Dinamica. INTELLIGENT AUTONOMOUS SYSTEMS LAB

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Dinamica. INTELLIGENT AUTONOMOUS SYSTEMS LAB"

Transcript

1 Dinamica INTELLIGENT AUTONOMOUS SYSTEMS LAB

2 Introduzione Obbiettivi: Multi-DOF robot DINAMICA Studio delle leggi fisiche necessarie per il moto dei corpi costituenti il robot Robovie-X MOVIMENTO KUKA YouSobot

3 Sommario Passi: 1. ZMP e CoM 2. Dinamica di un robot umanoide: Dinamica di un movimento di traslazione Dinamica di un movimento di rotazione 3. Marcia bipede: LIP-3D Carrello

4 ZMP Zero Moment Point f forza distribuita sul piede caratterizzante il contatto tra piede e suolo R forza risultante ZMP: - punto di applicazione di R - centro di pressione

5 CoM Center of Mass CoM : - punto nello spazio dove si concentra l intera massa del corpo - Sia dato un robot di massa M con N link di massa m j (1 j N) - posizione del CoM del corpo j nel riferimento locale - Posizione di j nel riferimento assoluto: posizione - posizione del CoM globale del robot: orientazione

6 Proiezione al suolo del CoM punto situato nell intersezione tra la linea di gravità passante per il centro di massa e il suolo

7 Poligono di sostentamento Si tende un elastico attorno ai piedi del robot al livello della superficie di contatto Poligono di sostentamento: superficie risultante

8 ZMP vs CoM Può uscire dal poligono di sostentamento Poligono di sostentamento Sempre all interno del poligono di sostentamento Immobilità: ZMP e proiezione del CoM coincidono Moto: ZMP e proiezione del CoM si dislocano in punti differenti

9 Dinamica Dati: Dinamica di un movimento di traslazione Robot umanoide di struttura qualunque M massa totale del robot c [x y z] T posizione del CoM P [P x P y P z ] T quantità di movimento (misura dei movimenti del robot in traslazioni ) L [L x L y L z ] T movimento cinetico (misura dei movimenti del robot attorno all origine) Dinamica di un movimento di rotazione

10 Dinamica di un movimento di traslazione La quantità di movimento è il prodotto tra la massa totale del robot e la velocità del suo CoM La quantità di movimento dipende dalla risultante delle forze esterne applicate al robot Mg + f Forze gravitazionali Forze di contatto con l ambiente 1. Quando un robot è immobile in piedi, la variazione di quantità del movimento è nulla e le forze di gravità si equilibriano con le forze di reazione del suolo 2. Se le forze di reazione scompaiono, la quantità di movimento aumenta rapidamente verso il basso a cause della forza di gravità caduta libera

11 Dinamica di un movimento di rotazione Il momento cinetico dipende dal momento risultante delle forze esterne c x Mg + Momento derivante dalle forze gravitazionali Momento di reazione del suolo applicato al livello del suolo stesso 1. Dato un robot immobile, questo momento si dovrà equilibrare con quello generato dalla forza peso 2. Nel caso in cui questo equilibrio non avvenga, il momento di reazione del suolo aumenta rapidamente caduta libera

12 Calcolo della posizione dello ZMP in funzione dei movimenti del robot Il calcolo della posizione dello ZMP a seconda dei movimenti effettuati dal robot può essere effettuato secondo due procedimenti: 1. Analitico 2. Approssimato

13 Procedimento analitico Dati: Dai dati forniti si trova: = p x f + p Mg + f c x Mg + p posizione dello ZMP f risultante delle forze di reazione del suolo applicate allo ZMP p momento applicato allo ZMP momento all origine del sist. di rif.

14 Procedimento analitico Dati: (Vettore a 3 componenti ) Le 2 componenti sul piano orizzontale sono nulle: p posizione dello ZMP f risultante delle forze di reazione del suolo applicate allo ZMP p momento applicato allo ZMP momento all origine del sist. di rif. Altezza dal suolo

15 Procedimento approssimato PASSO 1: Si rappresenta il robot in tutto il suo insieme come un unica massa puntiforme

16 Procedimento approssimato PASSO 2: Si calcola la quantità di movimento ed il momento cinetico all origine PASSO 3: Si calcolano le corrispondenti derivate

17 Procedimento approssimato PASSO 4: Si inseriscono i valori trovati nelle espressioni di p x e p y del procedimento analitico PASSO 5: Lo ZMP è definito sotto la direzione delle forze di reazione del suolo e di quelle inerziali. I valori di queste ultime si ottengono ponendo = 0 e p z = 0

18 Marcia bipede Requisiti: 1. ZMP all interno del poligono di sostentamento 2. CoM sempre alla stessa altezza Il robot viene modellato come: 1. LIP-3D (Linear inverted pendulum 3D) 2. Carrello sul tavolo

19 LIP-3D Forma: 1. Il robot ha massa puntiforme (l insieme delle masse delle parti che lo costituiscono viene ridotto al suo CoM) 2. Le gambe sono senza massa 3. Le gambe stabiliscono la connessione tra la massa puntiforme e il suolo per mezzo di un nesso di forma arrotondata Proprietà: 1. Il pendolo può girare liberamente attorno al suo punto di supporto 2. La lunghezza della gamba può venir modificata per mezzo della forza di propulsione f sin cos distanza tra CoM e punto di supporto

20 LIP-3D Forze agenti: 1. Forza di propulsione 2. Forza di gravità Equazioni dei movimenti che governano gli spostamenti del CoM: Altezza in cui il piano taglia z Vincolo legato alla posizione del CoM: piano

21 LIP-3D Al fine di assicurare che il movimento del CoM resti nel piano delineato, l accelerazione del CoM deve restare ortogonale alla normale del piano: Dinamica orizzontale del CoM

22 LIP-3D Visto che l altezza z c del pendolo inverso rimane costante nel corso del compimento dei movimenti:

23 Generazione della traiettoria di marcia del CoM Traiettoria di marcia: insieme di porzioni tra loro concatenate, dette primitive di marcia Note per la realizzazione: 1. Di passo in passo bisogna cambiare la gamba di supporto 2. Il cambio di supporto deve essere simultaneo nelle direzioni x e y 3. La lunghezza del passo è costante 4. T sup è il tempo di supporto di ogni passo 5. z c è l altezza a cui deve rimanere il CoM - Una traiettoria primitiva per il CoM è una porzione di iperbole simmetrica rispetto l asse y e definita all interno dell intervallo di tempo [0 T sup ] - Una primitiva di marcia viene determinata unicamente per mezzo delle sue coordinate estreme. Da si ricava la velocità finale del CoM nel tratto considerato

24 Generazione della traiettoria di marcia del CoM Calcolo di una primitiva di marcia del CoM: Asse x Asse y Condizione iniziale: Posizione finale: Condizione iniziale: Posizione finale: Da Posizione Velocità Posizione Velocità La concatenazione delle primitive di marcia permette di realizzare una traiettoria di marcia

25 Generazione della traiettoria di marcia del CoM Calcolo della traiettoria del CoM a partire dalle posizioni successive dei piedi: Dati: s x lunghezza del passo s y larghezza del passo s direzione del passo

26 Generazione della traiettoria di marcia del CoM Calcolo della traiettoria del CoM a partire dalle posizioni successive dei piedi: Posizioni del piede all n-esimo passo: Piede destro = supporto di partenza Primitive di marcia corrispondenti all n-esimo passo: L n-esima primitiva dipende da (n+1)-esimi parametri di marcia affinché vi sia un buon coordinamento tra spostamenti dei piedi e movimento di marcia Posizione Velocità Le primitive sono tutte uguali tranne la prima e l ultima (stati di avvio e di arresto)

27 Generazione della traiettoria di marcia del CoM Metodo per la generazione di un modello di marcia continuo: Dati: p x * posizione modificata del piede Equazione della dinamica secondo l asse x: - È l eq. dello ZMP - Il CoM è ad altezza costante Soluzione analitica: Relazione tra p x * e lo stato finale :

28 Generazione della traiettoria di marcia del CoM Metodo per la generazione di un modello di marcia continuo: Dati: Si stabilisce lo stato obiettivo della primitiva di marcia: p x * posizione modificata del piede Si calcola la posizione del piede secondo lo stato obiettivo: 1. Si costruisce una funzione di valutazione: 2. Si sostituiscono i valori in N 3. Si applica la condizione

29 Generazione della traiettoria di marcia del CoM Metodo per la generazione di un modello di marcia continuo: Dati: p x * posizione modificata del piede Posizione del piede che minimizza N:

30 Generazione della traiettoria di marcia del CoM Metodo per la generazione di un modello di marcia continuo: Passo 1: determinare il periodo di supporto Tsup e i parametri di marcia sx, sy, s. Indicare la posizione iniziale del CoM (x, y) e del piede (p x *, p y *) = (p x (0), p y (0) ) Passo 2: T = 0, n = 0 Passo 3: integrare l equazione del pendolo inverso Passo 4: T = T + Tsup, n = n + 1 Passo 5: calcolare la posizione successiva del piede (p xn, p yn )

31 Generazione della traiettoria di marcia del CoM Metodo per la generazione di un modello di marcia continuo: Passo 6: determinare le caratteristiche della primitiva di marcia successiva Passo 7: calcolare lo stato obiettivo (in x e in y)

32 Generazione della traiettoria di marcia del CoM Metodo per la generazione di un modello di marcia continuo: Passo 8: calcolare la posizione modificata del piede Passo 9: ritornare al passo 3

33 Carrello sul tavolo Sia dato un carrello di massa M che si sposta su di un tavolo di massa trascurabile. Il piede del tavolo è troppo piccolo per conservare l equilibrio statico quando il carrello si sposta sul bordo del piano. Si può mantenere l equilibrio dinamico conferendo un accelerazione sufficiente al carrello. Un unica massa ad altezza costante Posizione dello ZMP Equazione dello ZMP

34 Conclusioni Quanto esposto permette la realizzazione di un modello dinamico per la marcia bipede. Nel P2:

Esercizi aprile Sommario Conservazione dell energia e urti a due corpi.

Esercizi aprile Sommario Conservazione dell energia e urti a due corpi. Esercizi 2.04.8 3 aprile 208 Sommario Conservazione dell energia e urti a due corpi. Conservazione dell energia. Esercizio Il motore di un ascensore solleva con velocità costante la cabina contenente quattro

Dettagli

Lavoro nel moto rotazionale

Lavoro nel moto rotazionale Lavoro nel moto rotazionale Qual è il lavoro (W ) fatto da una forza su di un corpo che sta ruotando? dw = F d s = (F sin φ)(rdθ) = τ a dθ La componente radiale della forza, F cos φ, non fa lavoro perché

Dettagli

5a.Rotazione di un corpo rigido attorno ad un asse fisso

5a.Rotazione di un corpo rigido attorno ad un asse fisso 5a.Rotazione di un corpo rigido attorno ad un asse fisso Un corpo rigido è un corpo indeformabile: le distanze relative tra i punti materiali che lo costituiscono rimangono costanti. Il modello corpo rigido

Dettagli

FORZE E PRINCIPI DELLA DINAMICA (1/29)

FORZE E PRINCIPI DELLA DINAMICA (1/29) FORZE E PRINCIPI DELLA DINAMICA (1/29) una forza applicata ad un corpo, libero di muoversi, lo mette in movimento o lo arresta (effetto dinamico della forza); una forza, applicata ad un corpo vincolato,

Dettagli

p i = 0 = m v + m A v A = p f da cui v A = m m A

p i = 0 = m v + m A v A = p f da cui v A = m m A Esercizio 1 Un carrello di massa m A di dimensioni trascurabili è inizialmente fermo nell origine O di un sistema di coordinate cartesiane xyz disposto come in figura. Il carrello può muoversi con attrito

Dettagli

PROVA PARZIALE DEL 27 GENNAIO 2016

PROVA PARZIALE DEL 27 GENNAIO 2016 PROVA PARZIALE DEL 27 GENNAIO 2016 February 2, 2016 Si prega di commentare e spiegare bene i vari passaggi, non di riportare solo la formula finale. PROBLEMA 1) Due blocchi, collegati da uno spago privo

Dettagli

Dipartimento di Informatica e Sistemistica Università di Roma La Sapienza. Locomozione Bipede. Fabio Zonfrilli. Corso di Robotica II 11 Febbraio 2004

Dipartimento di Informatica e Sistemistica Università di Roma La Sapienza. Locomozione Bipede. Fabio Zonfrilli. Corso di Robotica II 11 Febbraio 2004 Dipartimento di Informatica e Sistemistica Università di Roma La Sapienza Locomozione Bipede Fabio Zonfrilli Corso di Robotica II 11 Febbraio 2004 Sommario Tipologie di sistemi bipedi Passive walkers Hopping

Dettagli

Numero progressivo: 6 Turno: 1 Fila: 1 Posto: 1 Matricola: Cognome e nome: (dati nascosti per tutela privacy)

Numero progressivo: 6 Turno: 1 Fila: 1 Posto: 1 Matricola: Cognome e nome: (dati nascosti per tutela privacy) Numero progressivo: 6 Turno: 1 Fila: 1 Posto: 1 Matricola: 0000695216 Cognome e nome: (dati nascosti per tutela privacy) 1. Di quanto ruota in un giorno sidereo il piano di oscillazione del pendolo di

Dettagli

E i = mgh 0 = mg2r mv2 = mg2r mrg = E f. da cui si ricava h 0 = 5 2 R

E i = mgh 0 = mg2r mv2 = mg2r mrg = E f. da cui si ricava h 0 = 5 2 R Esercizio 1 Un corpo puntiforme di massa m scivola lungo una pista liscia di raggio R partendo da fermo da un altezza h rispetto al fondo della pista come rappresentato in figura. a) Determinare il valore

Dettagli

Lezione 3 Cinematica Velocità Moto uniforme Accelerazione Moto uniformemente accelerato Concetto di Forza Leggi di Newton

Lezione 3 Cinematica Velocità Moto uniforme Accelerazione Moto uniformemente accelerato Concetto di Forza Leggi di Newton Corsi di Laurea dei Tronchi Comuni 2 e 4 Dr. Andrea Malizia 1 Cinematica Velocità Moto uniforme Accelerazione Moto uniformemente accelerato Concetto di Forza Leggi di Newton Lezione 2 Sistemi di riferimento

Dettagli

Soluzione degli esercizi dello scritto di Meccanica del 08/07/2019

Soluzione degli esercizi dello scritto di Meccanica del 08/07/2019 Soluzione degli esercizi dello scritto di Meccanica del 08/07/2019 Esercizio 1 Un asta rigida di lunghezza L = 0.8 m e massa M è vincolata nell estremo A ad un perno liscio ed è appesa all altro estremo

Dettagli

CORPO RIGIDO MOMENTO DI UNA FORZA EQUILIBRIO DI UN CORPO RIGIDO CENTRO DI MASSA BARICENTRO

CORPO RIGIDO MOMENTO DI UNA FORZA EQUILIBRIO DI UN CORPO RIGIDO CENTRO DI MASSA BARICENTRO LEZIONE statica-1 CORPO RIGIDO MOMENTO DI UNA FORZA EQUILIBRIO DI UN CORPO RIGIDO CENTRO DI MASSA BARICENTRO GRANDEZZE SCALARI E VETTORIALI: RICHIAMI DUE SONO LE TIPOLOGIE DI GRANDEZZE ESISTENTI IN FISICA

Dettagli

Esercitazioni del 09/06/2010

Esercitazioni del 09/06/2010 Esercitazioni del 09/06/2010 Problema 1) Un anello di massa m e di raggio r rotola, senza strisciare, partendo da fermo, lungo un piano inclinato di un angolo α=30 0. a) Determinare la legge del moto.

Dettagli

MOTO RETTILINEO UNIFORMEMETE ACCELERATO

MOTO RETTILINEO UNIFORMEMETE ACCELERATO MOTO RETTILINEO UNIFORMEMETE ACCELERATO RETTILINEO UNIFORMEMENTE ACCELERATO E la velocita? a MEDIA = a ISTANTANEA Siano t 0 l istante di tempo in cui il corpo inizia ad accelerare v 0 la velocita all istante

Dettagli

Soluzione del Secondo Esonero A.A , del 28/05/2013

Soluzione del Secondo Esonero A.A , del 28/05/2013 Soluzione del Secondo Esonero A.A. 01-013, del 8/05/013 Primo esercizio a) Sia v la velocità del secondo punto materiale subito dopo l urto, all inizio del tratto orizzontale con attrito. Tra il punto

Dettagli

Reazioni vincolari. Sistemi di corpi rigidi. Resistenza dei materiali. Forme strutturali per il design A.A prof.

Reazioni vincolari. Sistemi di corpi rigidi. Resistenza dei materiali. Forme strutturali per il design A.A prof. Resistenza dei materiali e Forme strutturali per il design A.A. 2014-2015 prof. Andrea Dall Asta Reazioni vincolari e Sistemi di corpi rigidi Scuola di Architettura e Design, Università di Camerino e-mail:andrea.dallasta@unicam.it

Dettagli

Esercizi e problemi supplementari sulla dinamica dei sistemi di punti materiali

Esercizi e problemi supplementari sulla dinamica dei sistemi di punti materiali Esercizi e problemi supplementari sulla dinamica dei sistemi di punti materiali A) Applicazione del teorema dell impulso + conservazione quantità di moto Problema n. 1: Un blocco A di massa m = 4 kg è

Dettagli

Lezione 3 Cinematica Velocità Moto uniforme Accelerazione Moto uniformemente accelerato Concetto di Forza Leggi di Newton

Lezione 3 Cinematica Velocità Moto uniforme Accelerazione Moto uniformemente accelerato Concetto di Forza Leggi di Newton Corsi di Laurea in Scienze motorie - Classe L-22 (D.M. 270/04) Dr. Andrea Malizia 1 Cinematica Velocità Moto uniforme Accelerazione Moto uniformemente accelerato Concetto di Forza Leggi di Newton Sistemi

Dettagli

Esercizio 1: Data la composizione di rotazioni. Rot(i, 180)Rot(j, 45)Rot(k, 90) Indicare con una tutte le descrizioni corrette:

Esercizio 1: Data la composizione di rotazioni. Rot(i, 180)Rot(j, 45)Rot(k, 90) Indicare con una tutte le descrizioni corrette: Esercizio 1: Data la composizione di rotazioni Rot(i, 180)Rot(j, 45)Rot(k, 90) Indicare con una tutte le descrizioni corrette: 1 Rotazione di 180 intorno all asse x seguita da rotazione di 90 intorno all

Dettagli

P = mg; F N = mg cosα; F A = µ d F N = µ d mg cosα.

P = mg; F N = mg cosα; F A = µ d F N = µ d mg cosα. Esercizio 1 a) Fissiamo un asse di riferimento x parallelo al piano inclinato, diretto verso l alto e con origine nella posizione iniziale del corpo alla base del piano. Sia m la massa del corpo, P la

Dettagli

Corso di laurea in Informatica Compito di Fisica 23 febbraio Scritto A

Corso di laurea in Informatica Compito di Fisica 23 febbraio Scritto A Firma Triennale Quinquennale Corso di laurea in Informatica Compito di Fisica 23 febbraio 2005 Scritto A Cognome: Nome: Matricola: Pos: 1) Quali dimensioni deve avere, nel sistema MKSA, la costante c affinché

Dettagli

Meccanica 15Aprile 2016

Meccanica 15Aprile 2016 Meccanica 15Aprile 2016 Problema 1 (1 punto) Una pallottola di massa m= 20 g arriva con velocità V= 300 m/s, inclinata verso il basso di un anglo = 15 rispetto al piano orizzontale, su un blocco di massa

Dettagli

SOLUZIONE a.-d. Iniziamo a tracciare il diagramma delle forze che agiscono su ogni corpo, come richiesto al punto d.

SOLUZIONE a.-d. Iniziamo a tracciare il diagramma delle forze che agiscono su ogni corpo, come richiesto al punto d. Esercizio 1 Due blocchi di ugual massa m 1 = m sono collegati ad un filo ideale lungo l. Inizialmente, i due corpi sono mantenuti fermi e in contatto tra loro su un piano inclinato di θ con il quale i

Dettagli

Sistema di punti materiali sistema esteso.

Sistema di punti materiali sistema esteso. Sistema di punti materiali sistema esteso. P n z P i P 2 O y P 1 x 1 Sistema di punti materiali sistema esteso. z P n z r n P i r i P 2 O r O r 2 y y r 1 P 1 x x 2 Sistema di punti materiali sistema esteso.

Dettagli

Terza prova parziale di Fisica Data: 15 Dicembre Fisica. 15 Dicembre Test a risposta singola

Terza prova parziale di Fisica Data: 15 Dicembre Fisica. 15 Dicembre Test a risposta singola Fisica 15 Dicembre 2011 Test a risposta singola ˆ Una forza si dice conservativa quando: Il lavoro compiuto dalla forza su un qualsiasi cammino chiuso è nullo Il lavoro compiuto dalla forza su un qualsiasi

Dettagli

Esercizi terzo principio

Esercizi terzo principio Esercizi terzo principio Esercitazioni di Fisica LA per ingegneri - A.A. 4-5 Esercizio 1 Una ruota di massa m = 1 kg e raggio R = 1 m viene tirata contro un gradino di altezza h = 3 cm con una velocità

Dettagli

Note a cura di M. Martellini e M. Zeni

Note a cura di M. Martellini e M. Zeni Università dell Insubria Corso di laurea Scienze Ambientali FISICA GENERALE Lezione 4 Dinamica Note a cura di M. Martellini e M. Zeni Queste note sono state in parte preparate con immagini tratte da alcuni

Dettagli

Esame (529648) - prova2 - Codice Prova:

Esame (529648) - prova2 - Codice Prova: 1) Un uomo di 80 kg cammina lungo una rampa inclinata di 40 rispetto all orizzonte. Di quanto cambia la sua energia potenziale gravitazionale, espressa in kj, quando scende per 15 m giù per la rampa? A.

Dettagli

Prova in itinere di Fisica (I modulo) Scienze e Tecnologie dell Ambiente. Soluzioni

Prova in itinere di Fisica (I modulo) Scienze e Tecnologie dell Ambiente. Soluzioni Prova in itinere di Fisica (I modulo) Scienze e Tecnologie dell Ambiente 30 Novembre 2007 Soluzioni A) a=2at = 24 m/s 2. a m = v(t 1 + t) v(t 1 ) t = 24.6 m/s 2 3) B) s(t 1 ) = s 0 + t1 0 (At 2 + B)dt

Dettagli

DINAMICA DEL PUNTO MATERIALE. Studio delle cause che determinano il moto Introduzione di nuove grandezze:

DINAMICA DEL PUNTO MATERIALE. Studio delle cause che determinano il moto Introduzione di nuove grandezze: DINAMICA DEL PUNTO MATERIALE Studio delle cause che determinano il moto Introduzione di nuove grandezze: massa e forza Affermazione di Galileo: la forza determina una variazione del moto, non il moto stesso

Dettagli

F = ma = -mω 2 R u r.

F = ma = -mω 2 R u r. Esercizio a) Sia v F = -ma cp u r = -m u r = -mω R u r. R b) Sia ω = ω u z il vettore velocità angolare del sistema di riferimento O. In questo sistema di riferimento rotante, i vettori velocità v e accelerazione

Dettagli

Poichési conserva l energia meccanica, il lavoro compiuto dal motore è pari alla energia potenziale accumulata all equilibrio:

Poichési conserva l energia meccanica, il lavoro compiuto dal motore è pari alla energia potenziale accumulata all equilibrio: Meccanica 24 Aprile 2018 Problema 1 (1 punto) Un blocco di mass M=90 kg è attaccato tramite una molla di costante elastiìca K= 2 10 3 N/m, massa trascurabile e lunghezza a riposo nulla, a una fune inestensibile

Dettagli

Meccanica Dinamica del punto materiale

Meccanica Dinamica del punto materiale Meccanica 18-19 Dinamica del punto materiale 8 Dinamica del punto materiale Legge fondamentale della dinamica: d r ma m dt Tipi di forza: orza peso Reazione vincolare orza di attrito radente (statico,

Dettagli

1 Fisica 1 ( )

1 Fisica 1 ( ) 1 Fisica 1 (08 01-2002) Lo studente risponda alle seguenti domande (2 punti per ogni domanda) 1) Scrivere il legame tra la velocità lineare e quella angolare nel moto circolare uniforme 2) Un punto materiale

Dettagli

Dinamica delle Strutture

Dinamica delle Strutture Corso di Laurea magistrale in Ingegneria Civile e per l Ambiente e il Territorio Dinamica delle Strutture Prof. Adolfo SANTINI Ing. Francesco NUCERA Prof. Adolfo Santini - Dinamica delle Strutture 1 Dinamica

Dettagli

RICHIAMI DELLA FISICA DI BASE. 2) I temi fondamentali della fisica classica e della fisica moderna.

RICHIAMI DELLA FISICA DI BASE. 2) I temi fondamentali della fisica classica e della fisica moderna. PROGRAMMA di FISICA CLASSE 3^ A 3^F AS 2017-18 ARTICOLAZIONE DEI CONTENUTI: Al fine del raggiungimento degli obiettivi cognitivi sono stati scelti i seguenti argomenti: RICHIAMI DELLA FISICA DI BASE 1)

Dettagli

UNIVERSITA' DEGLI STUDI DI GENOVA - Polo di La Spezia FISICA GENERALE 1 - Prova parziale di meccanica del 10/02/2015

UNIVERSITA' DEGLI STUDI DI GENOVA - Polo di La Spezia FISICA GENERALE 1 - Prova parziale di meccanica del 10/02/2015 FISICA GENERALE 1 - Prova parziale di meccanica del 10/02/2015 Lo studente descriva brevemente il procedimento usato e inserisca i valori numerici solo dopo aver risolto il problema con calcoli simbolici,

Dettagli

Nome..Cognome.. Classe 4D 18 dicembre VERIFICA DI FISICA: lavoro ed energia

Nome..Cognome.. Classe 4D 18 dicembre VERIFICA DI FISICA: lavoro ed energia Nome..Cognome.. Classe 4D 8 dicembre 008 EIFICA DI FISICA: lavoro ed energia Domande ) Forze conservative ed energia potenziale: (punti:.5) a) Dai la definizione di forza conservativa ed indicane le proprietà.

Dettagli

Compito di Meccanica del 16 settembre 2010

Compito di Meccanica del 16 settembre 2010 COMPITO A Meccanica (4 ore): problemi 1,3,4 Per i corsi da 5 crediti: Meccanica Classica (3 ore): problemi 1 e 2 - Meccanica dei sistemi (3 ore): problemi 3 e 4 Problema 1: Su una piattaforma circolare

Dettagli

17/1/2019 /1998 /2016 /2015

17/1/2019 /1998 /2016 /2015 17/1/2019 2019 /1998 /2016 /2015 /2015 1 /2011 /2008 2 /2009 /2009 T 0 T 1 = mg T 2 = 1 3 mg Si taglia la fune di destra: ma = mg T 0 { ( 1 3 ml2 ) a l/2 = l 2 mg con a si indica la componente dell accelerazione

Dettagli

DINAMICA DEL PUNTO MATERIALE

DINAMICA DEL PUNTO MATERIALE DINAMICA DEL PUNTO MATERIALE Studio delle cause che determinano il moto Introduzione di nuove grandezze: massa e forza Affermazione di Galileo: la forza determina una variazione del moto, non il moto stesso

Dettagli

Dinamica del punto materiale: problemi con gli oscillatori.

Dinamica del punto materiale: problemi con gli oscillatori. Dinamica del punto materiale: problemi con gli oscillatori. Problema: Una molla ideale di costante elastica k = 300 Nm 1 e lunghezza a riposo l 0 = 1 m pende verticalmente avendo un estremità fissata ad

Dettagli

Continuo Deformabile: Deformabile cambia forma per effetto dello spostamento dei suoi punti; Continuo gli spostamenti dei punti sono descritti da

Continuo Deformabile: Deformabile cambia forma per effetto dello spostamento dei suoi punti; Continuo gli spostamenti dei punti sono descritti da Il Continuo Deformabile Continuo Deformabile: Deformabile cambia forma per effetto dello spostamento dei suoi punti; Continuo gli spostamenti dei punti sono descritti da funzioni continue e differenziabili:

Dettagli

1 Cinematica del punto Componenti intrinseche di velocità e accelerazione Moto piano in coordinate polari... 4

1 Cinematica del punto Componenti intrinseche di velocità e accelerazione Moto piano in coordinate polari... 4 Indice 1 Cinematica del punto 1 1.1 Componenti intrinseche di velocità e accelerazione........... 3 1.2 Moto piano in coordinate polari...................... 4 2 Cinematica del corpo rigido 7 2.1 Moti

Dettagli

Programma di fisica. Classe 1^ sez. F A. S. 2015/2016. Docente: prof. ssa Laganà Filomena Donatella

Programma di fisica. Classe 1^ sez. F A. S. 2015/2016. Docente: prof. ssa Laganà Filomena Donatella Programma di fisica. Classe 1^ sez. F A. S. 2015/2016 Docente: prof. ssa Laganà Filomena Donatella MODULO 1: LE GRANDEZZE FISICHE. Notazione scientifica dei numeri, approssimazione, ordine di grandezza.

Dettagli

MODELLI MATEMATICI PER LA MECCANICA CORSO DI LAUREA IN INGEGNERIA AEROSPAZIALE

MODELLI MATEMATICI PER LA MECCANICA CORSO DI LAUREA IN INGEGNERIA AEROSPAZIALE MODELLI MATEMATICI PER LA MECCANICA CORSO DI LAUREA IN INGEGNERIA AEROSPAZIALE Argomenti svolti nell A.A.2016-17 (03/10/2016) Introduzione al corso.spazi affini. Spazi vettoriali. Conseguenze delle ipotesi

Dettagli

DINAMICA E STATICA RELATIVA

DINAMICA E STATICA RELATIVA DINAMICA E STATICA RELATIVA Equazioni di Lagrange in forma non conservativa La trattazione della dinamica fin qui svolta è valida per un osservatore inerziale. Consideriamo, ora un osservatore non inerziale.

Dettagli

Università degli Studi Mediterranea di Reggio Calabria Facoltà d Ingegneria Meccanica Razionale A.A. 2005/ Appello del 04/07/2006

Università degli Studi Mediterranea di Reggio Calabria Facoltà d Ingegneria Meccanica Razionale A.A. 2005/ Appello del 04/07/2006 Facoltà d Ingegneria Meccanica Razionale A.A. 2005/2006 - Appello del 04/07/2006 In un piano verticale Oxy, un sistema materiale è costituito da un disco omogeneo, di centro Q, raggio R e massa 2m, e da

Dettagli

INDICE GRANDEZZE FISICHE

INDICE GRANDEZZE FISICHE INDICE CAPITOLO 1 GRANDEZZE FISICHE Compendio 1 1-1 Introduzione 2 1-2 Il metodo scientifico 2 1-3 Leggi della Fisica e Principi 4 1-4 I modelli in Fisica 7 1-5 Grandezze fisiche e loro misurazione 8 1-6

Dettagli

TEST di ingresso di FISICA dell a.s. 10/11 cl. III L.Cl. svolto il da 1. non è possibile applicare le leggi della fisica agli esseri umani

TEST di ingresso di FISICA dell a.s. 10/11 cl. III L.Cl. svolto il da 1. non è possibile applicare le leggi della fisica agli esseri umani TEST di ingresso di FISI dell a.s. 10/11 cl. III L.l. svolto il da 1 1. L'ottimismo non è una grandezza fisica perché: non è possibile fornire una definizione operativa non ambigua non è possibile applicare

Dettagli

Programma di fisica. Classe 2^ sez. R A. S. 2013/2014. Docente: prof. ssa Laganà Filomena Donatella

Programma di fisica. Classe 2^ sez. R A. S. 2013/2014. Docente: prof. ssa Laganà Filomena Donatella Programma di fisica. Classe 2^ sez. R A. S. 2013/2014 Docente: prof. ssa Laganà Filomena Donatella MODULO 1: STRUMENTI MATEMATICI. Definizione di radiante. Misura in radianti di angoli notevoli. Introduzione

Dettagli

UNIVERSITÀ DI PISA DIPARTIMENTO DI INGEGNERIA CIVILE E INDUSTRIALE

UNIVERSITÀ DI PISA DIPARTIMENTO DI INGEGNERIA CIVILE E INDUSTRIALE UNIVERSITÀ DI PISA DIPARTIMENTO DI INGEGNERIA CIVILE E INDUSTRIALE ESAME DI MECCANICA solo PRIMA PARTE Corso di Laurea in Ingegneria Biomedica 3 Giugno 206 Esercizio Del meccanismo a un grado di libertà

Dettagli

Esercitazione 2. Soluzione

Esercitazione 2. Soluzione Esercitazione 2 Esercizio 1 - Resistenza dell aria Un blocchetto di massa m = 0.01 Kg (10 grammi) viene appoggiato delicatamente con velocità iniziale zero su un piano inclinato rispetto all orizziontale

Dettagli

FM210 / MA - Seconda prova pre-esonero ( )

FM210 / MA - Seconda prova pre-esonero ( ) FM10 / MA - Seconda prova pre-esonero (3-5-018) 1. Un sistema meccanico è costituito da due sbarre uguali AB e BC, rettilinee, omogenee, di massa M e lunghezza l, incernierate tra loro in B. Le due sbarre

Dettagli

FACOLTA DI INGEGNERIA Corso di laurea in ingegneria elettrica e ingegneria meccanica

FACOLTA DI INGEGNERIA Corso di laurea in ingegneria elettrica e ingegneria meccanica FACOLA DI INGEGNERIA Corso di laurea in ingegneria elettrica e ingegneria meccanica Anno Accademico 009-010 Prova scritta dell esame di Fisica I (6/9 CFU) - 17 giugno 010 Risolvete i seguenti esercizi

Dettagli

Soluzione prova scritta Fisica Generale I Ing. Elettronica e TLC 14 Settembre 2018

Soluzione prova scritta Fisica Generale I Ing. Elettronica e TLC 14 Settembre 2018 Soluzione prova scritta Fisica Generale I Ing. Elettronica e LC 14 Settembre 2018 Esercizio 1 1) Per il sistema M + m, includendo la descrizione dell interazione gravitazionale come energia potenziale,

Dettagli

1 Cinematica del punto Componenti intrinseche di velocità e accelerazione Moto piano in coordinate polari... 5

1 Cinematica del punto Componenti intrinseche di velocità e accelerazione Moto piano in coordinate polari... 5 Indice 1 Cinematica del punto... 1 1.1 Componenti intrinseche di velocità e accelerazione... 3 1.2 Moto piano in coordinate polari... 5 2 Cinematica del corpo rigido... 9 2.1 Configurazioni rigide......

Dettagli

ANNO SCOLASTICO 2017/2018 PROGRAMMA DI FISICA

ANNO SCOLASTICO 2017/2018 PROGRAMMA DI FISICA ANNO SCOLASTICO 2017/2018 CLASSE I A Grandezze fisiche Unità di misura e sistema internazionale Operazioni con le unità di misura Misura di lunghezze, aree e volumi Equivalenze tra unità di misura Notazione

Dettagli

Esercizi di dinamica

Esercizi di dinamica Esercizi di dinamica Esercitazioni di Fisica LA per ingegneri - A.A. 2003-2004 M F1, m v0 α F2, M α F3 Esercizio 1 Un blocco di massa M = 1.20 kg (figura F1) si trova in equilibrio appoggiato su una molla

Dettagli

ESERCIZI DI DINAMICA DEL PUNTO MATERIALE

ESERCIZI DI DINAMICA DEL PUNTO MATERIALE ESERCIZI DI DINAMICA DEL PUNTO MATERIALE Per un pendolo semplice di lunghezza l=5 m, determinare a quale altezza può essere sollevata la massa m= g sapendo che il carico di rottura è T max =5 N. SOL.-

Dettagli

Nozioni di meccanica classica

Nozioni di meccanica classica Nozioni di meccanica classica CORSO DI LAUREA IN TECNICHE DI RADIOLOGIA MEDICA, PER IMMAGINI E RADIOTERAPIA - Prof. Marco Maggiora Jacopo Pellegrino - jacopo.pellegrino@infn.it Introduzione Introduzione

Dettagli

Dinamica. Studio delle CAUSE del moto Cosa fa muovere un corpo? FORZA = ciò che modifica l atto di moto di un corpo. Atto di moto

Dinamica. Studio delle CAUSE del moto Cosa fa muovere un corpo? FORZA = ciò che modifica l atto di moto di un corpo. Atto di moto Dinamica Studio delle CAUSE del moto Cosa fa muovere un corpo? Atto di moto Traslatorio Rotatorio Rototraslatorio FORZA = ciò che modifica l atto di moto di un corpo 1 Un po di storia Storicamente (Aristotele)

Dettagli

SISTEMI DI CONTROLLO CINEMATICA E DINAMICA DEI ROBOT

SISTEMI DI CONTROLLO CINEMATICA E DINAMICA DEI ROBOT SISTEMI DI CONTROLLO Laurea Specialistica in Ingegneria Meccanica e del Veicolo SISTEMI DI CONTROLLO CINEMATICA E DINAMICA DEI ROBOT Ing. Cristian Secchi Tel. 0522 522235 e-mail: secchi.cristian@unimore.it

Dettagli

ESERCIZIO 1 SOLUZIONI

ESERCIZIO 1 SOLUZIONI - ESERCIZIO - Un corpo di massa m = 00 g si trova su un tavolo liscio. Il corpo m è mantenuto inizialmente fermo, appoggiato ad una molla di costante elastica k = 00 N/m, inizialmente compressa. Ad un

Dettagli

Lecce- XI scuola estiva di fisica Mirella Rafanelli. I sistemi estesi. La dinamica oltre il punto..

Lecce- XI scuola estiva di fisica Mirella Rafanelli. I sistemi estesi. La dinamica oltre il punto.. Lecce- XI scuola estiva di fisica - 2018 Mirella Rafanelli I sistemi estesi La dinamica oltre il punto.. Lecce- XI scuola estiva di fisica - 2018 Mirella Rafanelli Nota bene: quanto segue serve come strumento

Dettagli

Esame di Fisica con Laboratorio Corso di Laurea in Scienze dell Architettura Università degli Studi di Udine 29 gennaio 2010 Mario Paolo Giordani

Esame di Fisica con Laboratorio Corso di Laurea in Scienze dell Architettura Università degli Studi di Udine 29 gennaio 2010 Mario Paolo Giordani Esame di Fisica con Laboratorio Corso di Laurea in Scienze dell Architettura Università degli Studi di Udine 29 gennaio 2010 Mario Paolo Giordani Soluzioni Teoria Enunciare sinteticamente chiarendo il

Dettagli

Grandezze cinematiche relative nel sistema L: r 12, v 12 a 12 e nel sistema del centro dimassa (C): r 12 ', v 12 ', e a 12 '

Grandezze cinematiche relative nel sistema L: r 12, v 12 a 12 e nel sistema del centro dimassa (C): r 12 ', v 12 ', e a 12 ' Sistemi di due particelle Problema dei due corpi: studio del moto relativo di due corpi supposti puntiformi sotto l azione della forza di interazione mutua. Esempio: moto (relativo) di due corpi celesti

Dettagli

FM210 / MA - Secondo scritto ( )

FM210 / MA - Secondo scritto ( ) FM10 / MA - Secondo scritto (6-7-017) Esercizio 1. Un asta rigida omogenea di lunghezza l e massa M è vincolata a muoversi su un piano verticale di coordinate x-y (con l asse x orizzontale e l asse y verticale,

Dettagli

Compito 21 Giugno 2016

Compito 21 Giugno 2016 Compito 21 Giugno 2016 Roberto Bonciani e Paolo Dore Corso di Fisica Generale 1 Università degli Studi di Roma La Sapienza Anno Accademico 2015-2016 Compito di Fisica Generale I per matematici 21 Giugno

Dettagli

CINEMATICA. Ipotesi di base: si trascurano le cause del moto ogge0 in movimento pun3formi

CINEMATICA. Ipotesi di base: si trascurano le cause del moto ogge0 in movimento pun3formi CINEMATICA Ipotesi di base: si trascurano le cause del moto ogge0 in movimento pun3formi Definiamo: spostamento la velocità media la velocità istantanea MOTO RETTILINEO UNIFORME Nel moto re4lineo uniforme:

Dettagli

LICEO SCIENTIFICO G. BRUNO P R O G R A M M A. A n n o s c o l a s t i c o

LICEO SCIENTIFICO G. BRUNO P R O G R A M M A. A n n o s c o l a s t i c o ISTITUTO D ISTRUZIONE SECONDARIA SUPERIORE I.T.C.G. L. EINAUDI LICEO SCIENTIFICO G. BRUNO P R O G R A M M A A n n o s c o l a s t i c o 2 0 1 6-2 0 1 7 M A T E R I A : F I S I C A C L A S S E : I S E Z

Dettagli

IISS Enzo Ferrari, Roma. Plesso Vallauri, Liceo delle Scienze Applicate. Programma svolto

IISS Enzo Ferrari, Roma. Plesso Vallauri, Liceo delle Scienze Applicate. Programma svolto IISS Enzo Ferrari, Roma Plesso Vallauri, Liceo delle Scienze Applicate Programma svolto ANNO SCOLASTICO: 2015-2016 DISCIPLINA: FISICA CLASSE: 2ª F DOCENTE: MICHAEL ROTONDO Richiami sulle grandezze fisiche,

Dettagli

L α. α d. 1. calcolare la velocità con cui il corpo raggiunge la sommità del piano [8 punti]

L α. α d. 1. calcolare la velocità con cui il corpo raggiunge la sommità del piano [8 punti] Problema E1 Una molla di costante elastica 500 Nm 1 e di lunghezza a riposo l 0 10 cm si trova in fondo ad un piano lungo L m, con coefficiente di attrito trascurabile e inclinato di un angolo α 30 o rispetto

Dettagli

PROGRAMMA di FISICA CLASSE 3^ D 3^G AS ARTICOLAZIONE DEI CONTENUTI:

PROGRAMMA di FISICA CLASSE 3^ D 3^G AS ARTICOLAZIONE DEI CONTENUTI: PROGRAMMA di FISICA CLASSE 3^ D 3^G AS 2016-17 ARTICOLAZIONE DEI CONTENUTI: Al fine del raggiungimento degli obiettivi cognitivi sono stati scelti i seguenti argomenti: RICHIAMI DELLA FISICA DI BASE 1)

Dettagli

Massa, temperatura, volume, densità sono grandezze scalari. La forza è una grandezza vettoriale

Massa, temperatura, volume, densità sono grandezze scalari. La forza è una grandezza vettoriale Le forze (2 a parte) Massa, temperatura, volume, densità sono grandezze scalari La forza è una grandezza vettoriale Scalari e vettori Si definiscono SCALARI le grandezze fisiche che sono del tutto caratterizzate

Dettagli

Università del Sannio

Università del Sannio Università del Sannio Corso di Fisica 1 Lezione 6 Dinamica del punto materiale II Prof.ssa Stefania Petracca 1 Lavoro, energia cinetica, energie potenziali Le equazioni della dinamica permettono di determinare

Dettagli

Compito 19 Luglio 2016

Compito 19 Luglio 2016 Compito 19 Luglio 016 Roberto onciani e Paolo Dore Corso di Fisica Generale 1 Università degli Studi di Roma La Sapienza Anno Accademico 015-016 Compito di Fisica Generale I per matematici 19 Luglio 016

Dettagli

Meccanica Razionale

Meccanica Razionale Meccanica Razionale 5-7-01 1. In un piano verticale un asta omogenea di lunghezza epeso è incernierata in ein con un semidisco omogeneo di diametro epeso. Al carrello viene applicata una forza costante

Dettagli

Esercitazione 2. Soluzione

Esercitazione 2. Soluzione Esercitazione 2 Esercizio 1 - Resistenza dell aria Un blocchetto di massa m = 0.01 Kg (10 grammi) viene appoggiato delicatamente con velocità iniziale zero su un piano inclinato rispetto all orizziontale

Dettagli

ESERCIZI FISICA I Lezione

ESERCIZI FISICA I Lezione ESERCIZI FISICA I Lezione 12 2017-06-08 Tutor: Alessandro Ursi alessandro.ursi@iaps.inaf.it ESERCIZIO 1 Due corpi di forme e volumi uguali, ma di sostanze diverse, sono disposti come in figura. La densità

Dettagli

PIANO di LAVORO A. S. 2013/ 2014

PIANO di LAVORO A. S. 2013/ 2014 Nome docente Vessecchia Laura Materia insegnata Fisica Classe Prima E ITIS Previsione numero ore di insegnamento ore complessive di insegnamento 3 ore settimanali di cui in compresenza 1 ora di cui di

Dettagli

2 - Principi di Meccanica e di Equilibrio

2 - Principi di Meccanica e di Equilibrio 2 - Principi di Meccanica e di Equilibrio Cause dei fenomeni meccanici (quiete e moto) 1/2 Nella Meccanica Classica (Meccanica Newtoniana) si assume che tra corpi diversi, così come tra le diverse parti

Dettagli

Capitolo 12. Moto oscillatorio

Capitolo 12. Moto oscillatorio Moto oscillatorio INTRODUZIONE Quando la forza che agisce su un corpo è proporzionale al suo spostamento dalla posizione di equilibrio ne risulta un particolare tipo di moto. Se la forza agisce sempre

Dettagli

FM210 - Fisica Matematica I

FM210 - Fisica Matematica I FM21 - Fisica Matematica I Seconda Prova Scritta [16-2-212] Soluzioni Problema 1 1. Chiamiamo A la matrice del sistema e cerchiamo anzitutto gli autovalori della matrice: l equazione secolare è (λ + 2β)λ

Dettagli

Viene tradizionalmente suddivisa in: Cinematica Dinamica Statica

Viene tradizionalmente suddivisa in: Cinematica Dinamica Statica COSA E LA MECCANICA? Viene tradizionalmente suddivisa in: Cinematica Dinamica Statica CINEMATICA STUDIO del MOTO INDIPENDENTEMENTE dalle CAUSE che lo hanno GENERATO DINAMICA STUDIO del MOTO e delle CAUSE

Dettagli

Liceo Scientifico F. Lussana Bergamo Programma svolto di FISICA A.S. 2014/2015 Classe 3 A I Prof. Matteo Bonetti. Cinematica

Liceo Scientifico F. Lussana Bergamo Programma svolto di FISICA A.S. 2014/2015 Classe 3 A I Prof. Matteo Bonetti. Cinematica Liceo Scientifico F. Lussana Bergamo Programma svolto di FISICA A.S. 2014/2015 Classe 3 A I Prof. Matteo Bonetti Cinematica MODULO 1. LA DESCRIZIONE DEI MOTI RETTILINEI 1. Definizione di osservatore e

Dettagli

Esercizio n 1. = 200 g t = 0 sistema in quiete a)? a 1. = 100 g m 2. a 2 b)? acc. angolare c)? T 1. e T 2

Esercizio n 1. = 200 g t = 0 sistema in quiete a)? a 1. = 100 g m 2. a 2 b)? acc. angolare c)? T 1. e T 2 Esercizio n 1 Su un disco di massa M e raggio R è praticata una sottile scanalatura di raggio r che non altera il suo momento d'inerzia. Al disco, che può ruotare attorno ad un asse orizzontale passante

Dettagli

Liceo Ginnasio Luigi Galvani Classe 3GHI (scientifica) PROGRAMMA di FISICA a.s. 2016/2017 Prof.ssa Paola Giacconi

Liceo Ginnasio Luigi Galvani Classe 3GHI (scientifica) PROGRAMMA di FISICA a.s. 2016/2017 Prof.ssa Paola Giacconi Liceo Ginnasio Luigi Galvani Classe 3GHI (scientifica) PROGRAMMA di FISICA a.s. 2016/2017 Prof.ssa Paola Giacconi 1) Cinematica 1.1) Ripasso: Il moto rettilineo Generalità sul moto: definizione di sistema

Dettagli

METODOLOGIE DIDATTICHE PER L INSEGNAMENTO DELLA TECNOLOGIA

METODOLOGIE DIDATTICHE PER L INSEGNAMENTO DELLA TECNOLOGIA CORSO DI TIROCINIO FORMATIVO ATTIVO (TFA) CLASSE DI CONCORSO A033 METODOLOGIE DIDATTICHE PER L INSEGNAMENTO DELLA TECNOLOGIA ANNO ACCADEMICO 2014/15 PROF. GIUSEPPE NATALE Meccanica e macchine 2 La Meccanica

Dettagli

Dinamica del punto ESERCIZI. Dott.ssa Elisabetta Bissaldi

Dinamica del punto ESERCIZI. Dott.ssa Elisabetta Bissaldi Dinamica del punto ESERCIZI Dott.ssa Elisabetta Bissaldi Elisabetta Bissaldi (Politecnico di Bari) A.A. 2018-2019 2 Esercizio 3.1 Si consideri un punto materiale di massa m = 50 g che si muove con velocità

Dettagli

La forza gravitazionale: Newton, la mela, la luna e. perché la mela cade e la luna ruota?

La forza gravitazionale: Newton, la mela, la luna e. perché la mela cade e la luna ruota? La forza gravitazionale: Newton, la mela, la luna e perché la mela cade e la luna ruota? La causa dei due fenomeni è la stessa Accelerazione luna : a L = 0.0027 m/s 2 Accelerazione mela : a m = 9.81 m/s

Dettagli

Ripasso della scomposizione di un polinomio in fattori primi, M.C.D. e m.c.m. di polinomi.

Ripasso della scomposizione di un polinomio in fattori primi, M.C.D. e m.c.m. di polinomi. Anno scolastico 2010 11 Classe V Ginnasio (sez.a) Ripasso della scomposizione di un polinomio in fattori primi, M.C.D. e m.c.m. di polinomi. Frazioni algebriche. Operazioni. Espressioni. Equazioni numeriche

Dettagli

a) T b) T X x y c) T 1. Esercizio

a) T b) T X x y c) T 1. Esercizio 1. Esercizio Nella figura sotto, la massa M è vincolata a muoversi orizzontalmente su rulli privi d'attrito. La molla ha caratteristica lineare di costante elastica k. Un pendolo costituito da un'asta

Dettagli

Soluzione degli esercizi della prova in itinere di Meccanica del 19/11/2018

Soluzione degli esercizi della prova in itinere di Meccanica del 19/11/2018 Soluzione degli esercizi della prova in itinere di Meccanica del 19/11/2018 Esercizio 1 Tre blocchi di masse m 1, m 2 e m 3 sono disposti come indicato in figura. Il piano inclinato sul quale poggia la

Dettagli

F, viene allungata o compressa di un tratto s rispetto alla sua posizione di equilibrio.

F, viene allungata o compressa di un tratto s rispetto alla sua posizione di equilibrio. UNIÀ 4 L EQUILIBRIO DEI SOLIDI.. La forza elastica di una molla.. La costante elastica e la legge di Hooke. 3. La forza peso. 4. Le forze di attrito. 5. La forza di attrito statico. 6. La forza di attrito

Dettagli

Programma dettagliato del corso di MECCANICA RAZIONALE Corso di Laurea in Ingegneria Civile

Programma dettagliato del corso di MECCANICA RAZIONALE Corso di Laurea in Ingegneria Civile Programma dettagliato del corso di MECCANICA RAZIONALE Corso di Laurea in Ingegneria Civile Anno Accademico 2017-2018 A. Ponno (aggiornato al 20 dicembre 2017) 2 Ottobre 2017 2/10/17 Benvenuto, presentazione

Dettagli

ISTITUTO D ISTRUZIONE SECONDARIA I.I.S. VIA SILVESTRI 301 Plesso Alessandro Volta

ISTITUTO D ISTRUZIONE SECONDARIA I.I.S. VIA SILVESTRI 301 Plesso Alessandro Volta ISTITUTO D ISTRUZIONE SECONDARIA I.I.S. VIA SILVESTRI 301 Plesso Alessandro Volta * Programma di Fisica A.S. 2017-2018 Classe 1E PROGRAMMA SVOLTO La fisica: temi e finalità I fenomeni fisici e le loro

Dettagli

Programma Didattico Fisica e laboratorio A.S. 2016/2017-1D-1E-1F-1G PROGRAMMA DIDATTICO. Disciplina FISICA e LABORATORIO a.s.

Programma Didattico Fisica e laboratorio A.S. 2016/2017-1D-1E-1F-1G PROGRAMMA DIDATTICO. Disciplina FISICA e LABORATORIO a.s. A.S. 2016/2017-1D-1E-1F-1G Pag. 1 di 4 Disciplina FISICA e LABORATORIO a.s. 2016/2017 Classi: 1D - 1E - 1F - 1G Docenti : Prof. Enrico Porru - Prof. ssa Stefania Carnì A.S. 2016/2017-1D-1E-1F-1G Pag. 2

Dettagli