TRAVATURE RETICOLARI
|
|
|
- Claudio Di Martino
- 9 anni fa
- Visualizzazioni
Transcript
1 strutture reticolari.notebook February 17, 2013 TRAVATURE RETICOLARI Si definiscono TRAVATURE RETICOLARI quelle strutture costituite da un insieme di aste collegate fra loro in alcuni punti (detti "nodi") in modo che il complesso risulti indeformabile. I nodi, che costituiscono i punti di collegamento fra le varie aste, sono, nella pratica, giunzioni rigide ottenute per saldatura o per bullonatura. Lo studio teorico della struttura si semplifica notevolmente se si suppone che in ogni nodo sia costituito da una cerniera ideale. 1
2 strutture reticolari.notebook February 17, 2013 L'intera struttura risulterà indeformabile solamente se le aste ed i relativi nodi saranno in numero sufficiente e disposti in modo opportuno per impedire qualsiasi movimento. Generalizzando ne segue che per avere un sistema indeformabile deve risultare che: a = 2 n 3 a : numero di aste n : numero dei nodi 2
3 a = 2 n 3 a : numero di aste n : numero dei nodi Questa condizione non è sufficiente ad assicurare l'indeformabilità della struttura se le aste non sono disposte in modo opportuno, tali cioè da non risultare sovrabbondanti in qualche parte della travatura, scarseggiando contemporaneamente in un altra. a) posizione corretta b) posizione errata 3
4 Una seconda semplificazione, introdotta nello studio delle travature reticolari, riguarda la disposizione dei carichi applicati; si suppone che essi agiscano concentrati nei nodi della struttura stessa. Le ipotesi semplificative fin qui fatte ( 1) nodi articolati, 2) carichi applicati sui nodi ) semplificano lo studio delle strutture reticolari; ogni asta infatti (articolata con due cerniere alle estremità e scarica su tutta la sua lunghezza) sarà sollecitata solo da una forza avente per retta d'azione il suo asse longitudinale. Le aste risulteranno quindi TESE o COMPRESSE e di conseguenza costituiranno un insieme di tiranti o di puntoni. tiranti (le sue estremità tendono ad allontanarsi) puntoni (le sue estremità tendono ad avvicinarsi) 4
5 Il problema è così ricondotto alla determinazione degli sforzi (S) che si sviluppano nelle singole aste in funzione delle forze esterne (F) e delle reazioni dei vincoli (R). Ovviamente il numero degli sforzi incogniti eguaglia il numero delle aste presenti nella struttura; il problema potrebbe essere risolto con l'impiego delle equazioni generali della statica applicate ad ogni nodo della travatura, ma risulterebbe molto laborioso, in considerazione del numero dei nodi talvolta notevole. Si preferisce usare procedimenti particolarmente adatti al tipo di travatura in esame; esponiamo i metodi più comuni. Vediamo ora qualche metodo utilizzato. 5
6 EQUILIBRIO DEI NODI a = 2 n 3 a=5 n=4 5 = 2 * 4 3 OK! travatura ISOSTATICA Ogni nodo è in equilibrio sotto l'azione delle forze esterne (carichi esterni, sforzi nelle aste, etc..) che vi concorrono; per ogni nodo si può quindi effettuare la scomposizione della forza nota (o delle forze note) nelle direzioni individuate dalle aste stesse ( e quindi degli sforzi incogniti ) ivi connesse. 6
7 EQUILIBRIO RELATIVO AL NODO "A" "A" Ra S 2 S 1 7
8 EQUILIBRIO RELATIVO AL NODO "A" "A" Ra S 2 S 1 S 1 sono le forze che le aste esercitano sui vincoli S 2 per il principio di azione e reazioni S 1 tiranti le forze che i vincoli esercitano sulle aste sono S 2 S 1 S 1 S 2 S 2 puntoni 8
9 EQUILIBRIO RELATIVO AL NODO "C" "C" S 5 S 3 S 1 S 3 S 5 S 1 F S 3 S 3 S 1 F S 5 S 1 sono le forze sulle aste (1) S 1 tiranti S 5 S 5 (5) S 1 tiranti S 5 S 3 (3) puntoni S 3 9
10 METODO DI RITTER E' un metodo analitico che sfrutta l'equilibrio dei momenti di tutte le forze agenti (comprese le reazioni dei vincoli e gli sforzi incogniti) rispetto ad un punto del piano. Supponiamo una sezione ideale (z z) che taglia tre aste non concorrenti in un punto; in tale ipotesi, il trono di sinistra dovrà essere in equilibrio sotto l'azione dei f carichi esterni e degli sforzi incogniti che le aste tagliate trasmettono alla rimanente parte della struttura. + scelto "B" ad arbitrio come polo risulta: Scelto quindi ad arbitrio un punto del piano dovrà essere nulla la sommatoria dei momenti delle forze esterne e degli sforzi incogniti S 2, S 3 ed S 4 rispetto a detto punto. 10
11 CONSIDERAZIONI SUI CARICHI APPLICATI Nel caso piu comune di una capriata coperta, si considera applicato in ciascun nodo il peso (P1) della copertura compresa fra le mezzerie A e B delle aste che precedono e seguono il nodo considerato; a questo si può aggiungere il peso (P2) delle aste stesse (comprese nel medesimo intervallo), la spinta del vento (Pv) sulla copertura e l'eventuale peso della neve (Pn). [ esempio spinta del vento: Pv =V sen 2 (α +10 ) con V spinta del vento ] P = P 1 + P 2 + Pv + Pn 11
12 IL DIAGRAMMA DI CREMONA o METODO CREMONIANO Il procedimento basato sull'equilibrio dei nodi comporta la costruzione di tanti poligoni, quanti sono i nodi presenti nella struttura; il grafico può tuttavia essere semplificato se si considera che ogni poligono ha uno o più lati equipollenti (ad eccezione del verso) ai lati di altri poligoni. Si possono pertanto conglobare tutti i poligoni facendo coincidere i lati corrispondenti, ottenendo una figura unica che prende il nome di "diagramma di Cremona" o "cremoniano" Nel cremoniano si indicano con un tratto marcato i puntoni e con linea sottile i tiranti. puntone tirante 12
13 Note le reazioni vincolari (calcolo semplice dato per già acquisito) si inizia la costruzione del cremoniano riportando a parte i vettori rappresentanti le forze esterne, nello stesso ordine in cui si incontrano percorrendo il contorno della struttura in un senso prestabilito. 1) si sceglie il senso di rotazione orario 2) si inizia con il nodo "A" in cui concorrono le aste "1" e "2" 13
14 S 1 S 2 Si traccia il triangolo di equilibrio tracciando dagli estremi del vettore Ra le parallele alle aste sudette, nello stesso ordine in cui si incontrano ruotando intorno sl nodo nel senso di rotazione già prescelto per la travatura. S 1 R a S 1 R a S 2 S 2 14
15 si passa al nodo "E" S 3 S 2 S 4 triangolo di equilibrio R a R a S 3 S 4 S 2 S 1 S 2 + S 3 S 4 = S 3 S 2 S 1 S 2 S 4 15
16 si passa al nodo "D" S 3 S 4 S 7 S 2 S 4 S 5 triangolo di equilibrio S 4 S 7 S 3 S 7 S 4 R a S 1 + S 2 S 4 S 1 S 5 S7 = S 3 S 7 S 4 S 5 S 2 R a 16
17 STRUTTURA A 3 CERNIERE Trovare le reazioni vincolari e gli sforzi sulle aste. 17
18 procedimento : 1) si individua l'asta scarica, si segna la reazione (S) applicata nella cerniera "B" e diretta secondo l'asta stessa 2) nella cerniera "C" che collega la trave carica alla parete, si segnano le due consuete reazioni (Rx ed Ry) rispettivamente orizzontale e verticale 3) si annulla la sommatoria dei momenti rispetto al punto "C", eliminando così le due incognite Rx e RY che, rispetto a tale punto, hanno momenti nulli; si ottiene; 18
19 19
20 ESERCIZIO " A" Data la travatura reticolare piana triangolata semplice, determinare gli sforzi normali nelle aste utilizzando i seguenti metodi: metodo dell equilibrio ai nodi e metodo delle sezioni di Ritter 20
21 21
22 22
23 EQUILIBRIO DEI NODI 23
24 EQUILIBRIO AL NODO "A" metodo ANALITICO metodo GRAFICO 24
25 25
26 EQUILIBRIO AL NODO "B" metodo ANALITICO metodo GRAFICO 26
27 27
28 metodo ANALITICO EQUILIBRIO AL NODO "C" metodo GRAFICO 28
29 29
30 metodo ANALITICO EQUILIBRIO AL NODO "D" metodo GRAFICO 30
31 31
32 metodo ANALITICO EQUILIBRIO AL NODO "E" metodo GRAFICO 32
33 In definitiva gli sforzi normali nelle aste della travatura esaminata risultano: 33
34 METODO DI RITTER 34
35 35
36 36
37 37
38 Sezione di Ritter t t atta alla determinazione degli sforzi nelle aste 4, 5 e 6. 38
39 39
40 40
41 41
A3.4 Le travature reticolari
A3.4 Le travature reticolari poliglotta Travatura reticolare GB: Truss F: Poutre à croisillons D: Fachwerkträger richiamo Alcuni esempi di travature reticolari: i tralicci utilizzati per il trasporto dell
Tecnica delle Costruzioni Esercitazione 02
TECNICA DELLE COSTRUZIONI ESERCITAZIONI 1 Strutture reticolari METODO DEI NODI Si procede nell isolare un nodo della struttura reticolare tagliando le aste che vi convergono. Si esplicitano quindi gli
1) METODO DELLE SEZIONI DI RITTER
1) METODO DELLE SEZIONI DI RITTER Un altro metodo per il calcolo di una travatura reticolare isostatica è quello delle sezioni di Ritter. Prendiamo in esame la stessa struttura dell esercizio precedente
II.2 LA CAPRIATA II.2.1 CALCOLO GRAFICO: Analisi dei carichi Struttura a due piani ubicata in Italia centrale in zona sismica.
II.2.1 LOLO GRFIO: a) NLISI DEI RIHI II.2 L PRIT nalisi dei carichi Struttura a due piani ubicata in Italia centrale in zona sismica. arico acc. copertura impraticabile 50 x 4 = 200 kg/m arico acc. della
Lezione Analisi Statica di Travi Rigide
Lezione Analisi Statica di Travi Rigide Analisi statica dei sistemi di travi rigide Dato un sistema di travi rigide soggetto a forze esterne. Il sistema è detto equilibrato se esiste un sistema di reazioni
SOLUZIONI. Con riferimento alla trave reticolare rappresentata in figura, determinare gli sforzi nelle aste. Equilibrio alla rotazione intornoa Q :
COSTRUZIOI I ACCIAIO: TIPOLOGIE STRUTTURALI SOLUZIOI Esercizio 1 Con riferimento alla trave reticolare rappresentata in figura, determinare gli sforzi nelle aste Dati geometrici h =0.80m L=1.50m 0.80 arctg.49
1.6. Momenti di forze parallele rispetto a un asse. Ricerca grafica e analitica 16
Prefazione Avvertenze 1 Elementi di teoria dei vettori...i I.1. Generalità...I 1.2. Composizione delle forze...2 Risultante di forze aventi la stessa retta d'applicazione 3 Risultante di forze concorrenti
Con riferimento alla trave reticolare rappresentata in figura, determinare gli sforzi nelle aste. Equilibrio alla rotazione intorno a Q :
UIVERSITA DEGLI STUDI ROMA TRE Facolta di Ingegneria Corso di Laurea in Ingegneria Civile Anno Accademico 0/0 Corso di Tecnica delle Costruzioni Prof. Gianmarco de Felice ESERCITAZIOE COSTRUZIOI I ACCIAIO:
CORSO DI LAUREA IN ING. ELETTRICA CORSO DI MECCANICA E TECNICA DELLE COSTRUZIONI MECCANICHE VERIFICA INTERMEDIA DEL 16/01/08
CORSO DI LAUREA IN ING. ELETTRICA CORSO DI MECCANICA E TECNICA DELLE COSTRUZIONI MECCANICHE VERIFICA INTERMEDIA DEL 16/1/8 Quesito 1 (Punti 7) Data la travatura reticolare mostrata nella Figura 1, determinare:
CORSO DI LAUREA IN ING. ELETTRICA CORSO DI MECCANICA E TECNICA DELLE COSTRUZIONI MECCANICHE VERIFICA INTERMEDIA DEL 19/01/09
CORSO DI LAUREA IN ING. ELETTRICA CORSO DI MECCANICA E TECNICA DELLE COSTRUZIONI MECCANICHE VERIFICA INTERMEDIA DEL 19/01/09 Quesito 1 (Punti 8) Data la travatura reticolare mostrata nella Figura 1, determinare
Esercitazione 3 - Calcolo delle azioni interne
Università degli Studi di ergamo orso di Laurea in Ingegneria Tessile orso di Elementi di Meccanica Esercitazione - alcolo delle azioni interne Esercizio n. La struttura di figura.a è composta da due aste
Scienza delle Costruzioni per Allievi di Ing. per l Ambiente e il Territorio Compito 1
Compito 1 1) Determinare il baricentro della sezione in figura, preferibilmente per via grafica, e definire la posizione dell asse neutro. Tracciare il diagramma della tensione associata alla forza N di
Reazioni vincolari e equilibrio del corpo rigido. M. Guagliano
Reazioni vincolari e equilibrio del corpo rigido Reazioni vincolari del corpo rigido 2 I corpi rigidi sono generalmente vincolati al riferimento fisso tramite i vincoli, che esercitano delle forze sul
ESERCIZI SVOLTI. Travi. 4 Forze in equilibrio e vincoli 4.2 Vincoli e reazioni vincolari 1
4 Forze in equilibrio e vincoli 4. Vincoli e reazioni vincolari 1 ESERCIZI SVOLTI Travi 1 Si richiede il calcolo grafico e analitico delle reazioni vincolari della trave riportata in figura appoggiata
Scienza delle Costruzioni per Allievi di Ing. per l Ambiente e il Territorio Compito 1
NOME COGNOME MTRICOL Scienza delle Costruzioni per llievi di Ing. per l mbiente e il Territorio Compito 1 ESERCIZIO 1) Determinare il baricentro della sezione in figura, preferibilmente per via grafica,
Gradi di libertà e vincoli. Moti del corpo libero
Gradi di libertà e vincoli Moti del corpo libero Punto materiale Il punto materiale descrive un corpo di cui interessa individuare solo la sua posizione Nel piano la posizione di un punto si individua
Calcolo delle aste composte
L acciaio. Strutture in acciaio 1 Calcolo delle aste composte Calcolo della snellezza equivalente La snellezza equivalente viene calcolata con le seguenti relazioni: aste calastrellate: λ eq λ y + λ 1
ESERCIZI SVOLTI O CON TRACCIA DI SOLUZIONE SU STRUTTURE IPERSTATICHE
ESERCIZI SVOLTI O CON TRACCIA DI SOLUZIONE SU STRUTTURE IPERSTATICHE 1 PROVA SCRITTA 11 gennaio 2013 - Esercizio 2 Data la struttura di figura, ricavare le equazioni delle azioni interne (M, N, T) e tracciarne
Esercizio 1. Travatura reticolare iperstatica. Carpentieri Gerardo 20/06/2009
Scienza delle Costruzioni Travatura reticolare iperstatica Carpentieri Gerardo //. Descrizione preliminare della struttura. Studio della struttura S. Studio della struttura S. Calcolo dell incognita iperstatica
CORSO DI LAUREA IN ING. ELETTRICA CORSO DI MECCANICA E TECNICA DELLE COSTRUZIONI MECCANICHE VERIFICA INTERMEDIA DEL 18/01/2010
CORSO DI LAUREA IN ING. ELETTRICA CORSO DI MECCANICA E TECNICA DELLE COSTRUZIONI MECCANICHE VERIFICA INTERMEDIA DEL 18/01/010 Quesito 1 (Punti 5) Data la travatura reticolare mostrata nella Figura 1, determinare:
Corso di Meccanica, Macchine e Impianti Termici CAPITOLO 2 STATICA DEI CORPI RIGIDI
Anno Scolastico 2009/2010 Corso di Meccanica, Macchine e Impianti Termici CAPITOLO 2 STATICA DEI CORPI RIGIDI Prof. Matteo Intermite 1 La Statica dei Corpi Rigidi si interessa dell equilibrio dei corpi
CALCOLO AGLI S.L.U. DI CAPRIATA IN LEGNO TIPO PALLADIO (ai sensi del D.M. 14/01/2008)
CALCOLO AGLI S.L.U. DI CAPRIATA IN LEGNO TIPO PALLADIO (ai sensi del D.M. 14/01/2008) Editare descrizione: es. Il solaio di copertura sarà portato da capriate in legno del tipo alla Palladio con estremi
Statica del corpo rigido. Condizioni di equilibrio. Calcolo delle Reazioni Vincolari
Statica del corpo rigido Condizioni di equilibrio Calcolo delle Reazioni incolari Obiettivo della lezione: apprendere le equazioni cardinali della statica e applicarle al calcolo delle reazioni vincolari.
CALCOLO AGLI S.L.U. DI CAPRIATA IN LEGNO TIPO PALLADIO (ai sensi del D.M. 17/01/2018) P (KN/m) P E N FE N DE N BE N BF N BD
CALCOLO AGLI S.L.U. DI CAPRIATA IN LEGNO TIPO PALLADIO (ai sensi del D.M. 17/01/2018) Editare descrizione: es. Il solaio di copertura sarà portato da capriate in legno del tipo alla Palladio con estremi
Elementi di Statica Grafica
Università degli Studi di Messina Facoltà di Ingegneria.. 006/007 Statica e Sismica delle Costruzioni Murarie Docente: Ing. lessandro Palmeri Lezione n. 4: Un corpo rigido è in equilibrio se e solo sono
Dispense del Corso di Fisica. a.s Prof. Quintino d Annibale
Dispense del Corso di Fisica a.s. 011-01 Prof. Quintino d Annibale Meccanica Lezione Statica dei corpi rigidi DEFINIZIONI Si definisce CORPO RIGIDO un corpo, giacente nello spazio o nel piano, che sotto
SOLUZIONI COSTRUZIONI IN ACCIAIO: VERIFICHE DI STABILITÀ
Laurea in Ingegneria Civile nno ccademico 05/06 COSTRUZIOI I CCIIO: VERIFICHE DI STBILITÀ SOLUZIOI Esercizio Si consideri la struttura in figura, costituita da una trave IPE 450 di luce L = 8 m ce poggia
Istituto Tecnico Commerciale Statale e per Geometri E. Fermi Pontedera (Pi)
Istituto Tecnico Commerciale Statale e per Geometri E. Fermi Pontedera (Pi) Via Firenze, 51 - Tel. 0587/213400 - Fax 0587/52742 http://www.itcgfermi.it E-mail: [email protected] PIANO DI LAVORO Prof. RICCARDO
Indice I vettori Geometria delle masse
Indice 1 I vettori 1 1.1 Vettori: definizioni................................ 1 1.2 Componenti scalare e vettoriale di un vettore secondo una retta orientata. 2 1.3 Operazioni di somma, differenza tra
Esercizio no.1 soluzione a pag.10. Esegui il computo dei vincoli e definisci la struttura. R. [isostatica] Esercizio no.2 soluzione a pag.
Edutecnica.it Equazioni cardinali della Statica 1 Esercizio no.1 soluzione a pag.1 Esegui il computo dei vincoli e definisci la struttura D E [isostatica] Esercizio no. soluzione a pag.1 Esegui il computo
Capitolo 2. Statica del corpo rigido. 2.1 Azioni su un corpo rigido
Capitolo 2 Statica del corpo rigido La statica è la parte della meccanica che si occupa dello studio dell equilibrio di corpi in quiete, ossia fermi, o mobili di moto rettilineo uniforme. In effetti applichiamo
Università degli Studi di Cagliari - Facoltà di Ingegneria e Architettura
Esercizio N.1 a trave a mensola ha sezione trasversale costante e porta un carico F nella sua estremità libera. Determinare lo spostamento verticale del punto. Soluzione Iniziamo calcolando le reazioni
FACOLTA DI ARCHITETTURA DI FERRARA A.A PROGRAMMA DEL CORSO DI STATICA (con indicazione dei testi consigliati)
FACOLTA DI ARCHITETTURA DI FERRARA A.A. 2018-2019 PROGRAMMA DEL CORSO DI STATICA (con indicazione dei testi consigliati) Docente responsabile: prof. ing. V. Mallardo TESTI B. D'Acunto, P. Massarotti, Elementi
5 - Sul grado di labilita' ed iperstaticita'
5 - Sul grado di labilita' ed iperstaticita' ü [.a. 2011-2012 : ultima revisione 14 ottobre 2012] Una struttura e' labile se presenta una possibilita' di meccanismo rigido, e' isostatica se e' possibile
Nome: Cognome: Data: 01/04/2017
Esercizio N. 1 Valutazione 5 Un ala, lunga L = 25m, è modellata come una trave in alluminio (E = 72GPa, Iy=2e-4m 4 ) incastrata alla fusoliera in x=0m, come in figura. La sollecitazione che si vuole studiare
Trave isostatica Studio della deformata con il metodo della LINEA ELASTICA
Trave isostatica Studio della deformata con il metodo della LINEA ELASTICA Trave a mensola, di rigidezza flessionale costante pari a EI, soggetta a forza verticale agente all estremo liero. Determinare
3.6.3 Esercizio Esercizio... 85
Indice 1 Movimenti rigidi 1 1.1 Trasformazioni nello spazio R 3.................. 1 1.2 Trasformazioni rigide........................ 2 1.2.1 Espressione generale di una trasformazione rigida.... 3 1.2.2
Statica del corpo rigido. Condizioni di equilibrio. Calcolo delle Reazioni Vincolari
Statica del corpo rigido Condizioni di equilibrio Calcolo delle Reazioni incolari Obiettivo della lezione: apprendere le equazioni cardinali della statica e applicarle al calcolo delle reazioni vincolari.
Università degli Studi di Enna Kore Facoltà di Ingegneria ed Architettura Anno Accademico
Facoltà di Ingegneria ed Architettura Anno Accademico 2017 2018 A.A. Settore Scientifico Disciplinare CFU Insegnamento Ore di aula Mutuazione 2017/18 ICAR/08 (08/B2) Scienza delle Costuzioni 6 Statica
za Bozza - Appunti di Scienza delle Costruzioni 1, dalle lezioni del prof. P. Podio-Guidugli, a.a. 2007/8 -
11 Calcolo di spostamenti e rotazioni in travature isostatiche 81 11 Calcolo di spostamenti e rotazioni in travature isostatiche Consideriamo d ora in avanti travature linearmente termoelastiche dello
MST.1.01 Sia dato il portale in figura, con il trasverso BC indeformabile ed i montanti di rigidezza EJ.
Meccanica delle strutture Componenti di spostamento Sistemi iperstatici di travi Linea elastica e metodo di Ritz. Componenti di spostamento in sistemi isostatici di travi MST.1.01 Sia dato il portale in
Travi Staticamente Indeterminate
Travi Staticamente Indeterminate SI esamina ora il caso in i vincoli sono in numero superiore rispetto alle equazioni disponibili Non si può quindi risolvere il problema con le semplici equazioni rese
Corso di meccanica, macchine e disegno VD 2013/2014 Modulo UD Lez. Esercizi svolti di statica pag. 1
orso di meccanica, macchine e disegno VD 2013/2014 Modulo UD Lez. Esercizi svolti di statica pag. 1 1) Un triangolo rettangolo presenta l ipotenusa lunga 5m mentre l angolo formato con uno dei due cateti
Esercitazione di Statica
Appunti di Elementi di Meccanica Esercitazione di Statica v 1.0 7 ottobre 2008 Figura 1: Scaffale a mensole 1 Problema Lo scaffale è un oggetto di uso quotidiano, presente nella maggior parte delle abitazioni.
Linea elastica, scalata per la rappresentazione grafica
Esercizio N.1 a trave a mensola ha sezione trasversale costante e porta un carico F nella sua estremità libera. Determinare l euazione della linea elastica, lo spostamento e la rotazione in. Ricordiamo
Università degli Studi della Basilicata Facoltà di Ingegneria
Università degli Studi della Basilicata Facoltà di Ingegneria Corso di TECNICA DELLE COSTRUZIONI Docente: Collaboratori: Prof. Ing. Angelo MASI Dr. Ing. Giuseppe Santarsiero Ing. Vincenzo Manfredi RICHIAMI
Nome: Cognome: Data: 15/02/2016
Esercizio N. 1 Valutazione 5 Un satellite dotato di pannelli solari, modellizzato come una trave con massa concentrata M sat = 1500kg in L/2, deve essere sospeso orizzontalmente tramite due cavi per effettuare
VINCOLI. Corpo rigido libero 3 gradi di libertà (GdL) nel piano. Fisso il punto A, il corpo può solo ruotare attorno ad A
VIOLI I vincoli impediscono gli spostamenti del corpo o del sistema di corpi. Vincoli esterni: collegano le parti del sistema al mondo esterno (terra, telaio) Vincoli interni: collegano due o più corpi
Esercitazione 2 - Statica di un sistema di corpi rigidi
Università degli Studi di ergamo orso di Laurea in Ingegneria Tessile orso di Elementi di Meccanica Esercitazione 2 - Statica di un sistema di corpi rigidi Esercizio n.1 alcolare il valore della distanza
TEORIA E PROGETTO DI COSTRUZIONI E STRUTTURE: ARCHITETTURA AMBIENTALE SEZIONE A APPELLO 6/9/2011. Tema A: allievo
TEORIA E PROGETTO DI COSTRUZIONI E STRUTTURE: ARCHITETTURA AMBIENTALE SEZIONE A APPELLO 6/9/011 Tema A: allievo ESERCIZIO 1 (punti 30) - Data la struttura di figura, si chiede di: a. effettuare l analisi
SOLUZIONI COSTRUZIONI IN ACCIAIO: VERIFICHE DI STABILITÀ
nno ccademico 04/05 COSTRUZIOI I CCIIO: VERIFICHE DI STBILITÀ SOLUZIOI Esercizio Si consideri la struttura in igura, costituita da una trave IPE 450 di luce L = 8 m ce poggia a destra su un cavalletto
I controventi. modulo D L acciaio
1 I controventi La struttura di una costruzione edilizia è un elemento tridimensionale costituito di fondazioni, pilastri, travi e solai, che deve essere in grado di assorbire le molteplici sollecitazioni
Sommario. CAPITOLO 3 - Vettori...!
Sommario CAPITOLO 1 - Matrici...! Definizione! Matrici di tipo particolare Definizioni relative-! Definizioni ed operazioni fondamentali! Somma di matrici (o differenza)! Prodotto di due matrici! Prodotti
Il metodo delle forze
Nel campo delle strutture MONODIMENSIONALI, cioè quelle per le quali la lunghezza lungo un asse è di gran lunga prevalente rispetto alle altre dimensioni, i metodi di risoluzione delle strutture staticamente
L'EQUILIBRIO E LE REAZIONI VINCOLARI
L'EQUILIBRIO E LE REAZIONI INCOLARI EQUILIBRIO DI UN SISTEMA DI FORZE Il nostro problema è quello di far star fermi i corpi, cioè far si che una struttura sia in equilibrio ora e negli anni a venire, dobbiamo
1 Schema di funzionamento di un edificio monopiano con copertura a capriate
1 Schema di funzionamento di un edificio monopiano con copertura a capriate 1.1 Descrizione Si tratta di una struttura monopiano in acciaio a pianta rettangolare con struttura di copertura realizzata mediante
Condizioni di Equilibrio dei corpi
Condizioni di Equilibrio dei corpi Un oggetto interagisce con l esterno mediante forze (localizzate, superficie, volume, ) Se l insieme di forze è equilibrato, l oggetto permane in uno stato di equilibrio
CORSO DI TECNICA DELLE COSTRUZIONI ESERCITAZIONE n 5 del 4/12/2015 PARTE 1: CALCOLO DELLE SOLLECITAZIONI SULLA TRAVE RETICOLARE
CORSO DI TECICA DELLE COSTRUZIOI ESERCITAZIOE n 5 del 4//05 PARTE : CALCOLO DELLE SOLLECITAZIOI SULLA TRAVE RETICOLARE.) TRAVI RETICOLARI Il generico carico concentrato P è ottenuto moltiplicando il carico
21 - La scrittura diretta delle equazioni di congruenza - Parte II
21 - a scrittura diretta delle equazioni di congruenza - Parte II ü [.a. 2011-2012 : ultima revisione 15 aprile 2012] Esercizio n.9 Si calcolino le reazioni e si disegni il diagramma delle c.s.i. per il
BOZZA. Lezione n. 6. Rigidezze e coefficienti di trasmissione
ezione n. 6 Rigidezze e coefficienti di trasmissione ffinché si possa utilizzare efficacemente il metodo dell equilibrio nella soluzione di travature iperstatiche, occorre ricavare, per le varie membrature,
TECNICA DELLE COSTRUZIONI PROVA SCRITTA DEL 27 FEBBRAIO Nome Cognome matricola
Nome Cognome matricola Note Giudizio buono sufficiente insufficiente DATI: L = 6.00 m H = 3.00 m q = 40.0 /m F = 60 M u = 180 m EJ p = EJ t = rigidezze flessionali di pilastri e travi rispettivamente =
Tesina UNIVERSITÀ DEGLI STUDI G. D ANNUNZIO DI CHIETI-PESCARA FACOLTÀ DI ARCHITETTURA F 1. π/4
UNIVERSITÀ DEGLI STUDI G. D ANNUNZIO DI CHIETI-ESCARA FACOLTÀ DI ARCHITETTURA CORSO DI LAUREA SECIALISTICA, CORSI DI LAUREA TRIENNALI SCIENZA DELLE COSTRUZIONI E TEORIA DELLE STRUTTURE (Canali B,C) a.a.
Reazioni vincolari. Sistemi di corpi rigidi. Resistenza dei materiali. Forme strutturali per il design A.A prof.
Resistenza dei materiali e Forme strutturali per il design A.A. 2014-2015 prof. Andrea Dall Asta Reazioni vincolari e Sistemi di corpi rigidi Scuola di Architettura e Design, Università di Camerino e-mail:[email protected]
STATICA FORZE NEL PIANO
MECCANICA E MACCHINE I MODULO - Capitolo Statica Forze nel piano Capitolo STATICA FORZE NEL PIANO Esercizio : Due forze, F = 330 N e F 2 = 250 N, sono applicate nel punto A e formano tra loro l'angolo
BOZZA. Lezione n. 10. Il metodo dell equilibrio: esempio #4 La rigidezza alla traslazione
ezione n. 10 Il metodo dell equilibrio: esempio #4 a rigidezza alla traslazione E opportuno estendere lo studio effettuato fino a questo punto anche al caso di strutture in cui siano possibili spostamenti
Il Principio dei lavori virtuali
Il Principio dei lavori virtuali Il P..V. rientra nella classe di quei principi energetici che indicano che i sistemi evolvono nel senso di minimizzare l energia associata ad ogni stato di possibile configurazione.
CORSO DI PROGETTAZIONE COSTRUZIONI ED IMPIANTI
CORSO DI PROGETTAZIONE COSTRUZIONI ED IMPIANTI A.S. 2015-2016 LA STATICA DEI SISTEMI RIGIDI - DISP. 2 Definizione analitica di sistema equilibrato Abbiamo visto, nelle esercitazioni precedenti, come la
Problemi di dinamica
Problemi di dinamica Cosa vogliamo scoprire? Come si muove un corpo Cosa sappiamo? Quali forze agiscono sul corpo Com'è fatto l'ambiente in cui si muove il corpo Che velocità e che posizione occupava il
CORSO DI TECNICA DELLE COSTRUZIONI ESERCITAZIONE n 10 del 13/03/2018 PROGETTO DI UN CAPANNONE INDUSTRIALE
CORSO DI TECNICA DELLE COSTRUZIONI ESERCITAZIONE n 10 del 13/03/2018 PROGETTO DI UN CAPANNONE INDUSTRIALE PROGETTO DEI CONTROVENTI DI PARETE E DI FALDA 1) PROGETTO DEI CONTROVENTI DI PARETE Si impiega
BOZZA. Lezione n. 12. Il metodo dell equilibrio Effetti delle variazioni termiche nelle strutture
ezione n. Il metodo dell equilibrio Effetti delle variazioni termiche nelle strutture e variazioni termiche che agiscono sulle strutture possono essere classificate in: variazioni che producono solo spostamenti
Forza (kn) Asta SLU Neve SLU Vento
CALCOLO DI UNA TRAVE RETICOLARE TRAMITE FOGLI DI CALCOLO NORMATIVA DI RIFERIMENTO: EN 1993 1-1, EN 1993 1-8 Rif. 09/07 1) Introduzione Nel seguante lavoro verranno verificate le aste ed i giunti di una
Introduzione. Michelangelo Laterza Principi di Statica e di Dinamica delle Strutture
Introduzione La meccanica è quella parte delle scienze applicate che studia le forze ed il moto. In questo campo è fondamentale la nozione di equilibrio, ovvero la condizione che si instaura quando le
CORSO DI TECNICA DELLE COSTRUZIONI ESERCITAZIONE n 7 del 27/02/2018
CORSO DI TECNICA DELLE COSTRUZIONI ESERCITAZIONE n 7 del 7/0/018 PROGETTO DELLE MENSOLE DEL CARROPONTE PROGETTO DELLE UNIONI DELLA TRAVE RETICOLARE (SOLUZIONE BULLONATA) 1) PROGETTO DELLE MENSOLE CHE SOSTENGONO
La situazione è rappresentabile così:
Forze Equivalenti Quando viene applicata una forza ad un corpo rigido è importante definire il punto di applicazione La stessa forza applicata a punti diversi del corpo può produrre effetti diversi! Con
STATICA DEL CORPO RIGIDO (Distillazione verticale)
1 STTIC DEL CORPO RIGIDO (Distillazione verticale) OIETTIVO: SPERE CLCOLRE LE REZIONI VINCOLRI NELLE STRUTTURE ISOSTTICHE. Momento di una forza rispetto ad un punto (def.) Unità di misura Convenzione sui
L EQUILIBRIO DEL PUNTO MATERIALE
1 L EQUILIBRIO DEL PUNTO MATERIALE La statica studia l equilibrio dei corpi. Un corpo è in equilibrio se è fermo e persevera nel suo stato di quiete al trascorrere del tempo. Un modello è la semplificazione
CLASSE 3 A APPUNTI DAL CORSO DI COSTRUZIONI. Diagrammi delle sollecitazioni ESERCIZI SVOLTI IN AULA
the design of he Forth Bridge (Scotland) 1883-1890 by Sir John Fowler and Sir Benjamin Baker Nessun effetto è in natura sanza ragione; intendi la ragione e non ti bisogna sperienzia. Leonardo da Vinci
modulo D L acciaio Le coperture Calcolo della capriata
1 ESERCIZIO SVOLTO Le coperture Calcolare una delle capriate in acciaio S35 relative alla copertura del capannone industriale considerato nell Esercizio svolto 6 del Volume 4 (Modulo D, Unità 4) con la
