Matematica in laboratorio
Unità 1 Attività guidate Attività 1 Foglio elettronico Divisibilità tra numeri naturali Costruisci un foglio di lavoro per determinare se a è divisibile per b, essendo a e b due numeri naturali, con a
Più processori uguale più velocità?
Più processori uguale più velocità? e un processore impiega per eseguire un programma un tempo T, un sistema formato da P processori dello stesso tipo esegue lo stesso programma in un tempo TP T / P? In
Cenni su algoritmi, diagrammi di flusso, strutture di controllo
Cenni su algoritmi, diagrammi di flusso, strutture di controllo Algoritmo Spesso, nel nostro vivere quotidiano, ci troviamo nella necessità di risolvere problemi. La descrizione della successione di operazioni
Dimensione di uno Spazio vettoriale
Capitolo 4 Dimensione di uno Spazio vettoriale 4.1 Introduzione Dedichiamo questo capitolo ad un concetto fondamentale in algebra lineare: la dimensione di uno spazio vettoriale. Daremo una definizione
VARIABILI ALEATORIE CONTINUE
VARIABILI ALEATORIE CONTINUE Se X è una variabile aleatoria continua, la probabilità che X assuma un certo valore x fissato è in generale zero, quindi non ha senso definire una distribuzione di probabilità
Elementi di Psicometria con Laboratorio di SPSS 1
Elementi di Psicometria con Laboratorio di SPSS 1 29-Analisi della potenza statistica vers. 1.0 (12 dicembre 2014) Germano Rossi 1 [email protected] 1 Dipartimento di Psicologia, Università di Milano-Bicocca
Corso di Laurea in Scienze e Tecnologie Biomolecolari. NOME COGNOME N. Matr.
Corso di Laurea in Scienze e Tecnologie Biomolecolari Matematica e Statistica II Prova di esame dell 11/1/2012 NOME COGNOME N. Matr. Rispondere alle domande nel modo più completo possibile, cercando di
Un modello matematico di investimento ottimale
Un modello matematico di investimento ottimale Tiziano Vargiolu 1 1 Università degli Studi di Padova Liceo Scientifico Benedetti Venezia, giovedì 30 marzo 2011 Outline 1 Preliminari di calcolo delle probabilità
1. Distribuzioni campionarie
Università degli Studi di Basilicata Facoltà di Economia Corso di Laurea in Economia Aziendale - a.a. 2012/2013 lezioni di statistica del 3 e 6 giugno 2013 - di Massimo Cristallo - 1. Distribuzioni campionarie
Politecnico di Milano. Facoltà di Ingegneria Industriale. Corso di Analisi e Geometria 2. Sezione D-G. (Docente: Federico Lastaria).
Politecnico di Milano. Facoltà di Ingegneria Industriale. Corso di Analisi e Geometria 2. Sezione D-G. (Docente: Federico Lastaria). Aprile 20 Indice Serie numeriche. Serie convergenti, divergenti, indeterminate.....................
UTILIZZATORI A VALLE: COME RENDERE NOTI GLI USI AI FORNITORI
UTILIZZATORI A VALLE: COME RENDERE NOTI GLI USI AI FORNITORI Un utilizzatore a valle di sostanze chimiche dovrebbe informare i propri fornitori riguardo al suo utilizzo delle sostanze (come tali o all
