TECNICHE COMPUTAZIONALI AVANZATE

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "TECNICHE COMPUTAZIONALI AVANZATE"

Transcript

1 TECNICHE COMPUTAZIONALI AVANZATE Francesca Pelosi e Salvatore Filippone Università di Roma Tor Vergata Problemi di diffusione, trasporto, reazione pelosi/ TECNICHE COMPUTAZIONALI AVANZATE p./8

2 DIFFUSIONE TRASPORTO e REAZIONE Il metodo di Galerkin applicato a problemi ellittici nella forma: trovare u V = H (Ω) tale che a(u, v) = F (v), v V fornisce sotto le ipotesi del Lemma di Lax-Milgram una soluzione stabile e convergente, ossia: u h V α F V, u u h V M α inf w h V h u w h V con M, α costante di continuità e coercività di a(, ). Nella pratica queste disuguaglianze possono essere di scarsa utilità se le costanti sono molto grandi. Se M α: la seconda disuguaglianza è poco significativa a meno che inf wh V h u w h V non sia molto piccolo: occorre V h molto grande e in temini di elementi finiti occorre h molto piccolo numero elevato di gradi di libertà problema oneroso (se non intrattabile) dal punto di vista computazionale. TECNICHE COMPUTAZIONALI AVANZATE p.2/8

3 DIFFUSIONE TRASPORTO e REAZIONE Analizzeremo problemi che modellano i processi fisici di diffusione, trasporto e reazione, in Ω R 2 : div(ε u) + b u + σu = f, in Ω u =, su Ω dove ε, σ, f, b sono funzioni o costanti assegnate: - ε L (Ω), ε(x) ε > - σ(x) L 2 (Ω), σ(x) q.o. in Ω - b [L 2 (Ω)] 2, f L 2 (Ω) in molte applicazioni il termine di diffusione div(ε u) è dominato dal termine trasporto (convezione) b u (Pb. a trasporto dominante) reazione (assorbimento) σu (Pb. a reazione dominante) presenza di strati limite: regioni in cui la soluzione è caratterizzata da forti gradienti, di solito in prossimità del bordo di Ω; ( u L 2 (Ω /ε ) si dimostra: M = ε L (Ω) + b L (Ω) + σ L 2 (Ω) α = Cε quindi M/α è grande se b L (Ω)/ ε L (Ω) o σ L (Ω)/ ε L (Ω) sono grandi TECNICHE COMPUTAZIONALI AVANZATE p.3/8

4 DIFFUSIONE-TRASPORTO D εu + bu =, < x < u() =, u() = dove ε, b sono costanti positive la sua forma debole: trovare u H (, ), con u() =, u() = : (εu v + bu v) dx = v H (, ). introducendo la funzione di rilevamento R g = x possiamo riformulare il problema per u = ũ + R g : trovare ũ H (, ), : (εũ v +bũ v) dx = trovare ũ H (, ), : (εũ v + bũ v) dx = (εr gv +br gv) dx v H (, ). bv dx v H (, ). trovare ũ H (, ), : a(ũ, v) = F (v) v H (, ). TECNICHE COMPUTAZIONALI AVANZATE p.4/8

5 DIFFUSIONE-TRASPORTO D Definiamo il numero di Péclet globale per un dominio di ampiezza L Pe g := b L 2ε misura quanto il termine di trasporto domina su quello diffusivo. La soluzione esatta u(x) = e b ε x e b ε b/ε sviluppando in serie di Taylor u(x) x; b/ε u(x) e b ε x /e b ε = e b ε ( x) soluzione prossima a zero q.o. tranne che in un intorno di x = di ampiezza ε/b dove si raccorda a : strato limite di ampiezza O(ε/b) con derivata dipendente da b/ε. TECNICHE COMPUTAZIONALI AVANZATE p.5/8

6 DIFFUSIONE-TRASPORTO D u i (ε Risolviamo con il metodo di Galerkin ad elementi finiti lineari: V h = X h e V h = X h in cui v h() = v h () = su partizione uniforme x i = x i + h, i =,..., N + 2 si ottengono per le incognite u i dove u h = N i= u iϕ i le equazioni: xi x i ϕ i ϕ i + b ( b 2 + ε ) h xi x i ϕ i ϕ i u i ) + u i ( +u i+ (ε ε xi+ x i xi+ x i (ϕ i )2 + b ϕ i+ ϕ i + b + 2ε ( b h u i + 2 ε ) u i+ = h Dividiamo per ε/h e definiamo il numero di Péclet locale xi+ x i xi+ x i ϕ i ϕ i ) ϕ i+ ϕ i Pe := b h/2ε ) = (Pe + ) u i + 2u i + (Pe ) u i+ = equazione alle differenze di tipo lineare che assume soluzioni di tipo esponenziale della forma u i = ρ i, risolvendo si ottiene: TECNICHE COMPUTAZIONALI AVANZATE p.6/8

7 DIFFUSIONE- TRASPORTO D u i = ( ) i +Pe Pe ( ) N+ +Pe Pe Se Pe = b h/(2ε) > al numeratore compare una potenza con base negativa quindi la soluzione approssimata risulta oscillante al contrario della soluzione esatta che è monotona Occorre scegliere h sufficientemente piccolo in modo da garantire Pe < ovvero h 2ε b tale strategia risulta impraticabile quando b/ε, per b =, ε = /5, si deve avere h 2/5 = 4, in (, ) occorrono più di intervalli. TECNICHE COMPUTAZIONALI AVANZATE p.7/8

8 DIFFUSIONE-TRASPORTO D: esempio ε =, b = Pe g = 5 h < 2 = N + =, h =. N + = 2, h =.5 N + = 4, h =.25 Le oscillazioni nel metodo di Galerkin possono essere evitate solo se si sceglie un passo di griglia sufficientemente piccolo da garantire Pe < ; raffinamento adattivo: si infittisce la griglia solo in corrispondenza dello strato limite; tecniche di stabilizzazione : upwind, Scharfetter-Gummel. TECNICHE COMPUTAZIONALI AVANZATE p.8/8

9 DIFFUSIONE-TRASPORTO D: DF Tecniche di stabilizzazione: La tecnica di stabilizzazione upwind ha origine dalle relazioni tra Elementi Finiti (EF) e Differenze Finite (DF) su problemi di diffusione-trasporto: nel metodo DF si discretizzano le derivate presenti nell equazione mediante rapporti incrementali con errori di discretizazzione locale dello stesso ordine. Ad esempio: u (x i ) = u(x i+) u(x i ) 2h + O(h 2 ), i =,..., N u (x i ) = u(x i+) 2u(x i ) + u(x i ) h 2 + O(h 2 ), i =,..., N Sostituendo i rapporti incrementali alle derivate esatte nell equazione e denotando u = u(x i ), si ottiene: ε u i+ 2u i +u i h 2 + b u i+ u i =, i =,..., N 2h u =, u N+ = Moltiplicando per h e riordinando i termini l equazione sopra è la stessa ottenuta con EF lineari sulla stessa partizione di [, ]. TECNICHE COMPUTAZIONALI AVANZATE p.9/8

10 DIFFUSIONE-TRASPORTO D: DF Le oscillazioni nella soluzione numerica dipendono dallo schema alle differenze utilizzato per discretizzare il termine di trasporto: DFC ovvero DF Centrate; il significato fisico del termine bu (x) suggerisce di utilizzare uno schema decentrato per approssimare la derivata in x i a seconda del segno di b; si ottiene la tecnica upwind (DFUP) e per b > ε u i+ 2u i + u i h 2 + b u i u i h =, i =,..., N Il rapporto incrementale decentrato introduce un errore locale di discretizzazione che è O(h) e quindi si ha una riduzione dell ordine di convergenza (soluzione meno accurata). TECNICHE COMPUTAZIONALI AVANZATE p./8

11 DIFFUSIONE-TRASPORTO D: DF Riscrivendo il rapporto incrementale decentrato in termini di rapporto incrementale centrato e approssimazione della derivata seconda u i u i h = u i+ u i 2h h 2 u i+ 2u i + u i h 2 si può riscrivere lo schema upwind come uno schema DFC in cui è stato introdotto un termine di diffusione artificiale proporzionale ad h: ( ε + bh 2 ) ui+ 2u i + u i h 2 + b u i+ u i 2h =, i =,..., N con ε h u i+ 2u i + u i h 2 + b u i+ u i 2h =, i =,..., N ε h = ε + bh 2 = ε( + Pe) = ε( + ψ(pe)) Lo schema corrisponde alla discretizzazione con DFC del problema perturbato ε h u + bu = La correzione ε h ε = bh/2 è detta viscosità artificiale TECNICHE COMPUTAZIONALI AVANZATE p./8

12 DIFFUSIONE-TRASPORTO D: stabilizzazione La tecnica upwind o viscosità artificiale aumenta la viscosità del problema aggiungendo un termine diffusivo (ossia di derivata seconda) della forma b h 2 u = εpe u = εψ(pe) u ψ è in generale una funzione del numero di Peclét locale che tende a zero per valori piccoli di Pe ψ(t) = t : schema upwind (DFUP) ψ(t) = t + B(2t) con B(t) = t/(e t ), t > : schema Scharfetter-Gummel La viscosità effettiva diventa : ε h = ε( + Pe) = ε( + ψ(pe)) Il numero di Peclét effettivo: Pe h = b h 2ε h = Pe + Pe = ψ(pe) + ψ(pe) <, h l approssimazione con il metodo upwind non presenta oscillazioni e quindi risulta stabile per ogni valore di h. TECNICHE COMPUTAZIONALI AVANZATE p.2/8

13 DIFFUSIONE-TRASPORTO D: stabilizzazione ε =, b = Pe g = 5 h < 2 =.2 Stabilizzazione Upwind Stabilizzazione Scharfetter-Gummel N + =, h =. N + = 2, h =.5 N + = 4, h =.25 TECNICHE COMPUTAZIONALI AVANZATE p.3/8

14 DIFFUSIONE-TRASPORTO D: analisi Il problema può esser visto come la risoluzione di uno schema di Galerkin generalizzato: trovare u h V h t.c. a h (u h, v h ) = F h (v h ), v h V h dove ah (u h, v h ) = a(u h, v h ) + b h (u h, v h ), F h (v h ) = F (v h ) + G h (v h ) I termini aggiunti hanno lo scopo di eliminare le oscillazioni prodotte dal metodo di Galerkin. Parlare di stabilizzazione è in realtà improprio in quanto il metodo di Galerkin è stabile nel senso della dipendenza continua della soluzione dai dati. Stabilizzazione si intende in questo caso la riduzione delle oscillazioni presenti nella soluzione numerica quando Pe >. Per il problema D visto, si considera al solito u = ũ h + R gh e si cerca ũ h V h : a h (ũ h, v h ) = F (v h ), v h V h con F h (v h ) = F (v h ) e con schema upwind b h (ũ h, v h ) = εpe ũ h v h dx TECNICHE COMPUTAZIONALI AVANZATE p.4/8

15 DIFFUSIONE-TRASPORTO D: analisi Analizzando la coercività si ha: a h (v h, v h ) = ε h (v h )2 dx = ε h v h 2 V h essendo ε h ε la costante di coercività è più grande. Per quanto riguarda l accuratezza: dal Lemma di Strang (per metodi Galerkin generalizzati) con s = min{r, p}, per u H p+ posto V = H (Ω): u u h V inf w h V h C { ( + M ) ε h u w h V + ε h h s ε( + Pe) u H s+ + Pe + Pe u V Se ε è fissato e h tende a : sup v h V h \ u u h V C [h s u H s+ + Pe u V ] Se h è fissato e ε tende a : u u h V C 2 [ h s u H s+ + u V ] } a(w h, v h ) a h (w h, v h ) v h V TECNICHE COMPUTAZIONALI AVANZATE p.5/8

16 DIFFUSIONE-TRASPORTO D: analisi In generale se ε h = ε( + ψ(pe)) u u h V C h s ε( + ψ(pe)) u H s+ + ψ(pe) + ψ(pe) u V Se ε è fissato e h tende a si ha ψ(pe) : Se h è fissato e ε tende a : u u h V C [h s u H s+ + ψ(pe) u V ] u u h V C 2 [ h s u H s+ + u V ] nel caso upwind ψ(pe) = Pe ε( + ψ(pe)) = ε + b 2 h, ψ(pe) + ψ(pe) = h h + 2ε/b per Scharfetter-Gummel quando ε si ha ψ(pe) = Pe TECNICHE COMPUTAZIONALI AVANZATE p.6/8

17 DIFFUSIONE-TRASPORTO D: analisi Osservando il caso ε fissato e h tendente a : u u h V C [h s u H s+ + ψ(pe) u V ] il metodo stabilizzato upwind: ψ(pe) = Pe = O(h) genera un errore lineare ripetto ad h (primo ordine) indipendentemente dal grado r scelto. La perturbazione prodotta sulla forma bilineare dall aggiunta della viscosità numerica degrada l ordine di accuratezza della soluzione a. il metodo stabilizzato Scharfetter-Gummel ψ(pe) = O(h 2 ) genera un errore quadratico ripetto ad h (secondo ordine) per r 2. TECNICHE COMPUTAZIONALI AVANZATE p.7/8

Il metodo di Galerkin Elementi Finiti Lineari

Il metodo di Galerkin Elementi Finiti Lineari Il metodo di Galerkin Elementi Finiti Lineari Si consideri il problema: u(x) = f(x), x (, ), u() = 0, u() = 0. Se ne fornisca la corrispondente formulazione debole. Si costruiscano inoltre la matrice di

Dettagli

Metodi numerici per ODE. Metodi numerici per ODE

Metodi numerici per ODE. Metodi numerici per ODE Problema di Cauchy Consideriamo un equazione differenziale (sistema di equazioni) del primo ordine in forma normale con condizioni iniziali assegnate. { y (x) = f (x, y(x)) x [x 0, x F ] y(x 0 ) = y 0

Dettagli

Daniela Lera A.A. 2008-2009

Daniela Lera A.A. 2008-2009 Daniela Lera Università degli Studi di Cagliari Dipartimento di Matematica e Informatica A.A. 2008-2009 Equazioni non lineari Metodo di Newton Il metodo di Newton sfrutta le informazioni sulla funzione

Dettagli

TECNICHE COMPUTAZIONALI AVANZATE

TECNICHE COMPUTAZIONALI AVANZATE TECNICHE COMPUTAZIONALI AVANZATE Francesca Pelosi e Salvatore Filippone Università di Roma Tor Vergata Problemi di diffusione, trasporto, reazione 2D http://www.mat.uniroma2.it/ pelosi/ TECNICHE COMPUTAZIONALI

Dettagli

Il problema di Cauchy

Il problema di Cauchy Sia I = [t 0, t 0 + T ] con 0 < T < +. Sia f (t, y) una funzione assegnata definita in I R continua rispetto ad entrambe le variabili. Si trata di determinare una funzione y C 1 (I ) soluzione di { y (t)

Dettagli

Derivazione numerica. Introduzione al calcolo numerico. Derivazione numerica (II) Derivazione numerica (III)

Derivazione numerica. Introduzione al calcolo numerico. Derivazione numerica (II) Derivazione numerica (III) Derivazione numerica Introduzione al calcolo numerico Il calcolo della derivata di una funzione in un punto implica un processo al limite che può solo essere approssimato da un calcolatore. Supponiamo

Dettagli

Introduzione al Calcolo Scientifico - A.A

Introduzione al Calcolo Scientifico - A.A Introduzione al Calcolo Scientifico - A.A. 2009-2010 Discretizzazione di un problema ai limiti Si consideri il seguente problema ai limiti del secondo ordine (problema dell elasticità 1D in regime di piccole

Dettagli

Soluzione numerica di equazioni differenziali

Soluzione numerica di equazioni differenziali Soluzione numerica di equazioni differenziali Laboratorio di programmazione e calcolo (Chimica e Tecnologie chimiche) Pierluigi Amodio Dipartimento di Matematica Università di Bari Soluzione numerica di

Dettagli

Metodi di Iterazione Funzionale

Metodi di Iterazione Funzionale Appunti di Matematica Computazionale Lezione Metodi di Iterazione Funzionale Il problema di calcolare il valore per cui F() = si può sempre trasformare in quello di trovare il punto fisso di una funzione

Dettagli

Problemi parabolici. u(0, t) = u(l, t) = 0 t (1)

Problemi parabolici. u(0, t) = u(l, t) = 0 t (1) Problemi parabolici L esempio più semplice di equazione differenziale di tipo parabolico è costituito dall equazione del calore, che in una dimensione spaziale è data da u t (x, t) ku xx (x, t) = x [,

Dettagli

Problema. Equazioni non lineari. Metodo grafico. Teorema. Cercare la soluzione di

Problema. Equazioni non lineari. Metodo grafico. Teorema. Cercare la soluzione di Problema Cercare la soluzione di Equazioni non lineari dove Se è soluzione dell equazione, cioè allora si dice RADICE o ZERO della funzione Metodo grafico Graficamente si tratta di individuare l intersezione

Dettagli

Introduzione al Metodo agli Elementi Finiti (FEM) (x, y) Γ Tale formulazione viene detta Formulazione forte del problema.

Introduzione al Metodo agli Elementi Finiti (FEM) (x, y) Γ Tale formulazione viene detta Formulazione forte del problema. Introduzione al Metodo agli Elementi Finiti (FEM) Consideriamo come problema test l equazione di Poisson 2 u x 2 + 2 u = f(x, y) u = f y2 definita su un dominio Ω R 2 avente come frontiera la curva Γ,

Dettagli

Analisi Numerica (A.A )

Analisi Numerica (A.A ) Analisi Numerica (A.A. 2014-2015) Appunti delle lezioni: Equazioni differenziali alle derivate parziali del primo ordine 1 Docente Vittoria Bruni Email: vittoria.bruni@sbai.uniroma1.it Ufficio: Via A.

Dettagli

PROBLEMI NON-LINEARI NEL CALCOLO STRUTTURALE

PROBLEMI NON-LINEARI NEL CALCOLO STRUTTURALE PROBLEMI NON-LINEARI NEL CALCOLO STRUTTURALE 1/ Non-linearità geometrica: spostamenti e deformazioni finiti / Non-linearità materiale: legge costitutiva non-lineare, plasticità, meccanica del danno, ipoelasticità,

Dettagli

Equazioni differenziali e teoria della misura

Equazioni differenziali e teoria della misura SISSA Area Matematica Esame di ammissione per il corso di Analisi Matematica, Modelli e Applicazioni 2 settembre 23 Il candidato risolva CINQUE dei seguenti problemi, e indichi chiaramente sulla prima

Dettagli

Equazioni differenziali con valori al bordo

Equazioni differenziali con valori al bordo Equazioni differenziali con valori al bordo Lucia Gastaldi DICATAM - Sez. di Matematica, http://lucia-gastaldi.unibs.it Indice 1 Equazioni di diffusione reazione 2 Equazioni di diffusione reazione Si consideri

Dettagli

Metodi computazionali per i Minimi Quadrati

Metodi computazionali per i Minimi Quadrati Metodi computazionali per i Minimi Quadrati Come introdotto in precedenza si considera la matrice. A causa di mal condizionamenti ed errori di inversione, si possono avere casi in cui il e quindi S sarebbe

Dettagli

Esercitazione 1 TRASPORTO CONVETTIVO

Esercitazione 1 TRASPORTO CONVETTIVO http://svolgimentotracceesame.altervista.org/ Esercitazione 1 TRASPORTO ONVETTIVO Si effettui la simulazione di un fenomeno di trasporto puramente convettivo (E=0) all interno di un dominio monodimensionale

Dettagli

Metodi numerici per equazioni differenziali ordinarie. Calcolo Numerico a.a. 2008/2009

Metodi numerici per equazioni differenziali ordinarie. Calcolo Numerico a.a. 2008/2009 Metodi numerici per equazioni differenziali ordinarie Calcolo Numerico a.a. 2008/2009 ODE nei problemi dell ingegneria 1 Le leggi fondamentali della fisica, della meccanica, dell elettricità e della termodinamica

Dettagli

Equazioni alle derivate parziali ANALISI NUMERICA CALCOLO NUMERICO (A.A ) Prof. F. Pitolli

Equazioni alle derivate parziali ANALISI NUMERICA CALCOLO NUMERICO (A.A ) Prof. F. Pitolli ANALISI NUMERICA CALCOLO NUMERICO (A.A. -3) Equazioni alle derivate parziali Un equazione differenziale alle derivate parziali è una relazione ce lega una funzione incognita u(x,,x r ) alle sue derivate

Dettagli

Modelli matematici ambientali a.a. 2015/16 Introduzione alle equazioni differenziali

Modelli matematici ambientali a.a. 2015/16 Introduzione alle equazioni differenziali Modelli matematici ambientali a.a. 2015/16 Introduzione alle equazioni differenziali Argomenti trattati Introduzione ai modelli Equazioni differenziali del primo ordine Metodi risolutivi:integrazione diretta

Dettagli

Corso di Calcolo Numerico

Corso di Calcolo Numerico Corso di Laurea in Ingegneria Gestionale Sede di Fermo Corso di 3 - CALCOLO NUMERICO DELLE DERIVATE Introduzione Idea di base Introduzione Idea di base L idea di base per generare un approssimazione alla

Dettagli

TEMI D ESAME DI ANALISI MATEMATICA I

TEMI D ESAME DI ANALISI MATEMATICA I TEMI D ESAME DI ANALISI MATEMATICA I Corso di laurea quadriennale) in Fisica a.a. 003/04 Prova scritta del 3 aprile 003 ] Siano a, c parametri reali. Studiare l esistenza e, in caso affermativo, calcolare

Dettagli

ANALISI VETTORIALE COMPITO IN CLASSE DEL 8/11/2013

ANALISI VETTORIALE COMPITO IN CLASSE DEL 8/11/2013 ANALISI VETTORIALE COMPITO IN CLASSE DEL 8//3 Premessa (Cfr. gli Appunti di Analisi Vettoriale / del Prof. Troianiello) Nello studio degli integrali impropri il primo approccio all utilizzo del criterio

Dettagli

1 Schemi alle differenze finite per funzioni di una variabile

1 Schemi alle differenze finite per funzioni di una variabile Introduzione In questa dispensa vengono forniti alcuni elementi di base per la soluzione di equazioni alle derivate parziali che governano problemi al contorno. A questo scopo si introducono, in forma

Dettagli

CALCOLO NUMERICO Laurea di base in Ingegneria Elettronica, delle Comunicazioni

CALCOLO NUMERICO Laurea di base in Ingegneria Elettronica, delle Comunicazioni CALCOLO NUMERICO Laurea di base in Ingegneria Elettronica, delle Comunicazioni Prof.ssa Laura Pezza (A.A. 2017-2018) V Lezione del 15.03.2018 http://www.dmmm.uniroma1.it/ laura.pezza 1 Metodo di Newton:

Dettagli

Corso di Analisi Numerica

Corso di Analisi Numerica Corso di Laurea in Ingegneria Informatica Corso di 4 - DERIVAZIONE NUMERICA Lucio Demeio Dipartimento di Scienze Matematiche 1 Calcolo numerico delle derivate 2 3 Introduzione Idea di base L idea di base

Dettagli

Laboratorio di Calcolo Numerico A.A

Laboratorio di Calcolo Numerico A.A Laboratorio di Calcolo Numerico A.A. 2007-2008 Laboratorio 7 Minimi quadrati. Approssimazione delle derivate. Esercizio 1. Si considerino le 6 coppie di dati ( 4.5, 0.7), ( 3.2, 2.3), ( 1.4, 3.8), (0.8,

Dettagli

Regola dei trapezi. a, b punti fissi a priori. non fissi a priori (indeterminati) errore di integrazione. a, b

Regola dei trapezi. a, b punti fissi a priori. non fissi a priori (indeterminati) errore di integrazione. a, b INTEGRAZIONE NUMERICA (Quadratura di Gauss) Regola dei trapezi I ( b a) f ( a) + f ( b) f (x) errore di integrazione f (x) f (a) f (b) a b x a a ' b' b x a, b punti fissi a priori a, b non fissi a priori

Dettagli

Esercizi di prove scritte di Analisi Matematica I con schema di soluzione Paola Loreti. April 5, 2006

Esercizi di prove scritte di Analisi Matematica I con schema di soluzione Paola Loreti. April 5, 2006 Esercizi di prove scritte di Analisi Matematica I con schema di soluzione Paola Loreti April 5, 6 ESERCIZI. Studiare la convergenza della serie numerica al variare di γ IR.. Calcolare l integrale π n=

Dettagli

ANALISI 1 - Teoremi e dimostrazioni vari

ANALISI 1 - Teoremi e dimostrazioni vari ANALISI 1 - Teoremi e dimostrazioni vari Sommario Proprietà dell estremo superiore per R... 2 Definitivamente... 2 Successioni convergenti... 2 Successioni monotone... 2 Teorema di esistenza del limite

Dettagli

Metodi Numerici con elementi di Programmazione (A.A )

Metodi Numerici con elementi di Programmazione (A.A ) Metodi Numerici con elementi di Programmazione (A.A. 2013-2014) Metodi Numerici Appunti delle lezioni: Sistemi non lineari Docente Vittoria Bruni Email: vittoria.bruni@sbai.uniroma1.it Ufficio: Via A.

Dettagli

DOMANDE D ESAME (tempo a disposizione per due domande: 1 ora)

DOMANDE D ESAME (tempo a disposizione per due domande: 1 ora) DOMANDE D ESAME (tempo a disposizione per due domande: 1 ora) 1. Equazione del trasporto omogenea su R: esistenza, unicità e stabilità. Si consideri il problema u t + 3u x =, u(x, ) = cos(2πx). Si ha u(x,

Dettagli

ELEMENTI DI ANALISI SPETTRALE 1 I DUE DOMINI

ELEMENTI DI ANALISI SPETTRALE 1 I DUE DOMINI Lezioni di Fisica della Terra Solida, Università di Chieti, a.a. 999/. Docente A. De Santis ELEMENTI DI ANALISI SPETTRALE I DUE DOMINI È spesso utile pensare alle unzioni ed alle loro trasormate di Fourier

Dettagli

Francesca Mazzia Dipartimento di Matematica Università di Bari. Equazioni Differenziali

Francesca Mazzia Dipartimento di Matematica Università di Bari. Equazioni Differenziali 1 Francesca Mazzia Dipartimento di Matematica Università di Bari Equazioni Differenziali 2 Consideriamo il sistema di equazioni differenziali: con condizione iniziale: y = f(t, y) (6.1) y(t 0 ) = y 0,

Dettagli

Calcolo I - Corso di Laurea in Fisica - 18 Giugno 2018 Soluzioni Scritto. f(x) = ( ln 1 + x + 1 ) =

Calcolo I - Corso di Laurea in Fisica - 18 Giugno 2018 Soluzioni Scritto. f(x) = ( ln 1 + x + 1 ) = Calcolo I - Corso di Laurea in Fisica - 8 Giugno 08 Soluzioni Scritto ) Data la funzione fx) = ln + x + ) a) Calcolare il dominio, asintoti ed eventuali punti di non derivabilità; b) Calcolare, se esistono,

Dettagli

Soluzioni Analitiche e Numeriche Applicate all Ingegneria Ambientale

Soluzioni Analitiche e Numeriche Applicate all Ingegneria Ambientale Soluzioni Analitiche e Numeriche Applicate all Ingegneria Ambientale Massimiliano Martinelli massimiliano.martinelli@gmail.com Università Politecnica delle Marche, Ancona Facoltà di Ingegneria 11-12 Marzo

Dettagli

Richiami di topologia di R n e di calcolo differenziale in più variabili

Richiami di topologia di R n e di calcolo differenziale in più variabili Anno accademico: 2016-2017 Corso di laurea in Ingegneria Aerospaziale e Ingegneria dell Autoveicolo Programma di Analisi Matematica II (6 CFU) (codice: 22ACILZ e 22ACILN) Docente: Lancelotti Sergio Richiami

Dettagli

Corso di Analisi Numerica

Corso di Analisi Numerica Corso di Laurea in Ingegneria Informatica Corso di 5 - INTEGRAZIONE NUMERICA Lucio Demeio Dipartimento di Scienze Matematiche 1 Integrazione numerica: formule di Newton-Cotes semplici 2 3 Introduzione

Dettagli

Circuiti a tempo discreto Raffaele Parisi

Circuiti a tempo discreto Raffaele Parisi Università di Roma La Sapienza Laurea Specialistica in Ingegneria Elettronica Circuiti a tempo discreto Raffaele Parisi : Cenni alla sintesi di Circuiti TD Generalità sulle tecniche di progetto. Filtri

Dettagli

Risoluzione del compito n. 7 (Settembre 2018/2)

Risoluzione del compito n. 7 (Settembre 2018/2) Risoluzione del compito n. 7 (Settembre 08/ PROBLEMA Determinate le soluzioni (z, w, con z, w C,delsistema i z =(+iw i iw =( i z 3 4 i. Moltiplicando la prima equazione per i questa diventa z =( iw e sostituendo

Dettagli

Lezioni sullo studio di funzione.

Lezioni sullo studio di funzione. Lezioni sullo studio di funzione. Schema. 1. Calcolare il dominio della funzione D(f).. Comportamento della funzione agli estremi del dominio. Ad esempio se D(f) = [a, b] si dovrà calcolare f(a) e f(b),

Dettagli

CORSO DI Analisi Numerica

CORSO DI Analisi Numerica CORSO DI Analisi Numerica Alessandro Iafrati CONTATTI Posta Elettronica: a.iafrati@insean.it Telefono: 06/50299296 A breve sarà disponibile un sito web sulla pagina del Dipartimento di Metodi e Modelli

Dettagli

Raccolta di Esercizi d esame ( di Calcolo Numerico) Prof. Laura Pezza. Equazioni non lineari

Raccolta di Esercizi d esame ( di Calcolo Numerico) Prof. Laura Pezza. Equazioni non lineari Raccolta di Esercizi d esame ( di Calcolo Numerico) Prof. Laura Pezza Equazioni non lineari ESERCIZIO 1 Data l equazione ln(e + x) = 1 (1 + 4x) + 1 2 1.1 verificare analiticamente se sono soddisfatte le

Dettagli

TECNICHE COMPUTAZIONALI AVANZATE

TECNICHE COMPUTAZIONALI AVANZATE TECNICHE COMPUTAZIONALI AVANZATE Francesca Pelosi e Salvatore Filippone Università di Roma Tor Vergata Esempi Pb. Ellittici http://www.mat.uniroma2.it/ pelosi/ TECNICHE COMPUTAZIONALI AVANZATE p.1/15 ESEMPIO

Dettagli

Corso di Laurea in Ingegneria Informatica Analisi Numerica

Corso di Laurea in Ingegneria Informatica Analisi Numerica Corso di Laurea in Ingegneria Informatica Lucio Demeio Dipartimento di Scienze Matematiche 1 2 Analisi degli errori Informazioni generali Libro di testo: J. D. Faires, R. Burden, Numerical Analysis, Brooks/Cole,

Dettagli

Lezione. Tecnica delle Costruzioni

Lezione. Tecnica delle Costruzioni Lezione Tecnica delle Costruzioni 1 Flessione Comportamento ultimo M 1 r M E I M ε σ E ε M σ da E I /r M 1 r M EI 1/r 1/r Comportamento ultimo -ε -f M el M 1 el r el E I M ε ε σ E ε f M el M σ da el W

Dettagli

Capitolo 3: Ottimizzazione non vincolata parte III. E. Amaldi DEI, Politecnico di Milano

Capitolo 3: Ottimizzazione non vincolata parte III. E. Amaldi DEI, Politecnico di Milano Capitolo 3: Ottimizzazione non vincolata parte III E. Amaldi DEI, Politecnico di Milano 3.4 Metodi di ricerca unidimensionale In genere si cerca una soluzione approssimata α k di min g(α) = f(x k +αd k

Dettagli

METODI DI COLLOCAZIONE POLINOMIALE (Metodi di Runge-Kutta continui) November 30, 2004

METODI DI COLLOCAZIONE POLINOMIALE (Metodi di Runge-Kutta continui) November 30, 2004 METODI DI COLLOCAZIONE POLINOMIALE (Metodi di Runge-Kutta continui) November, Nell approssimare numericamente un problema di Cauchy, puo capitare di essere interessati a valori della soluzione in punti

Dettagli

Lezione 7 Equazioni Differenziali Ordinarie.

Lezione 7 Equazioni Differenziali Ordinarie. Lezione 7 Equazioni Differenziali Ordinarie http://idefix.mi.infn.it/~palombo/didattica/lab-tnds/corsolab/lezionifrontali Fernando Palombo Equazioni Differenziali Ordinarie Descrizione dell evolversi spazio-temporale

Dettagli

Raccolta degli Scritti d Esame di ANALISI MATEMATICA U.D. 2 assegnati nei Corsi di Laurea di Fisica, Fisica Applicata, Matematica

Raccolta degli Scritti d Esame di ANALISI MATEMATICA U.D. 2 assegnati nei Corsi di Laurea di Fisica, Fisica Applicata, Matematica DIPARTIMENTO DI MATEMATICA Università degli Studi di Trento Via Sommarive - Povo (TRENTO) Raccolta degli Scritti d Esame di ANALISI MATEMATICA U.D. 2 assegnati nei Corsi di Laurea di Fisica, Fisica Applicata,

Dettagli

Polinomio di Taylor del secondo ordine per funzioni di due variabili

Polinomio di Taylor del secondo ordine per funzioni di due variabili Esercitazioni del 15 aprile 2013 Polinomio di Taylor del secondo ordine per funzioni di due variabili Sia f : A R 2 R una funzione di classe C 2. Fissato un p unto (x 0, y 0 A consideriamo il seguente

Dettagli

la velocità degli uccelli è di circa (264:60= 4.4) m/s)

la velocità degli uccelli è di circa (264:60= 4.4) m/s) QUESTIONARIO 1. Si sa che certi uccelli, durante la migrazione, volano ad un altezza media di 260 metri. Un ornitologa osserva uno stormo di questi volatili, mentre si allontana da lei in linea retta,

Dettagli

data una funzione f, non lineare calcolare le soluzioni dell equazione f(x) = 0 in un intervallo [a,b]

data una funzione f, non lineare calcolare le soluzioni dell equazione f(x) = 0 in un intervallo [a,b] RISOLUZIONE NUMERICA DI EQUAZIONI NON LINEARI PROBLEMA: data una funzione f, non lineare calcolare le soluzioni dell equazione f() = 0 in un intervallo [a,b] 1 f ( ) = log( ) +, (0,10) ξ Esiste una sola

Dettagli

Equaz. alle differenze - Equaz. differenziali

Equaz. alle differenze - Equaz. differenziali 1 Introduzione Problemi statici: Le quantità e le equazioni comportamentali (e di equilibrio) sono funzioni di un dato periodo. Il prezzo corrente di un bene dipende dalla domanda corrente dei consumatori.

Dettagli

Corso di Analisi Numerica

Corso di Analisi Numerica Corso di Laurea in Ingegneria Informatica Corso di Analisi Numerica 9 - EQUAZIONI DIFFERENZIALI ORDINARIE Lucio Demeio Dipartimento di Scienze Matematiche 1 Problemi ai Valori Iniziali: metodo di Eulero

Dettagli

Disequazioni - ulteriori esercizi proposti 1

Disequazioni - ulteriori esercizi proposti 1 Disequazioni - ulteriori esercizi proposti Trovare le soluzioni delle seguenti disequazioni o sistemi di disequazioni:. 5 4 >. 4. < 4. 4 9 5. 9 > 6. > 7. < 8. 5 4 9. > > 4. < 4. < > 9 4 Non esitate a comunicarmi

Dettagli

METODI NUMERICI. Metodo delle differenze finite

METODI NUMERICI. Metodo delle differenze finite METOI NUMERICI Lo sviluppo dei moderni calcolatori ha consentito di mettere a disposizione della scienza e della tecnica formidabili strumenti che hanno permesso di risolvere numerosi problemi la cui soluzione

Dettagli

Calcolo Numerico con elementi di programmazione

Calcolo Numerico con elementi di programmazione Calcolo Numerico con elementi di programmazione (A.A. 2014-2015) Appunti delle lezioni sui metodi per la soluzione di sistemi di equazioni non lineari Sistemi di equazioni non lineari Un sistema di equazioni

Dettagli

Risoluzione del compito n. 2 (Febbraio 2014/1)

Risoluzione del compito n. 2 (Febbraio 2014/1) Risoluzione del compito n. Febbraio 04/ PROBLEMA Determinate le soluzioni z C del sistema { z + zz z = 4i z =5 3Iz. Dato che nella seconda equazione compare esplicitamente Iz, sembra inevitabile porre

Dettagli

valore di a: verso l alto (ordinate crescenti) se a>0, verso il basso (ordinate decrescenti) se a<0;

valore di a: verso l alto (ordinate crescenti) se a>0, verso il basso (ordinate decrescenti) se a<0; La parabola è una particolare conica definita come è una curva aperta, nel senso che non può essere contenuta in alcuna superficie finita del piano; è simmetrica rispetto ad una retta, detta ASSE della

Dettagli

Risoluzione di sistemi lineari sparsi e di grandi dimensioni

Risoluzione di sistemi lineari sparsi e di grandi dimensioni Risoluzione di sistemi lineari sparsi e di grandi dimensioni Un sistema lineare Ax = b con A R n n, b R n, è sparso quando il numero di elementi della matrice A diversi da zero è αn, con n α. Una caratteristica

Dettagli

Corso di Analisi Numerica

Corso di Analisi Numerica Corso di Laurea in Ingegneria Informatica Corso di Analisi Numerica 9 - EQUAZIONI DIFFERENZIALI ORDINARIE Lucio Demeio Dipartimento di Scienze Matematiche 1 2 3 Problemi ai valori iniziali Problemi ai

Dettagli

Esercitazione 4 - Matematica Applicata

Esercitazione 4 - Matematica Applicata Esercitazione - Matematica Applicata Lucia Pilleri // Esercizio dal compito del //). Considerato il seguente metodo alle differenze finite, dipendente dai parametri reali e β )] η i+ = η i + h 5fx i, η

Dettagli

DISEQUAZIONI. Una disuguaglianza può essere Vera o Falsa. Per esempio:

DISEQUAZIONI. Una disuguaglianza può essere Vera o Falsa. Per esempio: DISEQUAZIONI Prima di vedere cosa sono le disequazioni è necessario dare uno sguardo alle disuguaglianze numeriche. Al contrario delle uguaglianze numeriche, dove tra i numeri è presente il segno di uguaglianza

Dettagli

Teoria Es. 1 Es. 2 Es.3 Es. 4 Totale. Cognome: Nome: Matricola: Prima Parte. x a dx

Teoria Es. 1 Es. 2 Es.3 Es. 4 Totale. Cognome: Nome: Matricola: Prima Parte. x a dx Teoria Es. Es. 2 Es. Es. 4 Totale Analisi e Geometria Appello 5/07/209 Docente: Numero di iscrizione all appello: Cognome: Nome: Matricola: Prima Parte (a) Prima domanda di teoria. ( punti) Enunciare e

Dettagli

Corso di Calcolo Numerico

Corso di Calcolo Numerico Corso di Laurea in Ingegneria Gestionale Sede di Fermo Corso di 9 - EQUAZIONI DIFFERENZIALI ORDINARIE valori iniziali Valori iniziali Ci occuperemo della soluzione numerica di equazioni del prim ordine

Dettagli

La miglior approssimazione esiste se le funzioni descrivono un chiuso

La miglior approssimazione esiste se le funzioni descrivono un chiuso NON SMOOTH Funzione non C 1 tipico esempio massimo numero finito funzioni Φ(x) = max { f i (x), i I, f i C 1 } e anche massimo(sup) puntuale Φ(x) = sup { f t (x), t I, f t C 1 } Esempi a) Max numero finito

Dettagli

Corso di Dinamica e Modellistica degli Inquinanti Anno 2019 Esercitazione n.2.1: trasporto di massa in sistema mono-dimensionale (PFR)

Corso di Dinamica e Modellistica degli Inquinanti Anno 2019 Esercitazione n.2.1: trasporto di massa in sistema mono-dimensionale (PFR) Corso di Dinamica e Modellistica degli Inquinanti Anno 019 Esercitazione n..1: trasporto di massa in sistema mono-dimensionale (PFR) I. OBIETTIVO DELL ESERCITAZIONE A. Implementare e utilizzare un modello

Dettagli

Analisi Matematica. Calcolo integrale

Analisi Matematica. Calcolo integrale a.a. 2014/2015 Laurea triennale in Informatica Analisi Matematica Calcolo integrale Avvertenza Questi sono appunti informali delle lezioni, che vengono resi disponibili per comodità degli studenti. Parte

Dettagli

UNIVERSITÀ DEGLI STUDI DI PADOVA FACOLTÀ DI INGEGNERIA (sede di Vicenza)

UNIVERSITÀ DEGLI STUDI DI PADOVA FACOLTÀ DI INGEGNERIA (sede di Vicenza) UNIVERSITÀ DEGLI STUDI DI PADOVA FACOLTÀ DI INGEGNERIA (sede di Vicenza) PROGRAMMA DI MATEMATICA A, A.A. 2005-06 CANALE 2 - Prof. F.Albertini e M. Motta Testi Consigliati: Elementi di Analisi Matematica

Dettagli

Corsi del S.S.D. MAT08 - Analisi Numerica (Laurea Triennale e Laurea Magistrale in Ingegneria)

Corsi del S.S.D. MAT08 - Analisi Numerica (Laurea Triennale e Laurea Magistrale in Ingegneria) Corsi del S.S.D. MAT08 - Analisi Numerica Laurea Triennale e Laurea Magistrale in Ingegneria PROBLEMI AI LIMITI PER EQUAZIONI DIFFERENZIALI ORDINARIE Metodi alle differenze finite Prof. F. Pitolli, A.A

Dettagli

Equazioni differenziali lineari

Equazioni differenziali lineari Equazioni differenziali lineari Un equazione del tipo y (x = f(x, y(x è un equazione differenziale del primo ordine e può essere risolta numericamente con una formula di ricorrenza. Il metodo più semplice

Dettagli

3. (Punti 8) Si consideri l integrale improprio. x n dx, n N.

3. (Punti 8) Si consideri l integrale improprio. x n dx, n N. Corso di Laurea in Ingegneria Biomedica ANALISI MATEMATICA Prova scritta del 4 febbraio 27 Fila. Esporre il procedimento di risoluzione degli esercizi in maniera completa e leggibile.. (Punti 9) Data l

Dettagli

Teorema del limite centrale TCL

Teorema del limite centrale TCL Teorema del limite centrale TCL Questo importante teorema della statistica inferenziale si applica a qualsiasi variabile aleatoria che sia combinazione lineare di N variabili aleatorie le cui funzioni

Dettagli

PROBLEMI AI LIMITI PER EQUAZIONI DIFFERENZIALI ORDINARIE

PROBLEMI AI LIMITI PER EQUAZIONI DIFFERENZIALI ORDINARIE Corsi di Metodi Numerici e Calcolo Numerico Lauree Triennale e Specialistica in Ingegneria PROBLEMI AI LIMITI PER EQUAZIONI DIFFERENZIALI ORDINARIE Prof. F. Pitolli, A.A 27-28 1 Problemi ai limiti Molti

Dettagli

Corso di Laurea in Ingegneria Biomedica ANALISI MATEMATICA 1. Prova scritta del 14 gennaio 2017 Fila 1.

Corso di Laurea in Ingegneria Biomedica ANALISI MATEMATICA 1. Prova scritta del 14 gennaio 2017 Fila 1. Corso di Laurea in Ingegneria Biomedica ANALISI MATEMATICA Prova scritta del gennaio 207 Fila. Esporre il procedimento di risoluzione degli esercizi in maniera completa e leggibile.. (Punti 6) Determinare

Dettagli

UNIVERSITÀ DI ROMA TOR VERGATA FACOLTÀ DI INGEGNERIA Corso di Ingegneria Online, A.A Analisi Matematica I Prova scritta del

UNIVERSITÀ DI ROMA TOR VERGATA FACOLTÀ DI INGEGNERIA Corso di Ingegneria Online, A.A Analisi Matematica I Prova scritta del UNIVERSITÀ DI ROMA TOR VERGATA FACOLTÀ DI INGEGNERIA Corso di Ingegneria Online, A.A.0 05 Analisi Matematica I Prova scritta del 0.0.05 Per l esame da crediti: svolgere gli esercizi da a 5tempo 80 minuti

Dettagli

Modellistica e Simulazione. Outline. Notes. Notes. Luigi Iannelli. 6 giugno Introduzione. Generalità sui metodi numerici di integrazione

Modellistica e Simulazione. Outline. Notes. Notes. Luigi Iannelli. 6 giugno Introduzione. Generalità sui metodi numerici di integrazione 6 giugno 2011 1 Outline Introduzione Generalità sui metodi numerici di integrazione Proprietà dei metodi di integrazione Alcuni metodi di integrazione 2 Equazioni differenziali nello spazio di stato Consideriamo

Dettagli

Appunti sul corso di Complementi di Matematica mod.analisi prof. B.Bacchelli a.a. 2010/2011

Appunti sul corso di Complementi di Matematica mod.analisi prof. B.Bacchelli a.a. 2010/2011 Appunti sul corso di Complementi di Matematica mod.analisi prof. B.Bacchelli a.a. 2010/2011 08- Estremi: Riferimenti: R.Adams, Calcolo Differenziale 2. Capitoli 4.1. Esercizi 4.1 Estremi liberi: punti

Dettagli

SISSA Area Matematica. Esame di ammissione per il corso di Analisi Matematica, Modelli e Applicazioni. 10 Settembre 2019

SISSA Area Matematica. Esame di ammissione per il corso di Analisi Matematica, Modelli e Applicazioni. 10 Settembre 2019 SISSA Area Matematica Esame di ammissione per il corso di Analisi Matematica, Modelli e Applicazioni 10 Settembre 2019 Il candidato risolva CINQUE dei seguenti problemi, e indichi chiaramente sulla prima

Dettagli

Corso di Analisi Numerica - AN1. Parte 3: metodi iterativi per sistemi lineari ed. equazioni nonlineari. Roberto Ferretti

Corso di Analisi Numerica - AN1. Parte 3: metodi iterativi per sistemi lineari ed. equazioni nonlineari. Roberto Ferretti Corso di Analisi Numerica - AN1 Parte 3: metodi iterativi per sistemi lineari ed equazioni nonlineari Roberto Ferretti Filosofia generale dei metodi iterativi Metodi iterativi per Sistemi Lineari Convergenza

Dettagli

Corso di Laurea in Ingegneria Edile-Architettura ANALISI MATEMATICA I. Prova scritta del 8 Gennaio 2014

Corso di Laurea in Ingegneria Edile-Architettura ANALISI MATEMATICA I. Prova scritta del 8 Gennaio 2014 Corso di Laurea in Ingegneria Edile-Architettura ANALISI MATEMATICA I Prova scritta del 8 Gennaio 214 Esporre il procedimento di risoluzione degli esercizi in maniera completa e leggibile. (1) (Punti 8)

Dettagli

PROGRAMMA. Capitolo 1 : Concetti di base: numeri reali, funzioni, funzioni reali di variabile reale.

PROGRAMMA. Capitolo 1 : Concetti di base: numeri reali, funzioni, funzioni reali di variabile reale. PROGRAMMA Capitolo 1 : Concetti di base: numeri reali, funzioni, funzioni reali di variabile reale. Gli insiemi numerici oggetto del corso: numeri naturali, interi relativi, razionali. Operazioni sui numeri

Dettagli

Argomenti delle singole lezioni del corso di Analisi Matematica 1 (Laurea triennale di Matematica, A.A )

Argomenti delle singole lezioni del corso di Analisi Matematica 1 (Laurea triennale di Matematica, A.A ) Argomenti delle singole lezioni del corso di Analisi Matematica 1 (Laurea triennale di Matematica, A.A. 2018-19) NB. Le indicazioni bibliografiche si riferiscono al libro di testo. Lezione nr. 1, 1/10/2018.

Dettagli

CORSO DI ANALISI MATEMATICA 1 ESERCIZI. Carlo Ravaglia

CORSO DI ANALISI MATEMATICA 1 ESERCIZI. Carlo Ravaglia CORSO DI ANALISI MATEMATICA ESERCIZI Carlo Ravaglia 6 settembre 5 iv Indice Numeri reali Ordine fra numeri reali Funzioni reali 4 Radici aritmetiche 7 4 Valore assoluto 9 5 Polinomi 6 Equazioni 7 Disequazioni

Dettagli

Esame di Analisi Matematica 2 25/2/2013 Corsi di Laurea in Ingegneria Meccanica e Energetica A.A. 2012/2013

Esame di Analisi Matematica 2 25/2/2013 Corsi di Laurea in Ingegneria Meccanica e Energetica A.A. 2012/2013 Esame di Analisi Matematica 2 25/2/203 Corsi di Laurea in Ingegneria Meccanica e Energetica A.A. 202/203 A Esercizio 0. Riportare esclusivamente la risposta a ciascuno dei questi a-d di sotto. Gli elaborati

Dettagli

Cenni sulla risoluzione numerica di equazioni differenziali ordinarie (ODE) f(t, y(t))dt. y (t)dt = y(x) y(x 0 ) =

Cenni sulla risoluzione numerica di equazioni differenziali ordinarie (ODE) f(t, y(t))dt. y (t)dt = y(x) y(x 0 ) = Cenni sulla risoluzione numerica di equazioni differenziali ordinarie (ODE) Problema di Cauchy. y (x) = f(x, y(x)) x [, T ] y( ) = y 0 Formulazione integrale. x Approssimazione numerica. y (t)dt = y(x)

Dettagli

Contenuti delle lezioni:

Contenuti delle lezioni: Contenuti delle lezioni: 1. Introduzione ed esempi di Equazioni alle Derivate Parziali; 2. Classificazione delle Equazioni alle Derivate Parziali (PDE) 3. Derivazione numerica 4. Metodi numerici alle differenze

Dettagli

Claudio Estatico Equazioni non-lineari

Claudio Estatico Equazioni non-lineari Claudio Estatico (claudio.estatico@uninsubria.it) Equazioni non-lineari 1 Equazioni non-lineari 1) Equazioni non-lineari e metodi iterativi. 2) Metodo di bisezione, metodo regula-falsi. 3) Metodo di Newton.

Dettagli

Serie di Fourier. Hynek Kovarik. Analisi Matematica 2. Università di Brescia

Serie di Fourier. Hynek Kovarik. Analisi Matematica 2. Università di Brescia Serie di Fourier Hynek Kovarik Università di Brescia Analisi Matematica 2 Hynek Kovarik (Università di Brescia) Serie di Fourier Analisi Matematica 2 1 / 37 Polinomi trigonometrici Definizione Si dice

Dettagli

Metodi di Ottimizzazione

Metodi di Ottimizzazione Metodi di Ottimizzazione Stefano Gualandi Università di Pavia, Dipartimento di Matematica email: twitter: blog: stefano.gualandi@unipv.it @famospaghi, @famoconti http://stegua.github.com Metodi di Ottimizzazione

Dettagli

Docente titolare dell'attività didattica / modulo

Docente titolare dell'attività didattica / modulo REGISTRO DELLE LEZIONI Metodi numerici per le equazioni differenziali Anno Accademico 2018/2019 Docente titolare dell'attività didattica / modulo Docente: Qualifica: Dipartimento/ Scuola: Marco Caliari

Dettagli

Appunti sul corso di Complementi di Matematica mod. Analisi prof. B.Bacchelli - a.a. 2010/2011.

Appunti sul corso di Complementi di Matematica mod. Analisi prof. B.Bacchelli - a.a. 2010/2011. Appunti sul corso di Complementi di Matematica mod. Analisi prof. B.Baccelli - a.a. 2010/2011. 06 - Derivate, differenziabilità, piano tangente, derivate di ordine superiore. Riferimenti: R.Adams, Calcolo

Dettagli

3. Traccia il grafico della funzione scelta in un piano cartesiano avente in ascisse il tempo t espresso in ore e in

3. Traccia il grafico della funzione scelta in un piano cartesiano avente in ascisse il tempo t espresso in ore e in PROBLEMA. 1 Americhe Stai seguendo un corso, nell'ambito dell'orientamento universitario, per la preparazione agli studi di Medicina. Il docente introduce la lezione dicendo che un medico ben preparato

Dettagli

Appunti di Elettronica I Lezione 3 Risoluzione dei circuiti elettrici; serie e parallelo di bipoli

Appunti di Elettronica I Lezione 3 Risoluzione dei circuiti elettrici; serie e parallelo di bipoli Appunti di Elettronica I Lezione 3 Risoluzione dei circuiti elettrici; serie e parallelo di bipoli Valentino Liberali Dipartimento di Tecnologie dell Informazione Università di Milano, 2603 Crema email:

Dettagli

Alcuni complementi di teoria dell integrazione.

Alcuni complementi di teoria dell integrazione. Alcuni complementi di teoria dell integrazione. In ciò che segue si suppone di avere uno spazio di misura (,, µ) 1 Sia f una funzione misurabile su un insieme di misura positiva tale che f 0. Se fdµ =

Dettagli

Premesse. Capitolo 1. 1.1 Spazi L p

Premesse. Capitolo 1. 1.1 Spazi L p Capitolo 1 Premesse 1.1 Spazi L p Indicheremo con un aperto misurabile di R N, con dx la misura di Lebesgue e con la misura di secondo Lebesgue. Siano f e g due funzioni misurabili su. Definiamo f ρ g

Dettagli