Esercitazione 1 TRASPORTO CONVETTIVO

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Esercitazione 1 TRASPORTO CONVETTIVO"

Transcript

1 Esercitazione 1 TRASPORTO ONVETTIVO Si effettui la simulazione di un fenomeno di trasporto puramente convettivo (E=0) all interno di un dominio monodimensionale di lunghezza L=4000 m, in presenza di una velocità di trasporto pari a U=1,2 m/s. ome condizione iniziale, si assuma che la concentrazione sia pari a *=10 unità/m 3 per una parte del dominio di lunghezza pari a 400 m, e nulla altrove. Sia inoltre nulla la concentrazione nella prima sezione del dominio per t>0. Si discutano i risultati in relazione ai seguenti aspetti: Accuratezza della soluzione (diffusività numerica, rispetto della legge di conservazione della massa); Stabilità della soluzione. SOMMARIO 1. enni teorici sullo svolgimento dell esercizio 2. Svolgimento dell esercizio 3. Elaborazione di grafici 4. Discussione dei risultati Pag

2 ENNI TEORII sullo SVOLGIMENTO dell ESERIZIO L equazione alla quale far riferimento per risolvere il problema è la (1), ossia l EQUAZIONE del TRASPORTO PURAMENTE ONVETTIVO nell ipotesi di moto monodimensionale e uniforme. t U x 0 Avendo indicato con: x U la variazione della concentrazione di soluto lungo il dominio spaziale (x è la coordinata spaziale longitudinale); la velocità media di portata; la concentrazione media nella sezione. In generale le equazioni differenziali possono essere risolte con metodi analitici o metodi numerici: quando la soluzione per via analitica risulta impossibile, si utilizza una soluzione per via numerica. In quest ultimo caso il dominio considerato viene suddiviso in una griglia di calcolo nei cui nodi vengono valutate le soluzioni del problema, mentre negli altri punti si può procedere per interpolazione. Per semplicità, di seguito, si assumerà una griglia spazio-temporale di passi costanti. Uno dei metodi numerici per risolvere l equazione (1) è quello alle differenze finite che utilizza dei rapporti incrementali per approssimare i termini differenziali. Una derivata può essere valutata con diversi tipi di rapporti incrementali, ad esempio alle differenze in avanti o all indietro (del primo ordine) o centrate (queste ultime risultano essere del secondo ordine). Nel caso in esame, ricorrendo all operatore in avanti (forward) per la derivata temporale e all operatore all indietro (backward) per quella spaziale, l equazione (1) diventa: i 1 t i U i x i 1 0 Avendo indicato con: i La concentrazione di soluto [unità/m³] nel generico punto di ascissa i-esima (coordinata spaziale) all istante -esimo (coordinata temporale). 1

3 REALIZZAZIONE del FOGLIO di ALOLO Per trovare la soluzione al problema si è ricorso ad un foglio di calcolo Excel, data la grande quantità di operazioni da compiere. La soluzione numerica ottenuta in questo modo rappresenta la concentrazione di soluto nei nodi della griglia, ossia in un numero discreto di punti posti ad una certa distanza x dal luogo di immissione (x=0; x=40m; x=80m, etc.) in un numero discreto di istanti t (t=0; t=33.33s; t=66.66s; etc.). ome primo passo è stata allestita la griglia definendo gli assi spaziale e temporale e la relativa orientazione. Successivamente sono state inserite le condizioni al contorno prima definite: la condizione iniziale, relativa alla concentrazione di soluto lungo l intero tratto L all istante =0, e la condizione ai limiti, relativa alla concentrazione di soluto nella sezione iniziale di ascissa i=0 per tutto il tempo di simulazione (1 ora). Allestita la griglia, si è quindi passati al calcolo delle concentrazioni di soluto nei nodi sfruttando l equazione (4). Lo schema seguito è stato, pertanto, quello illustrato in figura 4: la soluzione numerica nel nodo rosso [ossia la concentrazione di soluto nel generico punto di ascissa i-esima lungo il dominio spaziale, all istante (+1)esimo] è determinata sfruttando la concentrazione di soluto, già nota, nei nodi verdi. ompilata tutta la fila -esima in questo modo, si è passati alla compilazione di quella successiva, la (+1)esima, e così via fino all istante =3600 secondi (1h), che è stato assunto come limite superiore del dominio temporale. Metodo numerico upwind 1 i (1 ) i i 1 5

4 Avendo assunto la soluzione ottenuta risulta instabile. Dal punto di vista applicativo la conseguenza di tale scelta è che si ottiene un profilo di concentrazione caratterizzato da forti oscillazioni sia positive che negative, con valori compresi in un range estremamente ampio, dell ordine di [ ; ] dopo un tempo di simulazione di un ora e che continuano ad aumentare per gli istanti successivi. 10

5 M. Roma Esercitazione 2 TRASPORTO DISPERSIVO Si effettui la simulazione di un fenomeno di dispersione di soluto (E=2 m 2 /s) all interno di un dominio monodimensionale di lunghezza L=4000 m, in presenza di una velocità di trasporto pari a U=1,2 m/s. Si assuma la condizione iniziale del precedente esercizio (*=10 unità/m 3 per una parte del dominio di lunghezza pari a 400 m, e nulla altrove; nulla la concentrazione nella prima sezione del dominio per t>0). Si discutano i risultati in relazione ai seguenti aspetti: Variazione della max nel tempo e confronto con i risultati del trasporto puramente convettivo. Accuratezza della soluzione (rispetto della legge di conservazione della massa), stabilità della soluzione, influenza sulla soluzione dei parametri numero di ourant e passo spaziale. SOMMARIO 1. enni teorici sullo svolgimento dell esercizio 2. Svolgimento dell esercizio 3. Elaborazione di grafici e discussione dei risultati Pag

6 Variazione della max nel tempo I grafici sopra illustrati riportano i profili di concentrazione di soluto lungo il tratto L per 5 diversi istanti temporali. Per le elaborazioni si sono utilizzati diversi valori del numero di ourant e di Peclet Pe, lasciando invariato il passo spaziale x e variando di conseguenza quello temporale t. Particolare attenzione è stata posta al confronto tra il caso del trasporto puramente convettivo (esercitazione 1) e del trasporto convettivo - dispersivo (esercitazione 2). Dal confronto dei grafici 1a e 1b è possibile osservare come, in entrambi i casi, le curve della concentrazione del soluto lungo il tratto L non solo subiscano una traslazione verso destra man mano che il tempo passa, ma siano soggette anche ad una variazione nella forma. In particolare istante dopo istante le curve si appiattiscono (la concentrazione massima di soluto diminuisce) ed assumono una base sempre più ampia. Una delle differenze tra il caso del trasporto puramente convettivo (grafico 1b) e convettivo - dispersivo (grafico 1a) è che, a parità di numero di ourant e di istante t considerati, nel caso di trasporto puramente convettivo la massima concentrazione di soluto è più elevata; tale differenza è legata all effetto del coefficiente di dispersione E. Apparentemente, inoltre, sembra che il picco della massima concentrazione di soluto sia spostato più a valle nel caso del trasporto dispersivo: in realtà questo dipende dalla discretizzazione del dominio spaziale (infatti, la differenza è sempre di x=40m, come mostrato nelle tabelle 1 e 2). Tabella 1. Trasporto puramente convettivo (E = 0) con = 0,8 Tabella 2. Trasporto convettivo + diffusivo (E = 2m 2 /s) con = 0,8 Ad esempio, per t = 1200 s, la concentrazione massima di soluto nel caso di trasporto puramente convettivo (tabella 1) si ha in corrispondenza dell ascissa x = 1640 m ed è pari a 9,37 unità/m 3, mentre nel caso di trasporto convettivo - dispersivo si ha per x = 1680 m (più a valle) ed è pari a 8,84 unità/m 3 ( max più piccola). Tale spostamento del picco del profilo di concentrazione, per quanto detto precedentemente, non è significativo. 5

7 Grafico 5. onfronto tra i profili di concentrazione nell ipotesi di trasporto convettivo dispersivo a parità di passo spaziale x = 40m e variando il numero di ourant ( = 0,8 nel grafico in alto ed = 0,5 in quello in basso). Nel caso in cui = 0,8 i profili di concentrazione presentano picchi più elevati mentre nel caso in cui = 0,5 notiamo un maggior spanciamento. Questo è dovuto, anche questa volta, alla maggiore diffusività numerica legata all assunzione di un valore di molto distante dall unità. Osserviamo infine che la posizione del centro di massa rimane invariata. 10

8 M. Roma Esercitazione 3 TRASPORTO ONVETTIVO-DISPERSIVO Si effettui la simulazione, mediante un metodo di predizione-correzione, di un fenomeno di trasporto convettivo-dispersivo (E=5 m 2 /s) all interno di un dominio monodimensionale di lunghezza L=4000 m, in presenza di una velocità di trasporto pari a U=1,2 m/s. ome condizione iniziale, si assuma che la concentrazione sia pari a *=10 unità/m 3 per una parte del dominio di lunghezza pari a 400 m, e nulla altrove. Sia inoltre nulla la concentrazione nella prima sezione del dominio per t>0. Si discutano i risultati in relazione ai seguenti aspetti: Accuratezza della soluzione (diffusività numerica, rispetto della legge di conservazione della massa); Stabilità della soluzione; Dipendenza della soluzione dal parametro di peso del metodo di predizionecorrezione. SOMMARIO 1. enni teorici sullo svolgimento dell esercizio 2. Elaborazione di grafici e discussione dei risultati Pag. 1 3

9 Accuratezza della soluzione Relativamente alla diffusività numerica, è possibile osservare (grafico 4) come nel metodo upwind (FTBS) ci sia una maggior dispersione rispetto al metodo backwind (BTFS); tale diffusione appare lieve ma se la confrontassimo con la diffusione ottenuta a tempi maggiori otterremmo una maggiore dispersione della soluzione. Il primo metodo, infatti, tende a sottostimare maggiormente le concentrazioni. Il metodo backwind, al contrario, se applicato singolarmente, introdurrebbe degli errori di diffusività negativa, come se i profili di concentrazione tendessero a compattarsi più che a spanciare; inoltre il limite maggiore è rappresentato dal fatto che tale sistema non è trasportivo, ossia non è in grado di trasportare la massa. Per questo si ricorre alla combinazione dei due metodi ottenendo il metodo predictorcorrector precedentemente illustrato. L accuratezza della soluzione è stata, poi, controllata verificando che la legge di conservazione della massa (7) sia rispettata. m (7) se m su st Avendo indicato con: m se m su st Massa di soluto entrante nel dominio spaziale di riferimento. Massa di soluto uscente dal dominio spaziale di riferimento. Variazione della massa di soluto all interno del dominio spaziale di riferimento nell intervallo di tempo t. In tabella 1 sono riportati i valori della massa di soluto per due differenti istanti temporali. Se la soluzione è corretta, la loro differenza deve essere teoricamente nulla. In pratica, però, il bilancio di massa si considera comunque numericamente soddisfatto se la differenza fra massa entrante e massa uscente è una frazione sufficientemente piccola (entro il 5%) della stessa massa entrante od uscente. Pertanto nel caso in esame la scomparsa di circa 41 unità di soluto rispetto alle 4000 iniziali (ossia l 1% rispetto alla massa iniziale) può ritenersi trascurabile. Massa (t = 0 s) Massa (t = 2400 s) onservazione della massa ,3 SI Tabella 1. Verifica del principio di conservazione della massa (predictor-corrector). 5

1 Schemi alle differenze finite per funzioni di una variabile

1 Schemi alle differenze finite per funzioni di una variabile Introduzione In questa dispensa vengono forniti alcuni elementi di base per la soluzione di equazioni alle derivate parziali che governano problemi al contorno. A questo scopo si introducono, in forma

Dettagli

Moto vario nelle correnti a superficie libera Nozione elementare di onda In termini generali un'onda consiste nella propagazione di un segnale

Moto vario nelle correnti a superficie libera Nozione elementare di onda In termini generali un'onda consiste nella propagazione di un segnale 1 Moto vario nelle correnti a superficie libera Nozione elementare di onda In termini generali un'onda consiste nella propagazione di un segnale attraverso un mezzo (nella fattispecie un liquido) con una

Dettagli

Corso di Dinamica e Modellistica degli Inquinanti Anno 2019 Esercitazione n.2.1: trasporto di massa in sistema mono-dimensionale (PFR)

Corso di Dinamica e Modellistica degli Inquinanti Anno 2019 Esercitazione n.2.1: trasporto di massa in sistema mono-dimensionale (PFR) Corso di Dinamica e Modellistica degli Inquinanti Anno 019 Esercitazione n..1: trasporto di massa in sistema mono-dimensionale (PFR) I. OBIETTIVO DELL ESERCITAZIONE A. Implementare e utilizzare un modello

Dettagli

Dispense del corso di Metodi Numerici per le Equazioni Differenziali

Dispense del corso di Metodi Numerici per le Equazioni Differenziali Dispense del corso di Metodi Numerici per le Equazioni Differenziali Progetto numerico al calcolatore - Parte II Soluzione agli elementi finiti di un problema ellittico di convezione e diffusione Mario

Dettagli

Corso di Calcolo Numerico

Corso di Calcolo Numerico Prof. L. Brandolini Corso di Calcolo Numerico Dott.ssa N. Franchina Laboratorio 6 Equazioni differenziali ordinarie: metodi impliciti 3 Novembre 26 Esercizi di implementazione Un equazione differenziale

Dettagli

METODI NUMERICI. Metodo delle differenze finite

METODI NUMERICI. Metodo delle differenze finite METOI NUMERICI Lo sviluppo dei moderni calcolatori ha consentito di mettere a disposizione della scienza e della tecnica formidabili strumenti che hanno permesso di risolvere numerosi problemi la cui soluzione

Dettagli

Consideriamo come piena solo l innalzamento del livello causato da un aumento delle portate nel corso d acqua considerato.

Consideriamo come piena solo l innalzamento del livello causato da un aumento delle portate nel corso d acqua considerato. Propagazione delle piene: generalità Consideriamo come piena solo l innalzamento del livello causato da un aumento delle portate nel corso d acqua considerato. La propagazione dell onda di piena dipende

Dettagli

INTERPOLAZIONI CON SPLINE

INTERPOLAZIONI CON SPLINE INTERPOLAZIONI CON SPLINE Assegnati gli n +1valori che la funzione f assume nei nodi x i, si costruisce un interpolazione polinomiale a tratti. In ognuno degli intervalli [x i 1,x i ] il polinomio interpolatore

Dettagli

Dispense del corso di Metodi Numerici per le Equazioni Differenziali

Dispense del corso di Metodi Numerici per le Equazioni Differenziali Dispense del corso di Metodi Numerici per le Equazioni Differenziali Progetto numerico al calcolatore - Parte III Soluzione agli elementi finiti di un problema parabolico Mario Putti Dipartimento di Matematica

Dettagli

SEMINARIO. La valutazione della pericolosità idraulica: modellazione 1D -2D

SEMINARIO. La valutazione della pericolosità idraulica: modellazione 1D -2D SEMINARIO La valutazione della pericolosità idraulica: modellazione 1D -2D Un caso studio di perimetrazione delle aree inondate con il modello idraulico 2D WEC-Flood Ing. Marco Sinagra Università degli

Dettagli

Introduzione elementare al metodo degli Elementi Finiti.

Introduzione elementare al metodo degli Elementi Finiti. Introduzione elementare al metodo degli Elementi Finiti carmelo.demaria@centropiaggio.unipi.it Obiettivi Introduzione elementare al metodo degli elementi finiti Analisi Termica Analisi Strutturale Analisi

Dettagli

SIMULAZIONE - 29 APRILE QUESITI

SIMULAZIONE - 29 APRILE QUESITI www.matefilia.it SIMULAZIONE - 29 APRILE 206 - QUESITI Q Determinare il volume del solido generato dalla rotazione attorno alla retta di equazione y= della regione di piano delimitata dalla curva di equazione

Dettagli

SIMULAZIONE - 29 APRILE QUESITI

SIMULAZIONE - 29 APRILE QUESITI www.matefilia.it SIMULAZIONE - 29 APRILE 206 - QUESITI Q Determinare il volume del solido generato dalla rotazione attorno alla retta di equazione y= della regione di piano delimitata dalla curva di equazione

Dettagli

Introduzione elementare al metodo degli Elementi Finiti.

Introduzione elementare al metodo degli Elementi Finiti. Introduzione elementare al metodo degli Elementi Finiti carmelo.demaria@centropiaggio.unipi.it Obiettivi Introduzione elementare al metodo degli elementi finiti Analisi Termica Analisi Strutturale Analisi

Dettagli

Corso di Calcolo Numerico

Corso di Calcolo Numerico Prof. L. Brandolini Corso di Calcolo Numerico Dott.ssa N. Franchina Laboratorio 5 Equazioni differenziali ordinarie: metodi espliciti 25 Novembre 215 Esercizi di implementazione Un equazione differenziale

Dettagli

Cinematica. Velocità. Riferimento Euleriano e Lagrangiano. Accelerazione. Elementi caratteristici del moto. Tipi di movimento

Cinematica. Velocità. Riferimento Euleriano e Lagrangiano. Accelerazione. Elementi caratteristici del moto. Tipi di movimento Cinematica Velocità Riferimento Euleriano e Lagrangiano Accelerazione Elementi caratteristici del moto Tipi di movimento Testo di riferimento Citrini-Noseda par. 3.1 par. 3.2 par 3.3 fino a linee di fumo

Dettagli

Studio di funzione. Studio di funzione: i passi iniziali

Studio di funzione. Studio di funzione: i passi iniziali Studio di funzioni Studio di funzione Si dice che una variabile dipendente y è funzione di una variabile indipendente x quando esiste un legame di natura qualsiasi che ad ogni valore di x faccia corrispondere

Dettagli

POLITECNICO DI BARI I FACOLTÀ DI INGEGNERIA CORSO DI LAUREA IN INGEGNERIA MECCANICA DIPARTIMENTO DI INGEGNERIA MECCANICA E GESTIONALE

POLITECNICO DI BARI I FACOLTÀ DI INGEGNERIA CORSO DI LAUREA IN INGEGNERIA MECCANICA DIPARTIMENTO DI INGEGNERIA MECCANICA E GESTIONALE POLITECNICO DI BARI I FACOLTÀ DI INGEGNERIA CORSO DI LAUREA IN INGEGNERIA MECCANICA DIPARTIMENTO DI INGEGNERIA MECCANICA E GESTIONALE TESI DI LAUREA IN MECCANICA DEI MATERIALI DESIGN OTTIMO DI UN ANTENNA

Dettagli

Corso di Calcolo Numerico

Corso di Calcolo Numerico Corso di Laurea in Ingegneria Gestionale Sede di Fermo Corso di 3 - CALCOLO NUMERICO DELLE DERIVATE Introduzione Idea di base Introduzione Idea di base L idea di base per generare un approssimazione alla

Dettagli

f è una combinazione convessa f con w 1

f è una combinazione convessa f con w 1 SIMULAZIONE Che cosa serve: - un sistema dinamico completamente definito - un orizzonte di simulazione (intervallo di tempo per il quale sono noti gli ingressi) - funzioni di ingresso definite per tutto

Dettagli

Integrazione delle equazioni del moto

Integrazione delle equazioni del moto Giorgio Pastore - note per il corso di Laboratorio di Calcolo Integrazione delle equazioni del moto In generale, le equazioni del moto della meccanica newtoniana si presentano nella forma di sistemi di

Dettagli

Derivazione numerica. Introduzione al calcolo numerico. Derivazione numerica (II) Derivazione numerica (III)

Derivazione numerica. Introduzione al calcolo numerico. Derivazione numerica (II) Derivazione numerica (III) Derivazione numerica Introduzione al calcolo numerico Il calcolo della derivata di una funzione in un punto implica un processo al limite che può solo essere approssimato da un calcolatore. Supponiamo

Dettagli

Simulazione di prova scritta di MATEMATICA-FISICA - MIUR

Simulazione di prova scritta di MATEMATICA-FISICA - MIUR Simulazione di prova scritta di MATEMATICA-FISICA - MIUR -.4.019 PROBLEMA 1 (soluzione a cura di S. De Stefani) Due fili rettilinei paralleli vincolati a rimanere nella loro posizione, distanti 1 m l uno

Dettagli

Esercitazione numerica: soluzione agli elementi finiti dell equazione di convezione e diffusione(boundary layer)

Esercitazione numerica: soluzione agli elementi finiti dell equazione di convezione e diffusione(boundary layer) Corso di Laurea Specialistica in Ingegneria Chimica Progetto numerico al calcolatore Parte IV Esercitazione numerica: soluzione agli elementi finiti dell equazione di convezione e diffusione(boundary layer)

Dettagli

Equazioni di De Saint Venant

Equazioni di De Saint Venant Equazioni di De Saint Venant Metodi di risoluzione metodi espliciti metodi impliciti Entrambi i metodi comportano un'iterazione dei calcoli. La differenza tra i due metodi si basa sul modo di approssimare

Dettagli

Metodi numerici per ODE. Metodi numerici per ODE

Metodi numerici per ODE. Metodi numerici per ODE Problema di Cauchy Consideriamo un equazione differenziale (sistema di equazioni) del primo ordine in forma normale con condizioni iniziali assegnate. { y (x) = f (x, y(x)) x [x 0, x F ] y(x 0 ) = y 0

Dettagli

SCHEDA N 8 DEL LABORATORIO DI FISICA

SCHEDA N 8 DEL LABORATORIO DI FISICA SCHEDA N 1 IL PENDOLO SEMPLICE SCHEDA N 8 DEL LABORATORIO DI FISICA Scopo dell'esperimento. Determinare il periodo di oscillazione di un pendolo semplice. Applicare le nozioni sugli errori di una grandezza

Dettagli

INTRODUZIONE ALLA CINEMATICA DEL PUNTO MATERIALE PROF. FRANCESCO DE PALMA

INTRODUZIONE ALLA CINEMATICA DEL PUNTO MATERIALE PROF. FRANCESCO DE PALMA INTRODUZIONE ALLA CINEMATICA DEL PUNTO MATERIALE PROF. FRANCESCO DE PALMA Sommario MOTO E TRAIETTORIA... 3 PUNTO MATERIALE... 3 TRAIETTORIA... 3 VELOCITÀ... 4 VELOCITÀ MEDIA... 4 VELOCITÀ ISTANTANEA...

Dettagli

Corso di Analisi Numerica

Corso di Analisi Numerica Corso di Laurea in Ingegneria Informatica Corso di 4 - DERIVAZIONE NUMERICA Lucio Demeio Dipartimento di Scienze Matematiche 1 Calcolo numerico delle derivate 2 3 Introduzione Idea di base L idea di base

Dettagli

Applicazioni delle leggi della meccanica: moto armnico

Applicazioni delle leggi della meccanica: moto armnico Applicazioni delle leggi della meccanica: moto armnico Discutiamo le caratteristiche del moto armonico utilizzando l esempio di una molla di costante k e massa trascurabile a cui è fissato un oggetto di

Dettagli

Equazioni di Evoluzione

Equazioni di Evoluzione Equazioni di Evoluzione Le equazioni di evoluzione descrivono fenomeni che variano in funzione del tempo, tra gli altri per esempio fenomeni di onde, termodinamici, di dinamica delle popolazioni. Le equazioni

Dettagli

Dispense del corso di Elettronica L Prof. Guido Masetti

Dispense del corso di Elettronica L Prof. Guido Masetti Dispense del corso di Elettronica L Prof. Guido Masetti Teoria dei Segnali e Sistemi Sommario Architettura dei sistemi per l'elaborazione dell'informazione Informazione e segnali Teoria dei segnali Analisi

Dettagli

Introduzione al Calcolo Scientifico - A.A

Introduzione al Calcolo Scientifico - A.A Introduzione al Calcolo Scientifico - A.A. 2009-2010 Discretizzazione di un problema ai limiti Si consideri il seguente problema ai limiti del secondo ordine (problema dell elasticità 1D in regime di piccole

Dettagli

Modellistica e Simulazione. Outline. Notes. Notes. Luigi Iannelli. 6 giugno Introduzione. Generalità sui metodi numerici di integrazione

Modellistica e Simulazione. Outline. Notes. Notes. Luigi Iannelli. 6 giugno Introduzione. Generalità sui metodi numerici di integrazione 6 giugno 2011 1 Outline Introduzione Generalità sui metodi numerici di integrazione Proprietà dei metodi di integrazione Alcuni metodi di integrazione 2 Equazioni differenziali nello spazio di stato Consideriamo

Dettagli

3.1 La griglia di calcolo

3.1 La griglia di calcolo Nella presente tesi viene studiato il flusso attorno ad un cilindro circolare di allungamento infinito ad un numero di Reynolds basato sulla velocità asintotica e sul diametro del corpo 4 pari a Re = 2

Dettagli

R è definita infine dall insieme delle curve percorse da ogni singolo punto della corda.

R è definita infine dall insieme delle curve percorse da ogni singolo punto della corda. 1. Problema della corda vibrante Si consideri una corda monodimensionale, di sezione nulla avente densità per unità di lunghezza ρ e modulo elastico lineare E. Una corda reale approssima quella ideale

Dettagli

Corso di Calcolo Numerico

Corso di Calcolo Numerico Corso di Laurea in Ingegneria Gestionale Sede di Fermo Corso di 3 - PROBLEMI DI INTERPOLAZIONE Introduzione Problemi di interpolazione Supponiamo di avere un insieme di dati che rappresentano misurazioni

Dettagli

Studio di funzione. Studio di funzione: i passi iniziali

Studio di funzione. Studio di funzione: i passi iniziali Studio di funzione Si dice che una variabile dipendente y è funzione di una variabile indipendente quando esiste un legame di natura qualsiasi che ad ogni valore di faccia corrispondere uno e uno solo

Dettagli

Dispense del corso di Elettronica L Prof. Guido Masetti

Dispense del corso di Elettronica L Prof. Guido Masetti Dispense del corso di Elettronica L Prof. Guido Masetti Teoria dei Segnali e Sistemi 1 Sommario Architettura dei sistemi per l'elaborazione dell'informazione Informazione e segnali Teoria dei segnali Analisi

Dettagli

Lezione 3 Cinematica Velocità Moto uniforme Accelerazione Moto uniformemente accelerato Concetto di Forza Leggi di Newton

Lezione 3 Cinematica Velocità Moto uniforme Accelerazione Moto uniformemente accelerato Concetto di Forza Leggi di Newton Corsi di Laurea in Scienze motorie - Classe L-22 (D.M. 270/04) Dr. Andrea Malizia 1 Cinematica Velocità Moto uniforme Accelerazione Moto uniformemente accelerato Concetto di Forza Leggi di Newton Sistemi

Dettagli

Integrazione delle equazioni del moto

Integrazione delle equazioni del moto Giorgio Pastore - note per il corso di Laboratorio di Calcolo Integrazione delle equazioni del moto In generale, le equazioni del moto della meccanica newtoniana si presentano nella forma di sistemi di

Dettagli

Corsi di laurea in Matematica e Fisica - Anno Accademico 2017/18 FM210 / MA. Prima Prova di Esonero [ ]

Corsi di laurea in Matematica e Fisica - Anno Accademico 2017/18 FM210 / MA. Prima Prova di Esonero [ ] Corsi di laurea in Matematica e Fisica - Anno Accademico 017/18 FM10 / MA Prima Prova di Esonero [9-4-018] 1. Un punto materiale di massa m si muove in una dimensione sotto l effetto di una forza posizionale,

Dettagli

Convezione Conduzione Irraggiamento

Convezione Conduzione Irraggiamento Sommario 1 Dai sistemi discreti ai sistemi continui: equilibrio locale Deviazioni dalle condizioni di equilibrio locale Irreversibilità Equazioni integrali di bilancio 2 In questa lezione... Fenomeno della

Dettagli

Lezione 3 Cinematica Velocità Moto uniforme Accelerazione Moto uniformemente accelerato Concetto di Forza Leggi di Newton

Lezione 3 Cinematica Velocità Moto uniforme Accelerazione Moto uniformemente accelerato Concetto di Forza Leggi di Newton Corsi di Laurea dei Tronchi Comuni 2 e 4 Dr. Andrea Malizia 1 Cinematica Velocità Moto uniforme Accelerazione Moto uniformemente accelerato Concetto di Forza Leggi di Newton Lezione 2 Sistemi di riferimento

Dettagli

5.3 Equazioni differenziali: alcuni problemi al contorno

5.3 Equazioni differenziali: alcuni problemi al contorno 5.3. EQUAZIONI DIFFERENZIALI: ALCUNI PROBLEMI AL CONTORNO 45 5.2.7 Il metodo di Runge-Kutta Esistono diversi metodi detti di Runge-Kutta che fanno uso di varie medie delle pendenze in t 0, t 1 e in punti

Dettagli

CALENDARIO BOREALE 2 AMERICHE 2015 QUESITO 1

CALENDARIO BOREALE 2 AMERICHE 2015 QUESITO 1 www.matefilia.it Indirizzi: LI0, EA0 SCIENTIFICO; LI0 - SCIENTIFICO - OPZIONE SCIENZE APPLICATE CALENDARIO BOREALE AMERICHE 0 QUESITO Determinare il volume del solido generato dalla rotazione attorno alla

Dettagli

Lezione 6b. Spettri di risposta. L equazione del moto assume la seguente forma:

Lezione 6b. Spettri di risposta. L equazione del moto assume la seguente forma: L equazione del moto assume la seguente forma: m u() t cu () t ku() t mu () t g Supponendo di risolvere tale equazione utilizzando l integrale di Duhamel, si ottiene: t 1 n ( t ) () sin[ D( )] ( ) m 0

Dettagli

Fondamenti di Meccanica Quantistica (Prof. Tarantelli)

Fondamenti di Meccanica Quantistica (Prof. Tarantelli) Fondamenti di Meccanica Quantistica (Prof. Tarantelli) 1 MOTO LINEARE E L OSCILLATORE ARMONICO 2 EQUAZIONE DI SCHRODINGER Equazione di Schrödinger: descrive il comportamento di un insieme di particelle:

Dettagli

Derivata materiale (Lagrangiana) e locale (Euleriana)

Derivata materiale (Lagrangiana) e locale (Euleriana) ispense di Meccanica dei Fluidi 0 0 det 0 = [ (0 ) + ( ( ) ) + (0 0 ) ] = 0. Pertanto, v e µ sono indipendenti tra loro e costituiscono una nuova base. Con essi è possibile descrivere altre grandezze,

Dettagli

IL MODELLO ESPONENZIALE

IL MODELLO ESPONENZIALE IL MODELLO ESPONENZIALE La crescita esponenziale è caratterizzata dal fatto che,a ogni istante, l accrescimento direttamente proporzionale al valore istantaneo della variabile è ovvero Suddivisa la durata

Dettagli

FM210 / MA - Prima prova pre-esonero ( )

FM210 / MA - Prima prova pre-esonero ( ) FM10 / MA - Prima prova pre-esonero (4-4-018) 1. Una particella di massa m si muove in una dimensione sotto l effetto di una forza posizionale, come descritto dalla seguente equazione: mẍ = A x xx 0 3x

Dettagli

Equazioni differenziali con valori al bordo

Equazioni differenziali con valori al bordo Equazioni differenziali con valori al bordo Lucia Gastaldi DICATAM - Sez. di Matematica, http://lucia-gastaldi.unibs.it Indice 1 Equazioni di diffusione reazione 2 Equazioni di diffusione reazione Si consideri

Dettagli

LICEO SCIENTIFICO STATALE A. VALLISNERI Classe 5SD 2 o periodo/ 1 a verifica scritta 4 febbraio 2012

LICEO SCIENTIFICO STATALE A. VALLISNERI Classe 5SD 2 o periodo/ 1 a verifica scritta 4 febbraio 2012 LICEO SCIENTIFICO STATALE A. VALLISNERI Classe 5SD 2 o periodo/ 1 a verifica scritta 4 febbraio 2012 Calcolo differenziale e sue applicazioni: studio e grafico di funzioni; teorema di Rolle etc. Alunno:................................................

Dettagli

Fluidodinamica delle Macchine

Fluidodinamica delle Macchine Lucidi del corso di Fluidodinamica delle Maccine Capitolo II-1a: Discretizzazione del Dominio Fisico/Computazionale Griglie di tipo Strutturato Prof. Simone Salvadori, Prof. Francesco Martelli La discretizzazione

Dettagli

λ è detto intensità e rappresenta il numero di eventi che si

λ è detto intensità e rappresenta il numero di eventi che si ESERCITAZIONE N 1 STUDIO DI UN SISTEMA DI CODA M/M/1 1. Introduzione Per poter studiare un sistema di coda occorre necessariamente simulare gli arrivi, le partenze e i tempi di ingresso nel sistema e di

Dettagli

CORSO DI COMPLEMENTI DI MECCANICA. Prof. Vincenzo Niola

CORSO DI COMPLEMENTI DI MECCANICA. Prof. Vincenzo Niola CORSO DI COMPLEMENTI DI MECCANICA Prof. Vincenzo Niola SISTEMI A DUE GRADI DI LIBERTÀ Lo studio dei sistemi a più gradi di libertà verrà affrontato facendo riferimento, per semplicità, solo a sistemi conservativi,

Dettagli

Compito di prova - risolti

Compito di prova - risolti Compito di prova - risolti A P B q A q P q B 1. La carica positiva mobile q P si trova tra le cariche positive fisse q A, q B dove AB = 1 m. Se q A = 2 C e all equilibrio AP = 0.333 m, la carica q B vale

Dettagli

TECNICHE COMPUTAZIONALI AVANZATE

TECNICHE COMPUTAZIONALI AVANZATE TECNICHE COMPUTAZIONALI AVANZATE Francesca Pelosi e Salvatore Filippone Università di Roma Tor Vergata Problemi di diffusione, trasporto, reazione http://www.mat.uniroma2.it/ pelosi/ TECNICHE COMPUTAZIONALI

Dettagli

Studio di funzioni ( )

Studio di funzioni ( ) Studio di funzioni Effettuare uno studio qualitativo e tracciare un grafico approssimativo delle seguenti funzioni. Si studi in particolare anche la concavità delle funzioni e si indichino esplicitamente

Dettagli

Introduzione. Esercizio n 1. Metodo di Eulero Esplicito. Risolvere il problema ai valori iniziali: 3 2

Introduzione. Esercizio n 1. Metodo di Eulero Esplicito. Risolvere il problema ai valori iniziali: 3 2 Introduzione Nella seguente esercitazione si vogliono risolvere numericamente equazioni differenziali di diverso ordine, utilizzando metodi basati sulla discretizzazione delle stesse, ovvero sull approssimazione

Dettagli

Esercitazione 03 Risoluzione numerica di ODE

Esercitazione 03 Risoluzione numerica di ODE 1 Esercitazione 03 Risoluzione numerica di ODE Corso di Strumentazione e Controllo di Impianti Chimici Prof. Davide Manca Tutor: Giuseppe Pesenti Metodi di Eulero Esplicito e implicito 2 yyy(tt) = ff tt,

Dettagli

Soluzione Compitino Fisica Generale I Ing. Elettronica e Telecomunicazioni 02 Maggio 2017

Soluzione Compitino Fisica Generale I Ing. Elettronica e Telecomunicazioni 02 Maggio 2017 Soluzione Compitino Fisica Generale I Ing. Elettronica e Telecomunicazioni 02 Maggio 2017 Esercizio 1 1) Sulla tavola agiscono: a) la forza peso, diretta ortogonalmente al moto; b) le reazioni normali

Dettagli

Leonello Servoli. Tel.: Corso di Laurea in Medicina e Chirurgia Terni 2013/14

Leonello Servoli. Tel.: Corso di Laurea in Medicina e Chirurgia Terni 2013/14 Leonello Servoli Leonello.servoli@pg.infn.it Tel.: 0039-348-3345847 1 La fisica é una scienza naturale Studio delle leggi fondamentali della natura: Definizione di Equazioni matematiche per i modelli;

Dettagli

UNIVERSITÀ DEL SALENTO

UNIVERSITÀ DEL SALENTO UNIVERSITÀ DEL SALENTO FACOLTÀ DI SCIENZE MMFFNN Corso di Laurea in Fisica CORSO DI LABORATORIO I MISURA DELLA COSTANTE ELASTICA DI UNA MOLLA E VERIFICA DELLA LEGGE DI HOOKE Scopo dell esperienza Misura

Dettagli

Teoria dei mezzi continui

Teoria dei mezzi continui Teoria dei mezzi continui Il modello di un sistema continuo è un modello fenomenologico adatto a descrivere sistemi fisici macroscopici nei casi in cui le dimensione dei fenomeni osservati siano sufficientemente

Dettagli

Cenni sull integrazione numerica delle equazioni differenziali. Corso di Dinamica e Simulazione dei Sistemi Meccanici

Cenni sull integrazione numerica delle equazioni differenziali. Corso di Dinamica e Simulazione dei Sistemi Meccanici Cenni sull integrazione numerica delle equazioni differenziali Corso di Dinamica e Simulazione dei Sistemi Meccanici 9 ottobre 009 Introduzione La soluzione analitica dell integrale di moto di sistemi

Dettagli

Inizialmente la sbarretta è tenuta ferma; ad un certo istante viene lasciata libera, con velocità nulla.

Inizialmente la sbarretta è tenuta ferma; ad un certo istante viene lasciata libera, con velocità nulla. . (OLIMPIADI della FISICA 99-gara nazionale) (adattamento) Due fili conduttori, rettilinei e paralleli, sono connessi attraverso una resistenza. Il piano dei fili è orizzontale e la distanza tra questi

Dettagli

Problemi parabolici. u(0, t) = u(l, t) = 0 t (1)

Problemi parabolici. u(0, t) = u(l, t) = 0 t (1) Problemi parabolici L esempio più semplice di equazione differenziale di tipo parabolico è costituito dall equazione del calore, che in una dimensione spaziale è data da u t (x, t) ku xx (x, t) = x [,

Dettagli

Modellazione di sistemi ingegneristici (parte 2 di 2)

Modellazione di sistemi ingegneristici (parte 2 di 2) Corso di Teoria dei Sistemi Modellazione di sistemi ingegneristici (parte 2 di 2) Prof. Ing. Daniele Testi DESTeC, Dipartimento di Ingegneria dell Energia, dei Sistemi, del Territorio e delle Costruzioni

Dettagli

ESPONENZIALE ED EQUAZIONI DIFFERENZIALI

ESPONENZIALE ED EQUAZIONI DIFFERENZIALI ESPONENZIALE ED EQUAZIONI DIFFERENZIALI Prerequisiti: Obiettivi: Piano cartesiano funzione esponenziale e rappresentazione sul piano cartesiano concetto di limite definizione di derivata differenziale

Dettagli

LA SIMULAZIONE DEI TRANSITORI IDRAULICI IN IMPIANTI IDROELETTRICI: ALCUNI CASI SIGNIFICATIVI

LA SIMULAZIONE DEI TRANSITORI IDRAULICI IN IMPIANTI IDROELETTRICI: ALCUNI CASI SIGNIFICATIVI ZECO HYDROPOWER LO SMALL HYDRO: RUOLO E POTENZIALITA Milano 23 Maggio 2018 LA SIMULAZIONE DEI TRANSITORI IDRAULICI IN IMPIANTI IDROELETTRICI: ALCUNI CASI SIGNIFICATIVI Ing. Riccardo Bergamin 1 Introduzione

Dettagli

Metodi Numerici con Laboratorio di Informatica - A.A Esercizi Laboratorio n 4 - Metodo di Newton e Metodi di punto fisso

Metodi Numerici con Laboratorio di Informatica - A.A Esercizi Laboratorio n 4 - Metodo di Newton e Metodi di punto fisso Metodi Numerici con Laboratorio di Informatica - A.A. 2015-2016 Esercizi Laboratorio n 4 - Metodo di Newton e Metodi di punto fisso Metodi numerici per le equazioni differenziali ordinarie Consideriamo

Dettagli

Capitolo 5. Primo principio della Termodinamica nei sistemi aperti

Capitolo 5. Primo principio della Termodinamica nei sistemi aperti Capitolo 5. Primo principio della Termodinamica nei sistemi aperti 5.1. I sistemi aperti I sistemi aperti sono quei sistemi termodinamici nei quali, oltre allo scambio di lavoro e calore è possibile lo

Dettagli

Queste note (attualmente, e probabilmente per un bel po ) sono altamente provvisorie e (molto probabilmente) non prive di errori.

Queste note (attualmente, e probabilmente per un bel po ) sono altamente provvisorie e (molto probabilmente) non prive di errori. ËÁËÌ ÅÁ ÈÁ ÆÁ ½ Queste note attualmente e probabilmente per un bel po ) sono altamente provvisorie e molto probabilmente) non prive di errori 41 Sistemi 2D Come abbiamo già detto tipicamente è impossibile

Dettagli

Fisica Introduzione

Fisica Introduzione Fisica 1 2011-2012 Introduzione 1 FISICA GENERALE Meccanica: -Studio del moto dei corpi -Forza di gravità Elettromagnetismo: - Cariche elettriche, magneti FISICA CLASSICA FISICA MODERNA Fenomeni a livello

Dettagli

Breve ripasso di statistica

Breve ripasso di statistica Breve ripasso di statistica D.C. Harris, Elementi di chimica analitica, Zanichelli, 1999 Capitolo 4 1 Il protocollo analitico Campionamento: 1. estrazione del campione dal lotto 2. conservazione e trasporto

Dettagli

Capitolo IX. Convertitori di dati

Capitolo IX. Convertitori di dati Capitolo IX Convertitori di dati 9.1 Introduzione I convertitori di dati sono circuiti analogici integrati di grande importanza. L elaborazione digitale dei segnali è alternativa a quella analogica e presenta

Dettagli

PROCEDURE DI CALCOLO DELLA COMBINAZIONE DEGLI INERTI REALI

PROCEDURE DI CALCOLO DELLA COMBINAZIONE DEGLI INERTI REALI PROCEDURE DI CALCOLO DELLA COMBINAZIONE DEGLI INERTI REALI Non esistono già disponibili in natura materiali lapidei con distribuzione granulometrica eguale a quella ideale richiesta per un inerte da destinare

Dettagli

Lezione 7 Equazioni Differenziali Ordinarie.

Lezione 7 Equazioni Differenziali Ordinarie. Lezione 7 Equazioni Differenziali Ordinarie http://idefix.mi.infn.it/~palombo/didattica/lab-tnds/corsolab/lezionifrontali Fernando Palombo Equazioni Differenziali Ordinarie Descrizione dell evolversi spazio-temporale

Dettagli

CORSO DI LAUREA MAGISTRALE IN GEOLOGIA E TERRITORIO CORSO DI MODELLAZIONE GEOLOGICO- TECNICA ED IDROGEOLOGICA MODELLAZIONE IDROGEOLOGICA (2 CFU)

CORSO DI LAUREA MAGISTRALE IN GEOLOGIA E TERRITORIO CORSO DI MODELLAZIONE GEOLOGICO- TECNICA ED IDROGEOLOGICA MODELLAZIONE IDROGEOLOGICA (2 CFU) CORSO DI LAUREA MAGISTRALE IN GEOLOGIA E TERRITORIO CORSO DI MODELLAZIONE GEOLOGICO- TECNICA ED IDROGEOLOGICA MODELLAZIONE IDROGEOLOGICA (2 CFU) Docente: Alessandro Gargini (E-mail: alessandro.gargini@unibo.it)

Dettagli

3.3 FORMULAZIONE DEL MODELLO E CONDIZIONI DI

3.3 FORMULAZIONE DEL MODELLO E CONDIZIONI DI 3.3 FORMULAZIONE DEL MODELLO E CONDIZIONI DI ESISTENZA DI UN PUNTO DI OTTIMO VINCOLATO Il problema di ottimizzazione vincolata introdotto nel paragrafo precedente può essere formulato nel modo seguente:

Dettagli

ITCS Erasmo da Rotterdam. Anno Scolastico 2014/2015. CLASSE 4^ M Costruzioni, ambiente e territorio

ITCS Erasmo da Rotterdam. Anno Scolastico 2014/2015. CLASSE 4^ M Costruzioni, ambiente e territorio ITCS Erasmo da Rotterdam Anno Scolastico 014/015 CLASSE 4^ M Costruzioni, ambiente e territorio INDICAZIONI PER IL LAVORO ESTIVO DI MATEMATICA e COMPLEMENTI di MATEMATICA GLI STUDENTI CON IL DEBITO FORMATIVO

Dettagli

Corsi di laurea in Matematica e Fisica - Anno Accademico 2016/17 FM210 / MA. Prima Prova di Esonero [ ]

Corsi di laurea in Matematica e Fisica - Anno Accademico 2016/17 FM210 / MA. Prima Prova di Esonero [ ] Corsi di laurea in Matematica e Fisica - Anno Accademico 016/17 FM10 / MA Prima Prova di Esonero [10-4-017] 1. (14 punti). Un punto materiale di massa m si muove in una dimensione sotto l effetto di una

Dettagli

Lezione 3 Cinematica Velocità Moto uniforme Accelerazione Moto uniformemente accelerato Accelerazione di gravità Moto di un proiettile

Lezione 3 Cinematica Velocità Moto uniforme Accelerazione Moto uniformemente accelerato Accelerazione di gravità Moto di un proiettile Corsi di Laurea in Scienze motorie - Classe L- (D.M. 70/04) Prof. Maria Giovanna Guerrisi Dr. Andrea Malizia 1 Cinematica Velocità Moto uniforme Accelerazione Moto uniformemente accelerato Accelerazione

Dettagli

Laboratorio di Calcolo Numerico A.A

Laboratorio di Calcolo Numerico A.A Laboratorio di Calcolo Numerico A.A. 2007-2008 Laboratorio 7 Minimi quadrati. Approssimazione delle derivate. Esercizio 1. Si considerino le 6 coppie di dati ( 4.5, 0.7), ( 3.2, 2.3), ( 1.4, 3.8), (0.8,

Dettagli

Appunti di Cinematica

Appunti di Cinematica Appunti di Cinematica Thomas Bellotti 28 novembre 2010 Indice 1 Punto materiale, traiettoria e legge oraria 1 1.1 Il punto materiale.......................... 1 1.2 La traiettoria.............................

Dettagli

3. Metodo degli elementi finiti 3.1 GENERALITÀ

3. Metodo degli elementi finiti 3.1 GENERALITÀ 3. Metodo degli elementi finiti 3.1 GENERALITÀ Si è visto che col metodo degli spostamenti si riesce a risolvere in maniera esatta il problema della determinazione degli spostamenti e degli sforzi in una

Dettagli

Dinamica. INTELLIGENT AUTONOMOUS SYSTEMS LAB

Dinamica. INTELLIGENT AUTONOMOUS SYSTEMS LAB Dinamica toselloe@dei.unipd.it INTELLIGENT AUTONOMOUS SYSTEMS LAB Introduzione Obbiettivi: Multi-DOF robot DINAMICA Studio delle leggi fisiche necessarie per il moto dei corpi costituenti il robot Robovie-X

Dettagli

Compito di Fisica 1 Ingegneria elettrica e gestionale Soluzioni fila B

Compito di Fisica 1 Ingegneria elettrica e gestionale Soluzioni fila B Compito di Fisica Ingegneria elettrica e gestionale Soluzioni fila B Massimo Vassalli 9 Gennaio 008 NB: dal momento che i dati numerici degli esercizi non sono comuni a tutti i compiti, i risultati sono

Dettagli

Capitolo 12. Moto oscillatorio

Capitolo 12. Moto oscillatorio Moto oscillatorio INTRODUZIONE Quando la forza che agisce su un corpo è proporzionale al suo spostamento dalla posizione di equilibrio ne risulta un particolare tipo di moto. Se la forza agisce sempre

Dettagli

1. Il moto della sbarretta (OLIMPIADI della FISICA 1991)

1. Il moto della sbarretta (OLIMPIADI della FISICA 1991) 1. Il moto della sbarretta (OLIMPIADI della FISICA 1991) Obiettivi Determinare la f.e.m. indotta agli estremi di un conduttore rettilineo in moto in un campo magnetico Applicare il secondo principio della

Dettagli

ACQUA TECNO. Progettazione. Committente. Dirigente: Ing. Luca Carretti. Responsabile del procedimento: Arch. Francesca Olivi. Arch.

ACQUA TECNO. Progettazione. Committente. Dirigente: Ing. Luca Carretti. Responsabile del procedimento: Arch. Francesca Olivi. Arch. Progettazione Committente ACQUA TECNO Dirigente: Ing. Luca Carretti Responsabile del procedimento: Arch. Francesca Olivi Arch. Vittoria Biego Titolo elaborato Elaborato A.2185 PRP Scala Data Luglio 2017

Dettagli

Il problema lineare dei minimi quadrati

Il problema lineare dei minimi quadrati Il problema lineare dei minimi quadrati APPLICAZIONE: Il polinomio di migliore approssimazione nel senso dei minimi quadrati Felice Iavernaro Dipartimento di Matematica Università di Bari 15 Gennaio 2009

Dettagli

M557- Esame di Stato di Istruzione Secondaria Superiore

M557- Esame di Stato di Istruzione Secondaria Superiore Problema Ministero dell Istruzione, dell Università e della Ricerca M557- Esame di Stato di Istruzione Secondaria Superiore Indirizzi: LI, EA SCIENTIFICO LI3, EA9 SCIENTIFICO Opzione Scienze Applicate

Dettagli

CORSO di AGGIORNAMENTO di FISICA

CORSO di AGGIORNAMENTO di FISICA MATHESIS _ ROMA CORSO di AGGIORNAMENTO di FISICA Commento ai problemi proposti nell incontro del 17 febbraio 2016 Adriana Lanza I.T:T. COLOMBO via Panisperna, 255 24 febbraio 2016 I problemi proposti TRACCE

Dettagli

Derivazione Numerica

Derivazione Numerica Derivazione Numerica I metodi alle differenze finite sono basati sull approssimazione numerica di derivate parziali. Per questo consideriamo come problema iniziale quello di approssimare le derivate di

Dettagli

Esercizio (tratto dal Problema 1.6 del Mazzoldi)

Esercizio (tratto dal Problema 1.6 del Mazzoldi) 1 Esercizio (tratto dal Problema 1.6 del Mazzoldi) Una particella si muove lungo l asse x nel verso positivo con accelerazione costante a 1 = 3.1 m/s 2. All istante t = 0 la particella si trova nell origine

Dettagli

Piano cartesiano. O asse delle ascisse

Piano cartesiano. O asse delle ascisse Piano cartesiano E costituito da due rette orientate e perpendicolari tra di loro chiamate assi di riferimento. Il loro punto di intersezione O si chiama origine del riferimento. L asse orizzontale è detto

Dettagli