3. Metodo degli elementi finiti 3.1 GENERALITÀ

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "3. Metodo degli elementi finiti 3.1 GENERALITÀ"

Transcript

1 3. Metodo degli elementi finiti 3.1 GENERALITÀ Si è visto che col metodo degli spostamenti si riesce a risolvere in maniera esatta il problema della determinazione degli spostamenti e degli sforzi in una struttura reticolare con semplici operazioni di algebra matriciale. Se una struttura continua, con infiniti gradi di libertà e governata da un sistema di equazioni differenziali alle derivate parziali che esprimono le condizioni di equilibrio e di congruenza, si suddivide in elementi di volume di estensione finita connessi in punti chiamati nodi, con certe proprietà e caratterizzati da un numero finito di gradi di libertà, e si riescono a scrivere per ogni elemento le equazioni di equilibrio, l'applicazione del metodo degli spostamenti consente di determinare lo stato tensionale con semplici operazioni di algebra matriciale. Il metodo prende il nome di metodo degli elementi finiti (MEF) ed è utile per l'analisi di problemi per i quali non è disponibile la soluzione esatta; esso si è sviluppato inizialmente per problemi di analisi delle tensioni, ma in seguito è stato applicato ad una grande varietà di altri problemi ingegneristici.

2 Il MEF richiede l'utilizzazione del calcolatore; per questa ragione lo sviluppo e la diffusione del metodo si è estesa negli ultimi anni. Esso permette di rendere quasi completamente automatica l'analisi di una struttura, definita dalla sua geometria, dalle sue caratteristiche elastiche e dai carichi che la sollecitano. Il metodo si presta anche a tenere conto, attraverso reiterazioni di calcolo, di possibili non linearità.

3 3.2 CONCETTO DI ELEMENTO FINITO Col MEF la struttura, continua, è modellata per mezzo di linee o superfici in un numero discreto di regioni di volume, di dimensioni piccole ma finite, o 'elementi finiti', di forma opportuna (triangoli o quadrilateri per le strutture bidimensionali, tetraedri o esaedri per quelle tridimensionali). Ciascun elemento viene connesso agli elementi adiacenti in corrispondenza di alcuni punti del contorno detti, come per le strutture reticolari, nodi. Per un elemento quadrilatero, per esempio, si possono assumere come nodi i vertici oppure i vertici ed i punti medi di ciascun lato. Gli elementi interagiscono mediante forze concentrate ai nodi, che sostituiscono la distribuzione delle tensioni sul loro contorno. Con l'approccio agli spostamenti si assumono come incognite gli spostamenti dei punti nodali. Approssimando l'andamento degli spostamenti all'interno dell'elemento mediante opportune funzioni degli spostamenti nodali (funzioni di spostamento) si riesce a definire analiticamente lo stato di deformazione e, tramite le proprietà del materiale, di tensione dell'elemento.

4 Con l'applicazione del principio dei lavori virtuali si riesce infine ad ottenere il sistema di equazioni di equilibrio dell'elemento tra il sistema di forze esterne all elemento ed il sistema di reazioni elastiche connesse agli spostamenti nodali. A questo punto il procedimento segue quello indicato in 2.6 per le strutture reticolari. La soluzione alla quale si perviene col MEF è approssimata non tanto per aver discretizzato la struttura, ma quanto perché risulta inevitabilmente approssimata la funzione con la quale si sceglie di rappresentare l'andamento degli spostamenti all'interno dell'elemento. Per data dimensione dell'elemento, al variare della funzione degli spostamenti scelta, varia l'entità della approssimazione della soluzione; usando, per esempio, come funzione degli spostamenti una polinomiale, l'approssimazione dell'andamento reale dello spostamento u migliora, per data dimensione dell elemento, usando una polinomiale di grado più elevato. E' intuitivo inoltre che, per data funzione degli spostamenti, l'approssimazione migliora con l'infittimento della discretizzazione.

5 3.3 PROCEDIMENTO DI ANALISI I passi del procedimento sono: 1) discretizzazione della struttura in EF; 2) assegnazione della funzione di spostamento: dove {s} è il vettore degli spostamenti del generico punto dell'elemento e {q} è il vettore degli spostamenti nodali; 3) derivazione dell'equazione di equilibrio dei singoli elementi: {Q}=[k]{q} 4) assemblaggio e derivazione dell'equazione di equilibrio della struttura completa: {F}=[K]{d} 5) introduzione delle condizioni al contorno e soluzione: [ K ]{ d } { F } [ K ]{ d } ll l lv v 1 = { s} = f( { q} ) Si osservi che i passi 4 e 5 sono comuni al metodo degli spostamenti.

6 3.3.1 Discretizzazione in elementi finiti La suddivisione del continuo in elementi è un'operazione molto delicata. Non esistono criteri generali, ma si possono fornire alcune indicazioni : 1) Sono da evitare elementi di forma irregolare, come quadrilateri lunghi e sottili e triangoli appuntiti, o con angoli troppo piccoli o troppo grandi (minori di 45 o maggiori di 135 circa per elementi quadrilateri); i risultati più accurati di analisi bidimensionali si ottengono con triangoli equilateri e con quadrati. 2) Nelle zone con elevati gradienti di tensione è necessario infittire la discretizzazione, rispetto a regioni nelle quali le tensioni variano più gradualmente, al fine di disporre di un numero maggiore di elementi. 3) Dal momento che la soluzione è approssimata, è necessario valutare l'accuratezza dei risultati; questo generalmente si fa eseguendo diverse analisi su modelli della struttura caratterizzati da discretizzazioni via via più fitte; in tal modo si può ottenere una misura della convergenza al valore esatto. E' inoltre opportuno controllare i risultati dal punto di vista statico e ripetere eventualmente l'analisi impiegando diversi tipi di elementi e diverse discretizzazioni.

7 Figura 3.2 Tabella 3.1 Eseguita la discretizzazione si numerano gli elementi ed i nodi e nella "tavola delle connessioni" si elencano per ogni elemento i nodi. E opportuno elencare i nodi secondo un verso prefissato come indicato nei manuali del programma di calcolo utilizzato. In figura 3.2 si riporta la discretizzazione di una lastra; si sono utilizzati elementi rettangolari disposti lungo la sua superficie media con nodi posizionati nei vertici. In tabella 3.1 è riportata la tavola delle connessioni, nella quale i nodi sono elencati in senso antiorario. I moderni codici di calcolo basati sul metodo degli EF sono in grado di eseguire la connessione automaticamente. E' necessario definire inoltre le caratteristiche del materiale, che possono variare da elemento ad elemento.

8 3.3.2 Funzione di spostamento La funzione di spostamento è assegnata con lo scopo di scrivere le relazioni di equilibrio negli elementi. La sua espressione è funzione degli spostamenti ai nodi. Ogni nodo è caratterizzato da un certo numero di gradi di libertà (o spostamenti generalizzati). Questi sono parametri nodali incogniti, scelti in relazione al tipo di problema da trattare e possono rappresentare non solo spostamenti, ma anche rotazioni, temperature, ecc. In ogni caso il numero e il tipo di spostamenti generalizzati da definire dipende dal problema. a) Figura 3.3 b)

9 METODO DEGLI ELEMENTI FINITI Per esempio per i nodi di elementi da impiegare per l'analisi di problemi tensionali bidimensionali si assumono le due componenti di spostamento nel piano (elemento lastra o membrana - fig.3.3a), per l'analisi di piastre inflesse si possono assumere lo spostamento trasversale e le due rotazioni della normale alla superficie media (elemento piastra - fig. 3.3b); combinando i due elementi si ottiene un elemento col quale si è in grado di analizzare stati tensionali dovuti a carichi nel piano e ortogonali ad esso (elemento guscio). Nel caso tridimensionale si assumono le componenti di spostamento secondo tre direzioni di riferimento. Si osservi che il termine nodo ha il solo significato di individuare il punto di connessione tra due o più elementi, i quali assumono in tale punto gli stessi valori dei gradi di libertà. Pertanto se gli elementi sono monodimensionali e per i nodi sono definiti gli spostamenti nel piano (due gradi di libertà), i nodi rappresentano delle cerniere; se per i nodi sono definiti gli spostamenti nel piano ed una rotazione intorno ad un asse perpendicolare a questo, detti nodi rappresentano degli incastri. Definendo con {q} i il vettore degli spostamenti del nodo i, si ha nel caso tridimensionale:

10 Definendo con {q} i il vettore degli spostamenti del nodo i, si ha nel caso tridimensionale: qr { q} = q i s q t essendo q r, q s e q t le componenti dello spostamento nel nodo i secondo tre direzioni. Per un elemento di volume con n nodi il vettore {q} degli spostamenti nodali dell'elemento si scrive: { q} 1 { q} 2 { q} =. { q} n L'espressione degli spostamenti {s} dei punti interni all'elemento in funzione degli spostamenti dei nodi: ( ) { s} = f { q} costituisce la funzione di spostamento dell'elemento. Il punto critico del MEF è proprio la scelta del modello di spostamento, cioè la scelta della forma della funzione f.

11 Elemento monodimensionale a due gradi di libertà Si consideri un elemento monodimensionale orientato secondo l asse x i cui nodi estremi siano soggetti a spostamenti assiali (figura 3.4) e se ne ricerchi la funzione degli spostamenti. Si scelga per gli spostamenti u, come è ovvio, una dipendenza lineare dalla ascissa: u=α 1 + α 2 x (3.1) I valori di α 1 e α 2 si ricavano imponendo che nei nodi 1 e 2 gli spostamenti assumano i valori assegnati: Si ottiene: Figura 3.4 q 1 =α 1 +α 2 x 1 q 2 =α 1 +α 2 x 2

12 α 2 1 q1 1 q2 q = = 1 x1 x 1 x 2 q x α Sostituendo nella (3.1) si ha: = q q x x x x = q ( x x ) ( q q ) x x x 1 1 q = q1 x q x x q q q q x x x x u = q x + x = q + q x2 x1 x2 x1 x2 x1 x2 x1 (3.2) che rappresenta la funzione di spostamento dell'elemento asta di fig. 3.3 in funzione degli spostamenti ai nodi, quando u è funzione lineare della ascissa. I coefficienti degli spostamenti dei nodi 1 e 2: x x x x N x = N x = ( ) ( ) 1 2 x2 x1 x2 x1 (3.3) prendono il nome di funzioni di forma dell'elemento, che in questo caso sono lineari. 1

13 Esse forniscono il peso degli spostamenti nodali nel calcolo dello spostamento del punto interno allo elemento; per x = x 1 nella (3.2) risulta u= q 1 (cioè N 1 =1 ed N 2 =0) e per x = x 2 risulta u= q 2 (N 1 =0 ed N 2 =1). La 3.2 in forma matriciale può scriversi: q1 u= [ N (3.3) 1 N2] q 2 che si può generalizzare per un elemento qualunque e scrivere in forma contratta ponendo u = {s}, vettore delle componenti dello spostamento dei punti interni all'elemento, {q 1 q 2 } T = {q}, vettore degli spostamenti nodali ed [N 1 N 2 ]=[N], matrice delle funzioni di forma dell'elemento: { } { } ( ) [ ]{ } s = f q = N q (3.4)

Problemi piani: L elemento triangolare a 3 nodi. Dalle dispense del prof. Dario Amodio e dalle lezioni del prof. Giovanni Santucci

Problemi piani: L elemento triangolare a 3 nodi. Dalle dispense del prof. Dario Amodio e dalle lezioni del prof. Giovanni Santucci Problemi piani: L elemento triangolare a 3 nodi Dalle dispense del prof. Dario Amodio e dalle lezioni del prof. Giovanni Santucci Elementi bidimensionali: stato di tensione piana In molti casi, pur essendo

Dettagli

METODO DEGLI ELEMENTI FINITI

METODO DEGLI ELEMENTI FINITI 3.4 CENNI SULLA FORMULAZIONE VARIAZIONALE DEL METODO DEGLI SPOSTAMENTI In un corpo elastico caricato da un sistema di forze, l'energia potenziale totale П uguaglia la somma della energia di deformazione

Dettagli

1 Schemi alle differenze finite per funzioni di una variabile

1 Schemi alle differenze finite per funzioni di una variabile Introduzione In questa dispensa vengono forniti alcuni elementi di base per la soluzione di equazioni alle derivate parziali che governano problemi al contorno. A questo scopo si introducono, in forma

Dettagli

METODO DEGLI ELEMENTI FINITI

METODO DEGLI ELEMENTI FINITI Barlow Points In teoria potremmo valutare tensioni e deformazioni, o i gradienti per altri tipi di analisi, in qualsiasi punto interno all elemento. Tuttavia le tensioni e le deformazioni previste dal

Dettagli

POLITECNICO DI BARI I FACOLTÀ DI INGEGNERIA CORSO DI LAUREA IN INGEGNERIA MECCANICA DIPARTIMENTO DI INGEGNERIA MECCANICA E GESTIONALE

POLITECNICO DI BARI I FACOLTÀ DI INGEGNERIA CORSO DI LAUREA IN INGEGNERIA MECCANICA DIPARTIMENTO DI INGEGNERIA MECCANICA E GESTIONALE POLITECNICO DI BARI I FACOLTÀ DI INGEGNERIA CORSO DI LAUREA IN INGEGNERIA MECCANICA DIPARTIMENTO DI INGEGNERIA MECCANICA E GESTIONALE TESI DI LAUREA IN MECCANICA DEI MATERIALI DESIGN OTTIMO DI UN ANTENNA

Dettagli

METODO DEGLI ELEMENTI FINITI

METODO DEGLI ELEMENTI FINITI L'equazione di equilibrio di una struttura discretizzata in elementi finiti è: {F}=[K]{d} nella quale {F} è il vettore delle forze nodali, [K] è la matrice di rigidezza della struttura e {d} è il vettore

Dettagli

PROGETTAZIONE DI STRUTTURE MECCANICHE

PROGETTAZIONE DI STRUTTURE MECCANICHE PROGETTAZIONE DI STRUTTURE MECCANICHE Andrew Ruggiero A.A. 2011/12 Analisi matriciale delle strutture: caratterizzazione degli elementi A. Gugliotta, Elementi finiti Parte I Elementi e strutture Una qualsiasi

Dettagli

1. Generalità. Il M.E.F. può essere considerato una generalizzazione del metodo. matriciale utilizzato per l analisi di strutture discrete. El.

1. Generalità. Il M.E.F. può essere considerato una generalizzazione del metodo. matriciale utilizzato per l analisi di strutture discrete. El. R. BARBONI COSTRUZIONI AEROSPAZIALI. Generalità Con l avvento degli elaboratori elettronici si è avuto un enorme sviluppo di tutte quelle tecniche in grado di generare modelli matematici in termini di

Dettagli

Introduzione elementare al metodo degli Elementi Finiti.

Introduzione elementare al metodo degli Elementi Finiti. Introduzione elementare al metodo degli Elementi Finiti carmelo.demaria@centropiaggio.unipi.it Obiettivi Introduzione elementare al metodo degli elementi finiti Analisi Termica Analisi Strutturale Analisi

Dettagli

Elementi finiti solidi

Elementi finiti solidi Esercitazioni del corso di Costruzione di Macchine 2 e Progettazione FEM a cura dell ing. Francesco Villa Elementi finiti solidi Costruzione di Macchine 2 e Progettazione FEM Prof. Sergio Baragetti Dalmine

Dettagli

METODO DEGLI ELEMENTI FINITI

METODO DEGLI ELEMENTI FINITI Introduzione al METODO DEGLI ELEMENTI FINITI Osservazioni sui metodi variazionali approssimati classici Le funzioni approssimanti devono: Soddisfare i requisiti di continuità Essere linearmente indipendenti

Dettagli

R. BARBONI COSTRUZIONI AEROSPAZIALI L elemento finito

R. BARBONI COSTRUZIONI AEROSPAZIALI L elemento finito R. BARBONI COSRUZIONI AEROSPAZIALI 17 4. L elemento finito Nella realtà, aste, travi, piastre, gusci,... non sono sollecitati solo con carichi applicati ai loro estremi ed il loro comportamento non può

Dettagli

Introduzione elementare al metodo degli Elementi Finiti.

Introduzione elementare al metodo degli Elementi Finiti. Introduzione elementare al metodo degli Elementi Finiti carmelo.demaria@centropiaggio.unipi.it Obiettivi Introduzione elementare al metodo degli elementi finiti Analisi Termica Analisi Strutturale Analisi

Dettagli

Le piastre:classificazione

Le piastre:classificazione Le piastre 1. piastre sottili h/l= 1/50-1/10 : piastre sottili con rigidezza flessionale che portano distribuzioni di carico bidimensionale prevalentemente attraverso momenti flettenti, momenti torcenti

Dettagli

Nome: Cognome: Data: 14/02/2017

Nome: Cognome: Data: 14/02/2017 Esercizio N. 1 Valutazione 4 Un elicottero dal peso P= 6800Kg si trova in condizioni di punto fisso, ovvero in condizione di equilibrio (orizzontale e verticale). La distribuzione delle forze sulle due

Dettagli

MECCANICA COMPUTAZIONALE

MECCANICA COMPUTAZIONALE MECCANICA COMPUTAZIONALE Capitolo 1 Introduzione Rev. 21 aprile 2008 (rev. 21/04/2008) Capitolo 1: 1/28 Argomenti trattati nel capitolo 1 Esempi di problemi strutturali complessi Limiti degli approcci

Dettagli

Introduzione ai problemi piani in elasticità lineare

Introduzione ai problemi piani in elasticità lineare Introduzione ai problemi piani in elasticità lineare 19 novembre 2010 1 Fondamenti dei problemi piani 1.1 Relazioni generali Si consideri un corpo immerso in uno spazio Euclideo tridimensionale R 3 avente

Dettagli

Costruzioni in zona sismica

Costruzioni in zona sismica Costruzioni in zona sismica Lezione 7 Sistemi a più gradi di libertà Il problema dinamico viene formulato con riferimento a strutture con un numero finito di gradi di libertà. Consideriamo le masse concentrate

Dettagli

METODO DEGLI ELEMENTI FINITI

METODO DEGLI ELEMENTI FINITI Elemento Piastra Con elemento piastra si intende un elemento piano (avente una dimensione piccola rispetto alle altre due) capace di reagire alle azioni che tendono ad infletterlo fuori dal piano in cui

Dettagli

PRINCIPI DI MODELLAZIONE

PRINCIPI DI MODELLAZIONE PRINCIPI DI MODELLAZIONE SINGOLARITA DELLO STATO DI TENSIONE In certe condizioni possono crearsi nel modello punti di singolarità dello stato di tensione, in cui quest ultimo risulta non limitato e tendente

Dettagli

Sommario 1 VOLUME CAPITOLO 1 - Matrici 1 VOLUME CAPITOLO 3 - Geometria delle masse 1 VOLUME CAPITOLO 2 - Notazione indiciale

Sommario 1 VOLUME CAPITOLO 1 - Matrici 1 VOLUME CAPITOLO 3 - Geometria delle masse 1 VOLUME CAPITOLO 2 - Notazione indiciale Sommario CAPITOLO 1 - Matrici...! Definizione! Matrici di tipo particolare Definizioni relative-! Definizioni ed operazioni fondamentali! Somma di matrici (o differenza)! Prodotto di due matrici! Prodotti

Dettagli

REGISTRO DELLE LEZIONI di Metodi agli Elementi Finiti

REGISTRO DELLE LEZIONI di Metodi agli Elementi Finiti UNIVERSITÀ DEGLI STUDI CAGLIARI FACOLTÀ DI INGEGNERIA E ARCHITETTURA REGISTRO DELLE LEZIONI di Metodi agli Elementi Finiti dettate dal prof. Filippo Bertolino nell Anno Accademico 2013-14 ARGOMENTO DELLA

Dettagli

Progetto di un solaio laterocementizio

Progetto di un solaio laterocementizio 1 Prima esercitazione progettuale Progetto di un solaio laterocementizio Lezione del 20/10/2015: Analisi delle sollecitazioni con il Metodo delle Forze 1 Definizione dei coefficienti di deformabilità 2

Dettagli

Dispense del corso di Metodi Numerici per le Equazioni Differenziali

Dispense del corso di Metodi Numerici per le Equazioni Differenziali Dispense del corso di Metodi Numerici per le Equazioni Differenziali Progetto numerico al calcolatore - Parte III Soluzione agli elementi finiti di un problema parabolico Mario Putti Dipartimento di Matematica

Dettagli

Nome: Cognome: Data: 01/04/2017

Nome: Cognome: Data: 01/04/2017 Esercizio N. 1 Valutazione 5 Un ala, lunga L = 25m, è modellata come una trave in alluminio (E = 72GPa, Iy=2e-4m 4 ) incastrata alla fusoliera in x=0m, come in figura. La sollecitazione che si vuole studiare

Dettagli

MECCANICA COMPUTAZIONALE

MECCANICA COMPUTAZIONALE MECCANICA COMPUTAZIONALE Capitolo Metodo diretto della rigidezza Rev. maggio 006 (rev. /05/006) Capitolo : /4 Argomenti trattati nel capitolo Idealizzazione e discretizzazione Rigidezza dell elemento biella

Dettagli

FORMULAZIONE DELL ELEMENTO DI TIMOSHENKO

FORMULAZIONE DELL ELEMENTO DI TIMOSHENKO FORMUAZIONE DE EEMENTO DI TIMOSHENKO Nell analisi strutturale e nel progetto dei telai si utilizza quasi sempre la teoria delle travi sviluppata da Eulero-Bernoulli. Molti manuali usano esclusivamente

Dettagli

RELAZIONE ESERCITAZIONI AUTODESK INVENTOR

RELAZIONE ESERCITAZIONI AUTODESK INVENTOR 20 Ottobre 2015 RELAZIONE ESERCITAZIONI AUTODESK INVENTOR Corso di Costruzione di Macchine e Affidabilità C.d.L.M. in Ingegneria Meccanica Docente: Prof.ssa Cosmi Francesca Assistente: Dott.ssa Ravalico

Dettagli

MSC. Marc Mentat Esercitazioni ed esempi

MSC. Marc Mentat Esercitazioni ed esempi Università degli studi di Ferrara - Facoltà di Architettura Corso Integrato di Disegno Automatico A.A. 2001-2002 Modulo di Sicurezza ed Affidabilità delle Costruzioni Titolare: Arch. Giampaolo Guerzoni

Dettagli

Introduzione al Metodo agli Elementi Finiti (FEM) (x, y) Γ Tale formulazione viene detta Formulazione forte del problema.

Introduzione al Metodo agli Elementi Finiti (FEM) (x, y) Γ Tale formulazione viene detta Formulazione forte del problema. Introduzione al Metodo agli Elementi Finiti (FEM) Consideriamo come problema test l equazione di Poisson 2 u x 2 + 2 u = f(x, y) u = f y2 definita su un dominio Ω R 2 avente come frontiera la curva Γ,

Dettagli

Formulazione delle equazioni del moto per un sistema lineare a tre gradi di libertà. Proprietà delle matrici di rigidezza e di flessibilità

Formulazione delle equazioni del moto per un sistema lineare a tre gradi di libertà. Proprietà delle matrici di rigidezza e di flessibilità Formulazione delle equazioni del moto per un sistema lineare a tre gradi di libertà Proprietà delle matrici di rigidezza e di flessibilità Prof. Adolfo Santini - Dinamica delle Strutture Introduzione In

Dettagli

5.3 Equazioni differenziali: alcuni problemi al contorno

5.3 Equazioni differenziali: alcuni problemi al contorno 5.3. EQUAZIONI DIFFERENZIALI: ALCUNI PROBLEMI AL CONTORNO 45 5.2.7 Il metodo di Runge-Kutta Esistono diversi metodi detti di Runge-Kutta che fanno uso di varie medie delle pendenze in t 0, t 1 e in punti

Dettagli

Il metodo di Galerkin Elementi Finiti Lineari

Il metodo di Galerkin Elementi Finiti Lineari Il metodo di Galerkin Elementi Finiti Lineari Si consideri il problema: u(x) = f(x), x (, ), u() = 0, u() = 0. Se ne fornisca la corrispondente formulazione debole. Si costruiscano inoltre la matrice di

Dettagli

I dati vengono introdotti attraverso un file di input. Esso richiede di inserire alcuni dati secondo lo schema che segue.

I dati vengono introdotti attraverso un file di input. Esso richiede di inserire alcuni dati secondo lo schema che segue. INTRODUZIONE Il programma consente l analisi di telai piani con l utilizzo del metodo degli spostamenti. Le ipotesi sono: - materiale elastico lineare isotropo - piccoli spostamenti L analisi consente

Dettagli

Modellazione e calcolo assistito di strutture meccaniche

Modellazione e calcolo assistito di strutture meccaniche Modellazione e calcolo assistito di strutture meccaniche Lezione 1 Introduzione al metodo FEM Il metodo degli elementi finiti FEM: Finite Element Method E un metodo numerico Inizialmente è stato sviluppato

Dettagli

sin =0 (1.1) Risolvendo l equazione (1.1) rispetto alla forza adimesionalizzata =, si ottiene: =

sin =0 (1.1) Risolvendo l equazione (1.1) rispetto alla forza adimesionalizzata =, si ottiene: = Capitolo 1 INTRODUZIONE ALLA STABILITA DELL EQUILIBRIO 1.1 Sistemi articolati rigidi Si consideri una mensola rigida vincolata tramite un supporto elastico di rigidezza, soggetta a carico assiale, come

Dettagli

Assemblaggio degli Elementi: Soluzione del Problema Strutturale Discreto

Assemblaggio degli Elementi: Soluzione del Problema Strutturale Discreto Il Metodo degli Elementi Finiti Assemblaggio degli Elementi: Soluzione del Problema Strutturale Discreto Dalle dispense del prof. Dario Amodio e dalle lezioni del prof. Giovanni Santucci Per ottenere la

Dettagli

Il modello di trave adottato dal Saint-Venant si basa sulle seguenti ipotesi:

Il modello di trave adottato dal Saint-Venant si basa sulle seguenti ipotesi: IL PROBLEM DEL DE SINT-VENNT Il problema del De Saint-Venant è un particolare problema di equilibrio elastico di notevole interesse applicativo, potendosi considerare alla base della teoria tecnica delle

Dettagli

Premessa 1. Notazione e simbologia Notazione matriciale Notazione tensoriale Operazioni tensoriali in notazione matriciale 7

Premessa 1. Notazione e simbologia Notazione matriciale Notazione tensoriale Operazioni tensoriali in notazione matriciale 7 Premessa 1 Notazione e simbologia 3 0.1 Notazione matriciale 3 0.2 Notazione tensoriale 4 0.3 Operazioni tensoriali in notazione matriciale 7 Capitolo 7 La teoria delle travi 9 7.1 Le teorie strutturali

Dettagli

za Bozza - Appunti di Scienza delle Costruzioni 1, dalle lezioni del prof. P. Podio-Guidugli, a.a. 2007/8 -

za Bozza - Appunti di Scienza delle Costruzioni 1, dalle lezioni del prof. P. Podio-Guidugli, a.a. 2007/8 - 11 Calcolo di spostamenti e rotazioni in travature isostatiche 81 11 Calcolo di spostamenti e rotazioni in travature isostatiche Consideriamo d ora in avanti travature linearmente termoelastiche dello

Dettagli

7.8. Le analogie nella torsione...

7.8. Le analogie nella torsione... Prefazione XIII 1. IL PROBLEMA Dl SAINT-VENANT I 1.1. Generalit I 1.1.1. Modello geometrico I 1.1.2. Modello delle azioni esterne 2 1.1.3. Modello meccanico o reologico del materiale 3 1.1.4. Equazioni

Dettagli

METODI NUMERICI. Metodo delle differenze finite

METODI NUMERICI. Metodo delle differenze finite METOI NUMERICI Lo sviluppo dei moderni calcolatori ha consentito di mettere a disposizione della scienza e della tecnica formidabili strumenti che hanno permesso di risolvere numerosi problemi la cui soluzione

Dettagli

Possiamo scrivere le tre precedenti espressioni in un'unica equazione matriciale:

Possiamo scrivere le tre precedenti espressioni in un'unica equazione matriciale: A1. Considerazioni sul cambio di un sistema di riferimento cartesiano ortogonale Sia xyz un sistema di riferimento cartesiano ortogonale di origine O e di riferimento cartesiano pure di origine O. un secondo

Dettagli

Piastre sottili: soluzioni esatte. Piastra ellittica incastrata al bordo soggetta a carico distribuito costante

Piastre sottili: soluzioni esatte. Piastra ellittica incastrata al bordo soggetta a carico distribuito costante Piastre sottili: soluzioni esatte Piastra ellittica incastrata al bordo soggetta a carico distribuito costante Piastre sottili: soluzioni esatte Piastra triangolare appoggiata al bordo soggetta a carico

Dettagli

STUDIO DI UN ROTORE OPERANTE IN CAMPO LINEARE ELASTICO

STUDIO DI UN ROTORE OPERANTE IN CAMPO LINEARE ELASTICO STUDIO DI UN ROTORE OPERANTE IN CAMPO LINEARE ELASTICO Corso di Costruzione di Macchine 4 Titolare del corso: Prof. Ing. Vincenzo Vullo Studenti: Leonardo Di Stefano Claudio Donati Luca Lerario ANNO ACCADEMICO

Dettagli

Università degli Studi di Cagliari - Facoltà di Ingegneria e Architettura. Fondamenti di Costruzioni Meccaniche Tensione e deformazione Carico assiale

Università degli Studi di Cagliari - Facoltà di Ingegneria e Architettura. Fondamenti di Costruzioni Meccaniche Tensione e deformazione Carico assiale Esercizio N.1 Un asta di acciaio è lunga 2.2 m e non può allungarsi più di 1.2 mm quando le si applica un carico di 8.5 kn. Sapendo che E = 200 GPa, determinare: (a) il più piccolo diametro dell asta che

Dettagli

Consideriamo come piena solo l innalzamento del livello causato da un aumento delle portate nel corso d acqua considerato.

Consideriamo come piena solo l innalzamento del livello causato da un aumento delle portate nel corso d acqua considerato. Propagazione delle piene: generalità Consideriamo come piena solo l innalzamento del livello causato da un aumento delle portate nel corso d acqua considerato. La propagazione dell onda di piena dipende

Dettagli

APPUNTI DI SCIENZA DELLE COSTRUZIONI. Giulio Alfano

APPUNTI DI SCIENZA DELLE COSTRUZIONI. Giulio Alfano APPUNTI DI SCIENZA DELLE COSTRUZIONI Giulio Alfano Anno Accademico 2004-2005 ii Indice 1 TRAVATURE PIANE 1 1.1 Geometria, equilibrio e vincoli...................... 1 1.1.1 Piani di simmetria........................

Dettagli

BIBLIOTECA DSTR B 873. J.U.A.V. VEViEZIA. CA r nrc- ''JRO. DIPA r- V: "'."O DI SClf. --~Nl. lstitilo Universitario di Architettura VENEZIA

BIBLIOTECA DSTR B 873. J.U.A.V. VEViEZIA. CA r nrc- ''JRO. DIPA r- V: '.O DI SClf. --~Nl. lstitilo Universitario di Architettura VENEZIA BIBLIOTECA DIPA r- V: "'."O DI SClf --~Nl CA r nrc- ''JRO J.U.A.V. VEViEZIA ----------- lstitilo Universitario di Architettura VENEZIA DSTR B 873 BIBLIOTECA CENTRALE 1 Éi~;,1-r1 1 r ~ l"i,.,~... "-'ifi;~:.~;-j

Dettagli

Analisi. Analisi. Analisi lineari 1.1. Analisi statica lineare

Analisi. Analisi. Analisi lineari 1.1. Analisi statica lineare 2 AxisVM permette di eseguire analisi statiche lineari e non lineari, analisi dinamiche lineari e non lineari, analisi modali e di instabilità, attraverso il Metodo agli Elementi Finiti. Ogni analisi è

Dettagli

Risposta in vibrazioni libere di un sistema lineare viscoso a più gradi di libertà. Prof. Adolfo Santini - Dinamica delle Strutture 1

Risposta in vibrazioni libere di un sistema lineare viscoso a più gradi di libertà. Prof. Adolfo Santini - Dinamica delle Strutture 1 Risposta in vibrazioni libere di un sistema lineare viscoso a più gradi di libertà Prof. Adolfo Santini - Dinamica delle Strutture 1 Vibrazioni libere non smorzate 1/6 Le equazioni del moto di un sistema

Dettagli

Introduzione al Calcolo Scientifico - A.A

Introduzione al Calcolo Scientifico - A.A Introduzione al Calcolo Scientifico - A.A. 2009-2010 Discretizzazione di un problema ai limiti Si consideri il seguente problema ai limiti del secondo ordine (problema dell elasticità 1D in regime di piccole

Dettagli

Metodo degli Elementi finiti: Formulazione secondo P.L.V. L est = P δf + ½. δf δp

Metodo degli Elementi finiti: Formulazione secondo P.L.V. L est = P δf + ½. δf δp Metodo degli Elementi finiti: Formulazione secondo P.L.V. P Per sistemi linearmente elastici δp L est L est = ½.P.f L est δf f L est = P δf + ½. δf δp Per strutture tridimensionali sottoposte a forze distribuite

Dettagli

Figura 2.5. Arco a tre cerniere allineate sotto carico.

Figura 2.5. Arco a tre cerniere allineate sotto carico. 10 Effetti geometrici in strutture elastiche 37 quelle di compatibilità cinematica ammettono sempre soluzione unica, per cui si possono sempre determinare gli sforzi normali dovuti ad un carico esterno

Dettagli

INTERPOLAZIONI CON SPLINE

INTERPOLAZIONI CON SPLINE INTERPOLAZIONI CON SPLINE Assegnati gli n +1valori che la funzione f assume nei nodi x i, si costruisce un interpolazione polinomiale a tratti. In ognuno degli intervalli [x i 1,x i ] il polinomio interpolatore

Dettagli

Il teorema dei lavori virtuali applicato alle strutture

Il teorema dei lavori virtuali applicato alle strutture 8 Il teorema dei lavori virtuali applicato alle strutture Tema 8.1 Si consideri la struttura riportata in figura 8.1. Si determini la componente di spostamento v S per la sezione S indicata, utilizzando

Dettagli

Prefazione... Introduzione... xvii

Prefazione... Introduzione... xvii Prefazione.......................................................... Introduzione... xvii 1 I concetti di base... 1 1.1 Oggetto e obiettivi.... 1 1.2 Il modello geometrico.............................................

Dettagli

INTRODUZIONE AL METODO DEGLI ELEMENTI FINITI E ALLA MODELLAZIONE FEM

INTRODUZIONE AL METODO DEGLI ELEMENTI FINITI E ALLA MODELLAZIONE FEM ITRODUZIOE AL METODO DEGLI ELEMETI FIITI E ALLA MODELLAZIOE FEM Andrea BACCHETTO * * Ingegnere Civile Strutture; Dottorato di Ricerca in Meccanica delle Strutture ; SKF Engineering & Research Centre DESCRIZIOE

Dettagli

SOLUZIONE DELL EQUAZIONE DI FOURIER PER PER PIASTRA SOTTILE CON SORGENTE TERMICA IN MOTO UNIFORME

SOLUZIONE DELL EQUAZIONE DI FOURIER PER PER PIASTRA SOTTILE CON SORGENTE TERMICA IN MOTO UNIFORME SOLUZIONE DELL EUAZIONE DI FOURIER PER PER PIASTRA SOTTILE CON SORGENTE TERMICA IN MOTO UNIFORME Luca Ghezzi May 2 Abstract L equazione del calore di Fourier è risolta analiticamente nel caso di un mezzo

Dettagli

La modellazione delle strutture

La modellazione delle strutture La modellazione delle strutture 1 Programma 31-1-2012 Introduzione e brevi richiami al metodo degli elementi finiti 7-2-2012 La modellazione della geometria 14-2-2012 21-2-2012 28-2-2012 6-3-2012 13-32012

Dettagli

Valutazione della curvatura media di un elemento strutturale in c.a.

Valutazione della curvatura media di un elemento strutturale in c.a. 16.4 Stato limite di deformazione 16.4.1 Generalità Lo stato limite di deformazione può essere definito come la perdita di funzionalità della struttura a causa di una sua eccessiva deformazione. Segnali

Dettagli

Aindica la sezione retta della trave, ipotizzata costante lungo tutta la lunghezza,

Aindica la sezione retta della trave, ipotizzata costante lungo tutta la lunghezza, Capitolo 9 IL PROBLEMA DI SAINT-VENANT (prof. Elio Sacco) 9.1 Posizione del problema Saint-Venant 1 considerò un particolare problema dell equilibrio elastico. 9.1.1 Ipotesi geometriche Il corpo tridimensionale

Dettagli

Meccanica Computazionale e Calcolo Anelastico delle Strutture. I prova in itinere

Meccanica Computazionale e Calcolo Anelastico delle Strutture. I prova in itinere I prova in itinere 19-11-2009 1) Per il problema piano in figura si determini lo spostamento del punto D utilizzando la discretizzazione ad elementi finiti riportata (un elemento triangolare ed un elemento

Dettagli

Il Teorema dei Lavori Virtuali Applicato alle Strutture

Il Teorema dei Lavori Virtuali Applicato alle Strutture Il Teorema dei Lavori Virtuali Applicato alle Strutture Tema 1 Si consideri la struttura riportata in figura 1. Si determini la componente di spostamento v S per la sezione S indicata, utilizzando il teorema

Dettagli

Cenni di meccanica computazionale ed applicazione per strutture con elementi beam

Cenni di meccanica computazionale ed applicazione per strutture con elementi beam Cenni di meccanica computazionale ed applicazione per strutture con elementi beam Tecnica delle Costruzioni II - 5 Marzo 201 1 Rigid jointed frames beam elements Resistono ad effetti combinati di azioni

Dettagli

σ x = -3 N/mm 2 σ y = 13 N/mm 2 τ xy = -6 N/mm 2

σ x = -3 N/mm 2 σ y = 13 N/mm 2 τ xy = -6 N/mm 2 SCIENZ DEE COSTRUZIONI - Compito 1 o studente è tenuto a dedicare 30 minuti alla soluzione di ogni esercizio Si consideri una trave a mensola, di lunghezza =1 m e di sezione retta uadrata di lato 10 cm,

Dettagli

Tecnica delle Costruzioni Esercitazione 02

Tecnica delle Costruzioni Esercitazione 02 TECNICA DELLE COSTRUZIONI ESERCITAZIONI 1 Strutture reticolari METODO DEI NODI Si procede nell isolare un nodo della struttura reticolare tagliando le aste che vi convergono. Si esplicitano quindi gli

Dettagli

Esempi di domande per scritto e orale

Esempi di domande per scritto e orale 260 A.Frangi, 208 Appendice D Esempi di domande per scritto e orale D. LE e PLV Risolvere il problema 7.6.6 Risolvere il problema 7.6.7 Nella pagina del docente relativa a Scienza delle Costruzioni allievi

Dettagli

Strategie per migliorare la soluzione

Strategie per migliorare la soluzione Strategie per migliorare la soluzione Facendo riferimento ai problemi su strutture sollecitate in modo membranale, discretizzazioni inadeguate possono portare a risultati molto approssimati Ad esempio

Dettagli

Calcolo della risposta di un sistema lineare viscoso a più gradi di libertà con il metodo dell Analisi Modale

Calcolo della risposta di un sistema lineare viscoso a più gradi di libertà con il metodo dell Analisi Modale Calcolo della risposta di un sistema lineare viscoso a più gradi di libertà con il metodo dell Analisi Modale Lezione 1/ Prof. Adolfo Santini - Dinamica delle Strutture 1 Disaccoppiamento delle equazioni

Dettagli

F, viene allungata o compressa di un tratto s rispetto alla sua posizione di equilibrio.

F, viene allungata o compressa di un tratto s rispetto alla sua posizione di equilibrio. UNIÀ 4 L EQUILIBRIO DEI SOLIDI.. La forza elastica di una molla.. La costante elastica e la legge di Hooke. 3. La forza peso. 4. Le forze di attrito. 5. La forza di attrito statico. 6. La forza di attrito

Dettagli

ossia può anche essere localizzato univocamente sul piano complesso con la sua forma polare.

ossia può anche essere localizzato univocamente sul piano complesso con la sua forma polare. ALGEBRA COMPLESSA Nel corso dei secoli gli insiemi dei numeri sono andati man mano allargandosi per rispondere all esigenza di dare soluzione a equazioni e problemi sempre nuovi I numeri complessi sono

Dettagli

CORSO DI COMPLEMENTI DI MECCANICA. Prof. Vincenzo Niola

CORSO DI COMPLEMENTI DI MECCANICA. Prof. Vincenzo Niola CORSO DI COMPLEMENTI DI MECCANICA Prof. Vincenzo Niola SISTEMI A DUE GRADI DI LIBERTÀ Lo studio dei sistemi a più gradi di libertà verrà affrontato facendo riferimento, per semplicità, solo a sistemi conservativi,

Dettagli

Elementi di Teoria dei Sistemi

Elementi di Teoria dei Sistemi Parte 2, 1 Elementi di Teoria dei Sistemi Parte 2, 2 Definizione di sistema dinamico Parte 2, 3 Sistema dinamico a tempo continuo Ingresso Uscita Parte 2, 4 Cosa significa Dinamico?? e` univocamente determinata?

Dettagli

Appendice 2: TEORIA LINEARE della DEFORMAZIONE. ( ),

Appendice 2: TEORIA LINEARE della DEFORMAZIONE. ( ), Capitolo I Cinematica Appendice 2: TEORIA LINEARE della DEFORMAZIONE. Sia C la regione tridimensionale dello spazio occupata da una corpo B nella sua assegnata forma di riferimento. Si assuma che la sostanza

Dettagli

CAP. 2 METODO DELLA RIGIDEZZA E STRUTTURE RETICOLARI PIANE

CAP. 2 METODO DELLA RIGIDEZZA E STRUTTURE RETICOLARI PIANE CAP. METODO DELLA RIGIDEZZA E STRUTTURE RETICOLARI PIANE. Introduzione Nel primo capitolo abbiamo introdotto il concetto di matrice di rigidezza. Adesso dobbiamo spiegare come assemblare gli elementi per

Dettagli

Introduzione agli elementi finiti. Roberto Lugli

Introduzione agli elementi finiti. Roberto Lugli Introduzione agli elementi finiti Roberto Lugli 27 dicembre 2014 Indice 1 Elementi di matematica 2 1.1 Richiami di algebra lineare................... 2 1.2 Ricerca degli autovalori e degli autovettori...........

Dettagli

Elementi di Teoria dei Sistemi. Definizione di sistema dinamico. Cosa significa Dinamico? Sistema dinamico a tempo continuo

Elementi di Teoria dei Sistemi. Definizione di sistema dinamico. Cosa significa Dinamico? Sistema dinamico a tempo continuo Parte 2, 1 Parte 2, 2 Elementi di Teoria dei Sistemi Definizione di sistema dinamico Parte 2, 3 Sistema dinamico a tempo continuo Cosa significa Dinamico? Parte 2, 4? e` univocamente determinata? Ingresso

Dettagli

EQUAZIONE DELLA LINEA ELASTICA

EQUAZIONE DELLA LINEA ELASTICA ESERCIZI SVOLTI O CON TRACCIA DI SOLUZIONE SU EQUAZIONE DELLA LINEA ELASTICA v 0.9 Calcolare lo spostamento verticale del pattino A della struttura utilizzando l equazione della linea elastica. Materiale:

Dettagli

Nome: Cognome: Data: 18/01/2018

Nome: Cognome: Data: 18/01/2018 Esercizio N. 1 Valutazione 4 Sia dato un velivolo, modellato come una trave libera di lunghezza L = 30m in equilibrio sotto l azione di una distribuzione di portanza e del peso P, concentrato sulla fusoliera

Dettagli

REGISTRO DELLE LEZIONI 2006/2007. Tipologia. Addì Tipologia. Addì Tipologia

REGISTRO DELLE LEZIONI 2006/2007. Tipologia. Addì Tipologia. Addì Tipologia Introduzione ai contenuti del corso. Descrizione dell'organizzazione del corso e delle modalità di svolgimento delle lezioni e degli esami. Teoria lineare della trave. Ipotesi di base. Problema assiale:

Dettagli

Sommario. CAPITOLO 3 - Vettori...!

Sommario. CAPITOLO 3 - Vettori...! Sommario CAPITOLO 1 - Matrici...! Definizione! Matrici di tipo particolare Definizioni relative-! Definizioni ed operazioni fondamentali! Somma di matrici (o differenza)! Prodotto di due matrici! Prodotti

Dettagli

Nome: Cognome: Data: 4/11/2017

Nome: Cognome: Data: 4/11/2017 Esercizio N. 1 Valutazione 5 1. Si consideri un lanciatore, lungo L = 40m, fermo sulla rampa di lancio modellato come una trave appoggiata, alla base (x=0m) e a x = 3/4L, come in figura. La sollecitazione

Dettagli

Metodi di riduzione del modello dinamico Dott. Lotti Nevio

Metodi di riduzione del modello dinamico Dott. Lotti Nevio 1. Metodi di riduzione del modello dinamico Nel mettere insieme modelli dinamici di elementi diversi di una struttura (come avviene nel caso di un velivolo e del suo carico utile, ma anche per i diversi

Dettagli

n. CFU: 12 n. ore: 120 A.A.: Sede:Potenza Semestre: Annuale

n. CFU: 12 n. ore: 120 A.A.: Sede:Potenza Semestre: Annuale INSEGNAMENTO: SCIENZA DELLE COSTRUZIONI DOCENTE: CLAUDIO FRANCIOSI e-mail: claudio.franciosi@unibas.it Lingua di insegnamento:italiano sito web:www.scienzadellecostruzioni.co.uk n. CFU: 12 n. ore: 120

Dettagli

Gradi di libertà e vincoli. Moti del corpo libero

Gradi di libertà e vincoli. Moti del corpo libero Gradi di libertà e vincoli Moti del corpo libero Punto materiale Il punto materiale descrive un corpo di cui interessa individuare solo la sua posizione Nel piano la posizione di un punto si individua

Dettagli

Nome: Cognome: Data: 15/02/2016

Nome: Cognome: Data: 15/02/2016 Esercizio N. 1 Valutazione 5 Un satellite dotato di pannelli solari, modellizzato come una trave con massa concentrata M sat = 1500kg in L/2, deve essere sospeso orizzontalmente tramite due cavi per effettuare

Dettagli

ˆ b, si usa la convenzione di prendere. come verso positivo quello antiorario e come verso negativo quello orario.

ˆ b, si usa la convenzione di prendere. come verso positivo quello antiorario e come verso negativo quello orario. Capitolo 4 Le rotazioni 4.1 Richiami di teoria E' opportuno ricordare che, dato un angolo orientato ao ˆ b, si usa la convenzione di prendere come verso positivo quello antiorario e come verso negativo

Dettagli

(h + 1)y + hz = 1. 1 [5 punti] Determinare le eventuali soluzioni del seguente sistema di congruenze: 2x 5 mod 3 3x 2 mod 5.

(h + 1)y + hz = 1. 1 [5 punti] Determinare le eventuali soluzioni del seguente sistema di congruenze: 2x 5 mod 3 3x 2 mod 5. Dipartimento di Matematica e Informatica Anno Accademico 07-08 Corso di Laurea in Informatica (L-) Prova scritta di Matematica Discreta ( CFU) 8 Luglio 08 [5 punti] Determinare le eventuali soluzioni del

Dettagli

Analisi di un telaio a due livelli e maglie di forma generica secondo il Metodo degli Spostamenti (MdS)

Analisi di un telaio a due livelli e maglie di forma generica secondo il Metodo degli Spostamenti (MdS) Pagina 1 di 18 Analisi di un telaio a due livelli e maglie di forma generica secondo il Metodo degli Spostamenti (MdS) Schema Strutturale Valori numerici Si riportano nel seguito i valori numerici delle

Dettagli

Soluzioni dello scritto di Geometria del 28 Maggio 2009

Soluzioni dello scritto di Geometria del 28 Maggio 2009 Soluzioni dello scritto di Geometria del 8 Maggio 9 1) Trovare le equazioni del sottospazio V(w, x, y, z) R 4 generato dalle quaterne c 1 = (,,, 1) e c = (, 1, 1, ). ) Trovare una base per OGNI autospazio

Dettagli

Corso di Laurea in Ingegneria Meccanica Anno Accademico 2017/2018 Meccanica Razionale - Prova teorica del 10/2/2018.

Corso di Laurea in Ingegneria Meccanica Anno Accademico 2017/2018 Meccanica Razionale - Prova teorica del 10/2/2018. Corso di Laurea in Ingegneria Meccanica Anno Accademico 2017/2018 Meccanica Razionale - Prova teorica del 10/2/2018 Prova teorica - A Nome... N. Matricola... Ancona, 10 febbraio 2018 1. Un asta AB di lunghezza

Dettagli

Scienza delle Costruzioni per Allievi di Ing. per l Ambiente e il Territorio Compito 1

Scienza delle Costruzioni per Allievi di Ing. per l Ambiente e il Territorio Compito 1 Compito 1 1) Determinare il baricentro della sezione in figura, preferibilmente per via grafica, e definire la posizione dell asse neutro. Tracciare il diagramma della tensione associata alla forza N di

Dettagli

Applicazione dei metodi diretti per lo studio di un elemento flessionale

Applicazione dei metodi diretti per lo studio di un elemento flessionale UNIVERSITÀ DEGI STUDI DI CAGIARI SCUOA DI DOTTORATO IN INGEGNERIA INDUSTRIAE Tesina di Metodi Iterativi per la Risoluzione di Sistemi ineari e Non ineari Applicazione dei metodi diretti per lo studio di

Dettagli

GEOMETRIA ANALITICA. Il Piano cartesiano

GEOMETRIA ANALITICA. Il Piano cartesiano GEOMETRIA ANALITICA La geometria analitica consente di studiare e rappresentare per via algebrica informazioni di tipo geometrico. Lo studio favorisce una più immediata visualizzazione di informazioni,

Dettagli

1. Siano A e B due punti di un atto di moto rigido piano. Dire quale delle seguenti affermazioni è errata:

1. Siano A e B due punti di un atto di moto rigido piano. Dire quale delle seguenti affermazioni è errata: Università del Salento Facoltà di Ingegneria Corsi di Laurea in Ingegneria Industriale e Civile Prova scritta di Meccanica Razionale 20 giugno 2016 Soluzioni Parte 1: Domande a risposta multipla. 1. Siano

Dettagli

IL SAP 2000 E IL CALCOLO DELLE SOLLECITAZIONI PER LA TRAVE CONTINUA

IL SAP 2000 E IL CALCOLO DELLE SOLLECITAZIONI PER LA TRAVE CONTINUA prof. Renato Giannini IL SAP 2000 E IL CALCOLO DELLE SOLLECITAZIONI PER LA TRAVE CONTINUA (arch. Lorena Sguerri) Combinazioni di carico Solaio a due campate con mensola (balcone): combinazioni di carico

Dettagli

LEZIONE 1. IL PROGETTO STRUTTURALE Parte 2. La modellazione. Corso di TECNICA DELLE COSTRUZIONI Chiara CALDERINI A.A

LEZIONE 1. IL PROGETTO STRUTTURALE Parte 2. La modellazione. Corso di TECNICA DELLE COSTRUZIONI Chiara CALDERINI A.A Corso di TECNICA DELLE COSTRUZIONI Chiara CALDERINI A.A. 2007-2008 Facoltà di Architettura Università degli Studi di Genova LEZIONE 1 IL PROGETTO STRUTTURALE Parte 2. La modellazione LA MODELLAZIONE INPUT

Dettagli