Espressioni letterali
|
|
|
- Arianna Lombardi
- 9 anni fa
- Visualizzazioni
Transcript
1 Esercitazione di Matematica sul calcolo di espressioni letterali e potenza di un binomio Parte I Espressioni letterali Semplicare le seguenti espressioni letterali ovvero eseguire le seguenti operazioni tra polinomi riducendo il risultato a polinomio in forma normale: 1. 2x 5) 2 + x + 2)x 2) + x 1)3x + 4) 2x 2 5x 1); 2. x 5 4xx 4 + 4x + 5) + x 2 + x + 2) 2 xx 3 + x) + 2; 3. x + 2y + z 2 )x + 2y z 2 ) + 52xy + z 4 4) x 2 + 4y 2 2); 4. 2 x)4 + 2x + x 2 ) + 2x + 2y) 3 12yx 2 + 2xy) + 4y + 3) + 5x; 5. 16x 2 y 2 ) 2 4x y) 2 4x + y) 2 ; 6. a 2)a 2 + 2a + 4) 3a 3 8) + 2a 3 16 ) ) a 2 a + aa + 2) a a 2) 2 ; 8. x + 2y z) 2 x + 2y) 2 + 4zy + 1) + 4yz; 9. x + y)x 2 xy + y 2 ) xx 2 + y) + yx + y 2 ) x y + z 2 + uv) 2 2x y)z 2 + uv + 1) uvz 2 + 2uv) 11z 4 2). Parte II Potenza di binomio Eseguire le seguenti potenze di binomio: I) a 2) 7 ; II) x y 2 ) 10. 1
2 Soluzioni In tutta la trattazione seguente va tenuto conto dei prodotti notevoli: a + b)a b) = a 2 b 2 dierenza di due quadrati); a + b) 2 = a 2 + 2ab + b 2 quadrato di binomio); a + b) 3 = a 3 + 3a 2 b + 3ab 2 + b 3 cubo di binomio); a ± b)a 2 ab + b 2 ) = a 3 ± b 3 somma e dierenza di due cubi) valide qualsiasi espressione guri al posto di a, b e del quadrato di polinomio dato dalla somma del quadrato di tutti i suoi termini e di tutti i possibili doppi prodotti presi una sola volta. Ciò premesso, passiamo alla risoluzione degli esercizi proposti. 1. Risulta 2x 5) 2 + x + 2)x 2) + x 1)3x + 4) 2x 2 5x 1) = = 2x 5) 2 + x + 2)x 2) +x 1)3x+4) 2x 2 5x 1) = quadrato di binomio differenza di quadrati = 4x 2 20x+25+x 2 4+3x 2 +4x 3x 4 2x 2 +5x+1 = 6x 2 14x+18 uguaglianza ordinando il polinomio secondo le potenze decrescenti della lettera x. 2. Tenendo conto del fatto che la terza parentesi comporta un quadrato di trinomio unico prodotto notevole gurante nell'espressione), si ha: x 5 4xx 4 +4x+5)+x 2 +x+2) 2 xx 3 +x)+2 = x 5 4x 5 16x 2 20x+ +x 4 +x x 3 +4x 2 +4x x 4 x 2 +2 = 3x 5 +2x 3 12x 2 16x+6 uguaglianza ordinando il polinomio secondo le potenze decrescenti della lettera x. 3. Risulta x + 2y + z 2 )x + 2y z 2 ) + 52xy + z 4 4) x 2 + 4y 2 2) = [x + 2y) + z 2 ][x + 2y) z 2 ] +52xy + z 4 4) x 2 + 4y 2 2) = differenza di due quadrati = x + 2y) 2 z xy + z 4 4) x 2 + 4y 2 2) = quadrato di binomio = x 2 +4xy +4y 2 z 4 +10xy 4z 4 20 x 2 4y 2 +2 = 14xy +4z 4 18 uguaglianza. 2
3 4. Tenendo conto del fatto che, nell'espressione data, gurano la dierenza di due cubi 2 x)4 + 2x + x 2 ) = 2 3 x 3 ed il cubo di binomio x + 2y) 3 = x 3 + 6x 2 y + 12xy 2 + 8y 3, si ha: 2 x)4 + 2x + x 2 ) + 2x + 2y) 3 12yx 2 + 2xy) + 4y + 3) + 5x = = 8 x 3 + 2x 3 + 6x 2 y + 12xy 2 + 8y 3 ) 12x 2 y 24xy 2 + 4y x = = 8 x 3 + 2x x 2 y + 24xy y 3 12x 2 y 24xy 2 + 4y x = = x y 3 + 5x + 4y + 20 avendo proceduto a ridurre a forma normale il polinomio costituente il risultato dell'espressione calcolata. 5. Tenendo conto della proprietà delle potenze che vuole a n b n = ab) n, si ha: 16x 2 y 2 ) 2 4x y) 2 4x+y) 2 = 4x 2 y 2 ) 2 [ 4x y)4x + y) ] 2 = differenza di due quadrati =16x 2 y 2 ) 2 16x 2 y 2 ) 2 = 0. Si noti che allo stesso risultato si perviene, in modo più laborioso, sviluppando dapprima i quadrati e poi eseguendo le altre operazioni richieste. 6. Tenendo conto del fatto che il primo prodotto conduce ad una dierenza 7. di due cubi, si ha: a 2)a 2 +2a+4) 3a 3 8)+2a 3 16 = a 3 8 3a a 3 16 = 0 dove, nello scrivere l'ultima uguaglianza, si è tenuto conto del fatto che è nulla la somma algebrica di tutti i termini simili sicché nulla è la somma algebrica totale. ) ) a 2 a +aa + 2) a 3 ) 2 +a 2 = a2 + a 2 + differenza di due quadrati quadrato di un binomio +2a a 2 3a + 9 ) + a 2 = a a2 + 3a a2 = 5a avendo proceduto alla riduzione dei termini simili. 8. Sviluppando i due quadrati che compaiono nell'espressione e svolgendo le altre operazioni, si ha: x + 2y z) 2 x + 2y) 2 + 4zy + 1) + 4yz = x 2 + 4y 2 + z 2 + 4xy + 2xz 4yz x 2 + 4xy + 4y 2 ) + 4yz + 4z + 4yz = x 2 + 4y 2 + z 2 + 4xy + 2xz 4yz x 2 4xy y 2 + 4yz + 4z + 4yz = z 2 + 4z 2xz + 4yz avendo, al solito, ridotto i termini simili. 9. x + y)x 2 xy + y 2 ) xx 2 + y) + yx + y 2 ) + 4 = x 3 + y 3 x 3 xy + somma di due cubi +xy + y = 2y
4 10. Tenendo conto del fatto che, l'unico prodotto notevole nell'espressione, è il quadrato di quadrinomio che s'incontra all'inizio della stessa ed eseguendo le altre operazioni avendo l'accortezza di sommare i termini simili, si ha: x y + z 2 + uv) 2 2x y)z 2 + uv + 1) uvz 2 + uv) 11z 4 2) = = x 2 + y 2 + z 4 }{{} +uv)2 2xy + 2xz 2 + 2uvx 2yz 2 2uvy+2uvz 2 + 2x 2y)z 2 + uv + 1) 2uvz 2 uv) 2 11z 4 }{{} +2 = = x 2 + y 2 10z 4 2xy + 2xz 2 + 2uvx 2yz 2 2uvy 2xz 2 + 2uvx + +2x 2yz 2 2uvy 2y) + 2 = +2uvx 2yz2 {{ +2y + 2 = x 2 + y 2 10z 4 2xy 2x + 2y + 2. = x 2 +y 2 10z 4 2xy +2xz 2 2uvy 2xz 2 2uvx 2x +2yz2 +2uvy+ {{ Passiamo alla seconda parte ovvero allo sviluppo delle potenze di binomio richieste. Premettiamo il triangolo di tartaglia no al calcolo dei coecienti della decima potenza in quanto solo settima e decima sono le potenze interessate dove i coecienti dello sviluppo di a + b) 7 sono contenuti nella ottava riga mentre quelli dello sviluppo di a + b) 10 nell'ultima riga. Ciò premesso, passiamo alla risoluzione degli esercizi proposti. I) Risulta A+B) 7 = A 7 +7A 6 B+21A 5 B 2 +35A 4 B 3 +35A 3 B 4 +21A 2 B 5 +7AB 6 +B 7 da cui, ponendo A = a e B = 2 e svolgendo tutti i calcoli, si ha lo sviluppo richiesto: a 2) 7 = a 7 14a a 6 280a a 3 672a a
5 II) Risulta A+B) 10 = A A 9 B +45A 8 B A 7 B A 6 B A 5 B A 4 B A 3 B A 2 B AB 9 + B 10 da cui, ponendo A = x e B = y 2 e svolgendo tutti i calcoli, si ha lo sviluppo richiesto: x y 2 ) 10 = x 10 10x 9 y x 8 y 4 120x 7 y x 6 y 8 252x 5 y x 4 y x 3 y x 2 y 16 10xy 18 + y 20. 5
Sezione Esercizi 309. e ) a 6 + b 4 + 2a 3 b 2 Sì No f ) 25a 2 + 4b 2 20ab 2 Sì No. g ) 25a b a2 b 2 Sì No
Sezione.6. Esercizi 09.6 Esercizi.6. Esercizi dei singoli paragrafi. - Quadrato di un binomio.. Completa: x y) = x) x)y) y) =................................................ x y) = x) x)y) y) =........................................
1.4 PRODOTTI NOTEVOLI
Matematica C Algebra. Le basi del calcolo letterale.4 Prodotti notevoli.4 PRODOTTI NOTEVOLI Il prodotto fra due polinomi si calcola moltiplicando ciascun termine del primo polinomio per ciascun termine
Prodotti notevoli Quadrato di un binomio
Prodotti notevoli Con l espressione prodotti notevoli si indicano alcune identità che si ottengono in seguito alla moltiplicazione di polinomi aventi caratteristiche particolari facili da ricordare.. Quadrato
POLINOMI. Definizione Nomenclature Grado di un polinomio Operazioni fra polinomi Prodotti notevoli
POLINOMI Definizione Nomenclature Grado di un polinomio Operazioni fra polinomi Prodotti notevoli Definizione In matematica un polinomio tipico, cioè ridotto in forma normale, è dato dalla somma algebrica
Quadrato di un Binomio
PRODOTTI NOTEVOLI 1 Quadrato di un Binomio Cerchiamo la regola La regola Il significato geometrico Esempi Esercizi proposti prof.ssa Giuseppa Chirico 2 Quadrato di binomio: significato algebrico (a+b)
FATTORIZZAZIONE DI UN POLINOMIO
FATTORIZZAZIONE DI UN POLINOMIO Così come avviene con i numeri ( 0 = 5), la fattorizzazione di un polinomio è la scomposizione di un polinomio in un prodotto di due o più polinomi. Esempio: = + + Un polinomio
U.D. N 04 I polinomi
Unità Didattica N 0 I polinomi U.D. N 0 I polinomi 0) Monomi 0) Somma algebrica di monomi simili 0) Prodotto di due i più monomi 0) Quoziente di due monomi 05) Potenza di un monomio 06) Massimo comune
Liceo Scientifico M. G. Vida - Cremona
Liceo Scientifico M. G. Vida - Cremona Classe I as Prodotti notevoli - spiegazioni, formule, esempi Prof. Carlo Alberini 1 dicembre 2010 Abbiamo introdotto in queste lezioni i prodotti notevoli, ovvero
Un polinomio è un espressione algebrica data dalla somma di più monomi.
1 I polinomi 1.1 Terminologia sui polinomi Un polinomio è un espressione algebrica data dalla somma di più monomi. I termini di un polinomio sono i monomi che compaiono come addendi nel polinomio. Il termine
U.D. N 04 I polinomi
8 U.D. N 04 I polinomi 0) Monomi 0) Somma algebrica di monomi simili 0) prodotto di due i più monomi 04) Quoziente di due monomi 05) Potenza di un monomio 06) Massimo comune divisore di due o più monomi
14 : : : : 3 15 : 5. 2) Fra le seguenti espressioni indica, motivando la risposta, i monomi:
COMPITI DELLE VACANZE DI MATEMATICA CLASSI PRIME A.F.M. A.S. 0/5 ) Calcola le seguenti espressioni: 5 0 : 7 : 8 : : 5 : 5 5 6 0 : : : : : b) 7 9 5 5 5 7 0 5 9 b) 6 66 :6 :6 :6 : : : : 5 d) 7 : 9 6 7 8
ALGEBRA. Monomio: In un monomio distinguiamo parte numerica (o coefficiente) e parte letterale. Es.: -7 ax 2 b 3 y. Parte letterale.
ALGEBRA Monomio: un espressione algebrica dove non figurano operazioni (e non segni) di addizione (+) o sottrazione(-); figurano solo moltiplicazioni e potenze. In un monomio distinguiamo parte numerica
Il quadrato di binomio, assieme allaa differenza dei quadrati che vedremo in seguito, è uno dei più importanti prodotti notevoli.
PRODOTTI NOTEVOLI I prodotti notevoli sono identità matematiche molto utilizzate nella risoluzione di espressioni algebriche letterali in quanto permettono uno svolgimento rapido dei calcoli, inoltre si
I Prodotti. Notevoli
I Prodotti Muovimi nella pagina Notevoli Prof.ssa G. Messina 1 I PRODOTTI NOTEVOLI Dopo questa unità: imparerai a riconoscere e ad applicare le regole dei prodotti notevoli Obiettivi Prerequisiti Prof.ssa
Prodotti Notevoli. 1. Prodotto della somma di due monomi per la loro differenza
Prodotti Notevoli I prodotti notevoli sono particolari prodotti o potenze di polinomi, che si sviluppano secondo formule facilmente memorizzabili. Questi consentono di effettuare i calcoli in maniera più
CORSO ZERO DI MATEMATICA
UNIVERSITÀ DEGLI STUDI DI PALERMO FACOLTÀ DI ARCHITETTURA CORSO ZERO DI MATEMATICA CALCOLO LETTERALE Dr. Erasmo Modica [email protected] MONOMI In una formula si dicono variabili le lettere alle quali può
Monomi e Polinomi. Monomio Si dice monomio un espressione letterale in cui figurano solo operazioni di moltiplicazione.
Monomi e Polinomi Monomio Si dice monomio un espressione letterale in cui figurano solo operazioni di moltiplicazione. ) Sono monomi: 5 a 3 b 2 z; 2 3 a2 c 9 ; +7; 8a b 3 a 2. Non sono monomi: a + 2; xyz
Precorso di Matematica Maria Margherita Obertino Università degli Studi di Torino Di.S.A.F.A.
Precorso di Matematica Maria Margherita Obertino Università degli Studi di Torino Di.S.A.F.A.! Divisione tra polinomi ( 2.2 del testo)! La regola di Ruffini ( 2.3 del testo)! I prodotti notevoli ( 2.3
Polinomi Prodotti notevoli. Esempi di polinomi
Pagina 1 Polinomi Definizione: Dicesi polinomio la somma algebrica di due o più monomi. I monomi si dicono i termini del polinomio. Un polinomio formato da due termini dicesi binomio, da tre termini trinomio,
Precorso di Matematica A. A. 2017/2018. Algebra
Precorso di Matematica A. A. 017/018 Algebra 1 Monomi Monomio: espressione algebrica ottenuta come prodotto di fattori sia numerici sia letterali. Grado di un monomio rispetto ad una sua lettera: esponente
CONOSCENZE 1. espressioni letterali e monomi. 2. le operazioni con i monomi 3. i polinomi 4. le operazioni con i polinomi. 5. i prodotti notevoli
ALGEBRA IL CALCOLO LETTERALE PREREQUISITI l l l conoscere e operare con tutte le operazioni nell'insieme R conoscere e utilizzare le proprietaá delle operazioni conoscere e utilizzare le proprietaá delle
I POLINOMI. La forma normale di un polinomio. Un polinomio è detto in FORMA NORMALE se in esso non compaiono monomi simili.
I POLINOMI Un polinomio è una somma algebrica tra monomi Sono polinomi le seguenti espressioni 2ab + 4bc -5a 2 b + 2ab - 5c 5x + 2y + 8x in esse infatti troviamo somme o differenze tra monomi La forma
CORSO ZERO DI MATEMATICA per Ing. Chimica e Ing. delle Telecomunicazioni MONOMI E POLINOMI Prof. Erasmo Modica
CORSO ZERO DI MATEMATICA per Ing. Chimica e Ing. delle Telecomunicazioni MONOMI E POLINOMI Prof. Erasmo Modica [email protected] MONOMI In una formula si dicono variabili le lettere alle quali può essere
1 Le espressioni algebriche letterali
1 Le espressioni algebriche letterali DEFINIZIONE. Chiamiamo espressione algebrica letterale un insieme di numeri, rappresentati anche da lettere, legati uno all altro da segni di operazione. ESEMPI 2a
1. ESPRESSIONE LETTERALE Si dice espressione letterale una espressione formata da numeri, lettere e segni.
1. ESPRESSIONE LETTERALE Si dice espressione letterale una espressione formata da numeri, lettere e segni. 2. MONOMIO 2a + b -3 due a più b meno tre 3x 2 x + 5 3 ics al quadrato ics + 5 MONOMI Si dice
MODULO 3 TITOLO EQUAZIONI E DISEQUAZIONI ALGEBRICHE DI PRIMO GRADO FINALITA OBIETTIVI
MODULO TITOLO FINALITA EQUAZIONI E DISEQUAZIONI ALGEBRICHE DI PRIMO GRADO Risoluzione delle equazioni e delle disequazioni algebriche di primo grado con una o più incognite e loro applicazioni PREREQUISITI
IL PROBLEMA. Somma fra frazioni algebriche. Lezione di matematica Prof Giovanni Ianne
IL PROBLEMA Somma fra frazioni algebriche Lezione di matematica Prof Giovanni Ianne Come facevi finora? Es: Fra frazioni numeriche: 1 5 = 6 9 Cosa fai?.. = Scomponi in fattori primi i denominatori: 6 =
SCHEMI DI MATEMATICA
SCHEMI DI MATEMATICA SCHEMA 1: somme algebriche tra numeri ( ci sono sia somme che sottrazioni) Obiettivo dello schema1: saper risolvere espressioni come : -3-6 Metodo: se il segno dei due numeri è uguale
espressione letterale valore numerico Monomio: forma normale coefficiente parte letterale Monomi simili: Monomi opposti: Grado di un monomio:
Calcolo letterale Espressione letterale Un espressione letterale è un insieme di numeri e lettere legati dai simboli delle operazioni. Il valore numerico di un espressione letterale è il risultato numerico
Esempio B2.1: dire il grado del monomio seguente rispetto ad ogni lettera e il suo grado complessivo:
B. Polinomi B.1 Cos è un polinomio Un POLINOMIO è la somma di due o più monomi. Se ha due termini, come a+b è detto binomio Se ha tre termini, come a-3b+cx è detto trinomio, eccetera GRADO DI UN POLINOMIO
CALCOLO LETTERALE. Le espressioni letterali sono espressioni contenenti operazioni fra numeri e lettere:
CALCOLO LETTERALE Le espressioni letterali sono espressioni contenenti operazioni fra numeri e lettere: 5x. x + y ab + c, In generale le lettere rappresentano numeri generici. Ad esempio, se vogliamo convertire
1.3.POLINOMI ED OPERAZIONI CON ESSI
1POLINOMI ED OPERAZIONI CON ESSI 11 Definizioni fondamentali Un polinomio è un espressione algebrica letterale che consiste in una somma algebrica di monomi Sono polinomi: 6a+ b; 5ab+ b ; 6x 5yx 1 ; 7ab
SCOMPOSIZIONE DI UN POLINOMIO IN FATTORI
SCOMPOSIZIONE DI UN POLINOMIO IN FATTORI BINOMIO RACCOGLIMENTO ax + bx = x ( a + b ) a 2 b 2 = ( a + b ) ( a b ) CUBI a 3 - b 3 = ( a - b ) ( a 2 + ab + b 2 ) SOMMA DI CUBI a 3 + b 3 = ( a + b ) ( a 2
I POLINOMI. Si chiama POLINOMIO la somma algebrica di più monomi interi. Ad esempio sono polinomi: 3 x 2 +2x; 4 a 2 b 2 +b 3 ; ab+xy;
I POLINOMI Si chiama POLINOMIO la somma algebrica di più monomi interi Ad esempio sono polinomi: 3 x 2 +2x; 4 a 2 b 2 +b 3 ; ab+xy; 8x 2 +11x+4 a 2 b 2 +4 b 3 I POLINOMI Ogni monomio che compone il polinomio
FRAZIONI ALGEBRICHE: CAMPO DI ESISTENZA
FRAZIONI ALGEBRICHE: CAMPO DI ESISTENZA Frazione Algebrica C.E.: poni il denominatore diverso da zero Risolvo l'equazione 3 2 +2+5 4 5 3 +6+5 4 0 4 12+25 +5 3 7 +5 3 +4 12 5 +8+15 5 6 3 ++12 2+ Frazione
IL CALCOLO LETTERALE. La «traduzione» del linguaggio comune in linguaggio matematico
IL CALCOLO LETTERALE La «traduzione» del linguaggio comune in linguaggio matematico BREVE STORIA DELL ALGEBRA Dall algebra sincopata all algebra simbolica L algebra è una disciplina antichissima ma il
1 Prodotti e potenze notevoli 1. 2 Divisione tra polinomi 2 2.1 Regola di Ruffini... 4. 3 Fattorizzazione di un polinomio 5. 4 Teorema di Ruffini 8
UNIVR Facoltà di Economia Sede di Vicenza Corso di Matematica 1 Polinomi Indice 1 Prodotti e potenze notevoli 1 2 Divisione tra polinomi 2 2.1 Regola di Ruffini................................................
Le quattro operazioni
Le quattro operazioni 1. Addizione a + b = c addendi somma Proprietà commutativa Cambiando l ordine degli addendi, la somma non cambia. a + b = b + a Proprietà associativa La somma di tre numeri non cambia,
MONOMI. In ogni monomio si distingue il coefficiente numerico e la parte letterale
CALCOLO LETTERALE MONOMI E POLINOMI MONOMI In ogni monomio si distingue il coefficiente numerico e la parte letterale Il coefficiente numerico è il numero che è davanti al monomio e può essere 1 o anche
( ) ( ) 2 + 3( a + b) = ( ) + b( x 1) = ( ) ( ) b( x + y) = ( ) x 2 ( a + b) y 2 + ( a + b) = ( ) + ( a b) = ( ) a( 4x + 7) = ( ) + 3a( 2 5y) =
1 Scomposizione in fattori di un polinomio Scomporre in fattori un polinomio significa trasformare il polinomio, che è una somma algebrica di monomi, nel prodotto di fattori con il grado più basso possibile.
Esercitazione di Matematica su matrici e sistemi lineari
Esercitazione di Matematica su matrici e sistemi lineari Notazioni: deta, A T =trasposta di A, A 1 =inversa di A. 1. Si considerino le matrici A, B, C, D denite da 1 0 5 1 A = 0, B = 0 0, C = 0 1 0 6 1
COMPITI DELLE VACANZE DI MATEMATICA CLASSI PRIME A.F.M. A.S. 2016/17 1) Calcola le seguenti espressioni: + = = { : 3 3 } :( =
COMPITI DELLE VACANZE DI MATEMATICA CLASSI PRIME A.F.M. A.S. 06/7 ) Calcola le seguenti espressioni: 5 7 { } 7 0 8 5 5 5 : 5 :( 5 5 5 ) 5 : 5 : ( 5 ) ( ) 5 + b) 5 ( 6 ) :( 7 ) : ( ) 6 : ( ) ( 6 ) + + +
2 xab ; a2 x 3 y. 3a; 4b 2 ; 0,75y 3 z
1 Premessa. In questa sezione verranno richiamati alcuni concetti fondamentali dell algebra, quella parte della matematica che si occupa dello studio del cosiddetto calcolo letterale, utili ai fini della
Chi non risolve esercizi non impara la matematica.
1.6 esercizi 17 Esercizio 25. Determina MCD e mcm fra i seguenti polinomi: 8a 2 + 16ab + 8b 2 4a 4 4a 2 b 2 12a 2 + 12ab Soluzione. Scomponiamo in fattori i tre polinomi: 8a 2 + 16ab + 8b 2 = 8(a 2 + 2ab
DIVISIONE TRA POLINOMI E SCOMPOSIZIONI
DIVISIONE TRA POLINOMI E SCOMPOSIZIONI Esegui la seguente divisione fra polinomi e scrivi quoziente e resto.. b b 8b b 5 : b 5 5. x x x : x. 6 x x x : x x Q b b R 5; Q x x x ; R x 7 9 Q x x x ; R x Esegui
1) Ricorda: Le lettere sostituiscono i numeri e puoi svolgere le medesime operazioni.
Il calcolo letterale. BM 2; NLM 57 ) Ricorda: Le lettere sostituiscono i numeri e puoi svolgere le medesime operazioni. a + a = a + b = a a = a b = a. a = a. b = a : a = a : b = a. a. a = a -n = a -n.
Le espressioni letterali
Calcolo letterale Le espressioni letterali Sono espressioni contenenti numeri reali e lettere. A=(B+b)h/2 A=2(b+h) Le lettere rappresentano numeri reali. La stessa lettera assume sempre lo stesso valore.
Esercizi guidati sulle tecniche di fattorizzazione
Liceo Carducci Volterra - Classi 1A, 1B Scientifico - Francesco Daddi - 3 febbraio 009 Esercizi guidati sulle tecniche di fattorizzazione Gli asterischi indicano la difficoltà degli esercizi. Esercizio
Prodotti notevoli Quadrato di un binomio
Prodotti notevoli Con l espressione prodotti notevoli si indicano alcune identità che si ottengono in seguito alla moltiplicazione di polinomi aventi caratteristiche particolari facili da ricordare.. Quadrato
3.Polinomi ed operazioni con essi
MatematicaC Algebra1 1.Lebasidelcalcololetterale1.Polinomieoperazioniconessi....Polinomi ed operazioni con essi 1. Definizioni fondamentali Un polinomio è una somma algebrica di monomi, ciascuno dei quali
ISTITUTO DI ISTRUZIONE SUPERIORE LICEO SCIENTIFICO TITO LUCREZIO CARO -CITTADELLA PROGRAMMA DI MATEMATICA ANNO SCOLASTICO 2009/2010 CLASSE 1 D
ISTITUTO DI ISTRUZIONE SUPERIORE LICEO SCIENTIFICO TITO LUCREZIO CARO -CITTADELLA PROGRAMMA DI MATEMATICA ANNO SCOLASTICO 2009/2010 CLASSE 1 D DOCENTE: CALISE LIBERA TESTI ADOTTATI: ELEMENTI DI ALGEBRA
Principi di calcolo letterale
Capitolo 1 Principi di calcolo letterale In questo capitolo presenteremo l utilità del calcolo letterale, i suoi principali impieghi dal punto di vista matematico e i vari metodi di risoluzione. Indice
CLASSE 1 SEZIONE A PROGRAMMA DI MATEMATICA DOCENTE ENRICO PILI
ISTITUTO D ISTRUZIONE SECONDARIA SUPERIORE I.T.C.G. L. EINAUDI LICEO SCIENTIFICO G. BRUNO CLASSE 1 SEZIONE A PROGRAMMA DI MATEMATICA DOCENTE ENRICO PILI ANNO SCOLASTICO 2016/2017 RICHIAMI DI ARITMETICA
1 LE BASI DEL CALCOLO LETTERALE
www.matematicamente.it Matematica C Algebra. Le basi del calcolo letterale MATEMATICA C ALGEBRA LE BASI DEL CALCOLO LETTERALE Ssmallfry, Ernest! http://www.flickr.com/photos/ssmallfry/6789/ CALCOLO LETTERALE
Monomi e polinomi. MATEMATICAperTUTTI. Monomi 1 ESERCIZIO SVOLTO
MATEMATICAperTUTTI Monomi ESERCIZIO SVOLTO I monomi. Un espressione letterale come a b si dice monomia perché in essa non compaiono operazioni di addizione o sottrazione; in un monomio le lettere che compaiono
SCOMPOSIZIONE IN FATTORI PRIMI Di un Polinomio
SCOMPOSIZIONE IN FATTORI PRIMI Di un Polinomio 1 Ripassiamo i prodotti notevoli NOME TIPO SVILUPPO Quadrato di un binomio ( a + b ) 2 a 2 + 2ab + b 2 Cubo di un binomio ( a + b ) 3 a 3 + 3a 2 b +3ab 2
B3. Scomposizione di polinomi
B3. Scomposizione di polinomi Quando si calcola una espressione contenente solo prodotti di polinomi si ottiene un polinomio, che è il risultato dell espressione. La scomposizione in fattori di polinomi
3. CALCOLO LETTERALE
www.matematicamente.it - Matematica C Algebra. Calcolo letterale MATEMATICA C - ALGEBRA. CALCOLO LETTERALE Indice Ernest! Photo by: Ssmallfry taken from: http://www.flickr.com/photos/ssmallfry/67489/ license:
Calcolo letterale. è impossibile (*) x y. per x = -25; impossibile per y= Impossibile. 15 y
Calcolo letterale Calcolo letterale e operazioni - L uso delle lettere al posto dei numeri si utilizza per scrivere proprietà e regole dandone una valenza più generale rispetto ad un restrittivo esempio
Scomposizione di un polinomio in fattori
Scomposizione di un polinomio in fattori Scomporre in fattori primi un polinomio significa esprimerlo come il prodotto di due più polinomi non più scomponibili. Ad esempio x 2 9 = x 3) x + 3) }{{} fattore
Equazioni di I e II grado
Corso di Laurea: Biologia Tutor: Marta Floris, Max Artizzu PRECORSI DI MATEMATICA Equazioni di I e II grado 1 Introduzione ai polinomi Un incognita è un simbolo letterale che sta a simboleggiare un valore
UNITÀ DIDATTICA 11 POLINOMI
UNITÀ DIDATTICA 11 POLINOMI 11.1 Definizione di polinomio. Grado e ordine di polinomi. Operazioni con i polinomi Si chiama polinomio, un monomio o una somma algebrica di due o Definizione di polinomio
B1. Monomi - Esercizi
B1. Monomi - Esercizi Scrivere le espressioni algebriche di seguito indicate: 1 Sommare al triplo di a il doppio di b e dividere il risultato per 5. Sottrarre da c il quadrato di a. Sottrarre dal doppio
Polinomi Definizioni fondamentali
Polinomi. Definizioni fondamentali Definizione.. Un polinomio è un espressione algebrica letterale che consiste in una somma algebrica di monomi. Esempio.. Sono polinomi: 6a + b, 5a b + 3b, 6x 5y x, 7ab
5) 1 2 essendo x1 e x2 due
SCOMPOSIZIONE IN FATTORI 1) Raccoglimento a fattore comune ( Applicabile ad un polinomio di un numero qualunque di termini purchè i termini presentino almeno una lettera o un numero che si ripete in tutti)
Prontuario degli argomenti di Algebra
Prontuario degli argomenti di Algebra NUMERI RELATIVI Un numero relativo è un numero preceduto da un segno + o - indicante la posizione rispetto ad un punto di riferimento a cui si associa il valore 0.
U.D. N 05 La fattorizzazione dei polinomi
Unità Didattica N 05 La fattorizzazione dei polinomi 51 U.D. N 05 La fattorizzazione dei polinomi 01 La messa in evidenza totale 0 La messa in evidenza parziale 03 La differenza di due quadrati 04 Somma
Scomposizione in fattori
Corso di Laurea: Biologia Tutor: Marta Floris, Max Artizzu PRECORSI DI MATEMATICA 1 Introduzione Scomposizione in fattori La scomposizione in fattori dei polinomi assume un importanza speciale quando si
Definizione: Due monomi si dicono simili se hanno la stessa parte letterale.
CALCOLO LETTERALE Definizione: Data una formula si dicono variabili le lettere alle quali può essere sostituito qualsiasi valore numerico; i numeri si dicono, invece, costanti. Nella formula per il calcolo
Esercizi svolti di aritmetica
1 Liceo Carducci Volterra - Classi 1A, 1B Scientifico - Francesco Daddi - 15 gennaio 29 Esercizi svolti di aritmetica Esercizio 1. Dimostrare che il quadrato di un numero intero che finisce per 25 finisce
Riepilogo scomposizione polinomi
Riepilogo scomposizione polinomi. Ci sono fattori comuni? Se sì, fai un raccoglimento totale. Esempio: ax ay a=a x y 2. Quanti sono i termini del polinomio? Due Somma di quadrati: non si scompone. Esempio:
Scomposizione in fattori
Scomposizione in fattori 13 Scomporre un polinomio in fattori significa scrivere il polinomio come il prodotto di polinomi e monomi che moltiplicati tra loro danno come risultato il polinomio stesso. Si
Chi non risolve esercizi non impara la matematica.
. esercizi 85 Esercizio 50. Senza utilizzare la calcolatrice, calcola il prodotto 8. Soluzione. 8 = 0 )0 + ) = 0 = 900 = 896 Espressioni con i prodotti notevoli Esercizio 5. Calcola l espressione + ) +
270 Capitolo 10. Monomi. d ) 7 2 a3 x 4 y 2 per a = 1 2, x = 2, y = 1 2 ; e ) 8 3 abc2 per a = 3, b = 1 3, c = 1 2.
70 Capitolo 10. Monomi 10.9 Esercizi 10.9.1 Esercizi dei singoli paragrafi 10.1 - L insieme dei monomi 10.1. Individua tra le espressioni letterali di seguito elencate, quelle che sono monomi. E 1 = 5x
DIVISIONE TRA POLINOMI IN UNA VARIABILE
DIVISIONE TRA POLINOMI E SCOMPOSIZIONE Prof. Erasmo Modica [email protected] DIVISIONE TRA POLINOMI IN UNA VARIABILE L algoritmo della divisione tra polinomi è analogo a quello della divisione ordinaria
