METODO DEGLI ELEMENTI FINITI
|
|
|
- Lorenzo Rostagno
- 8 anni fa
- Visualizzazioni
Transcript
1 Elemento Piastra Con elemento piastra si intende un elemento piano (avente una dimensione piccola rispetto alle altre due) capace di reagire alle azioni che tendono ad infletterlo fuori dal piano in cui giace. Viene considerato nel seguito un elemento rettangolare con lati diritti e di spessore costante. Anche per l elemento piastra si può fare riferimento ad una formulazione che trascura gli effetti della deformazione da taglio (formulazione di Kirchhoff) e ad una che invece tiene conto di tale deformazione (formulazione di Mindlin). L ipotesi alla base della prima formulazione comporta che le sezioni normali alla giacitura della piastra rimangano piane in seguito all applicazione del carico e normali alla superficie elastica; ciò è molto vicino al vero se la piastra è sottile. x1 1 y1 x4 y4 4 x w 1 w 4 Figura 3.13 x2 y 2 w 2 y2 z x3 3 w 3 y3
2 Elemento Piastra Entrambe le teorie si basano sulle ipotesi che gli spostamenti di flessione siano piccoli rispetto allo spessore e che le tensioni z siano trascurabili; quella di Mindlin, pur considerando gli effetti del taglio, che dovrebbero comportare l incurvamento ad S delle sezioni normali alla giacitura, ipotizza anche che queste ultime si mantengano piane, ma non necessariamente ortogonali alla superficie elastica. Dalla figura 3.13 si osserva che l elemento a quattro nodi possiede dodici gradi di libertà e quindi la funzione di spostamento deve contenere dodici coordinate genralizzate. x1 1 y1 x4 y4 4 x w 1 w 4 x2 y 2 w 2 y2 z x3 3 w 3 y3
3 Elemento Piastra Formulazione di Kirchhoff x w y y w x Formulazione di Mindlin w y w x x x y y
4 Formulazione di Kirchhoff Per effetto di questa ipotesi le rotazioni sono dovute solamente alle azioni flettenti, come nel caso della trave euleriana, pertanto le rotazioni si ricavano dagli spostamenti con semplice operazione di derivazione. Allora le dodici coordinate generalizzate possono essere utilizzate tutte nella espressione della freccia: w= x+ 3 y+ 4 x xy+ 6 y x x 2 y+ 9 xy y x 3 y+ 12 xy 3 e quindi: x =dw/dy= x+2 6 y+ 8 x xy+3 10 y x xy 2 y =dw/dx= x+ 5 y+3 7 x xy+ 9 y x 2 y+ 12 y 3 Questa formulazione soddisfa la condizione di completezza; infatti consente di descrivere: - traslazione rigida lungo z ( 1 ); - rotazioni rigide intorno ad x ed y ( 2, 3 ); -stato di deformazione costante ({ }={-d 2 w/dx 2 -d 2 w/dy 2 -d 2 w/dxdy} T 4, 5, 6 ) x1 1 w 1 y1 x4 4 x w 4 y4 x2 y 2 w 2 y2 z x3 3 w 3 y3
5 Formulazione di Kirchhoff Per quanto riguarda la compatibilità, questa formulazione rappresenta spostamenti continui nell elemento. Nel passaggio da un elemento ad un altro si ha (figura 3.14): x # bordo 1-2: x = costante = 0 w= y+ 6 y y 3 x = y+3 10 y 2 y = y+ 9 y y 3 y z Figura 3.14 Si hanno quindi 8 coefficienti e sei condizioni al contorno che non consentono di imporre la continuità degli spostamenti e delle rotazioni. Si osservi però che nelle espressioni di w e x compaiono quattro coefficienti ( 1, 3, 6, 10 ), che consentono di imporre le quattro condizioni al contorno su tali due componenti; allora w e x sono continui lungo 1-2 e lungo tutti i bordi paralleli ad y. Nell espressione di y sono presenti altri quattro coefficienti ( 2, 5, 9, 12 ), che le restanti due condizioni al contorno non consentono di determinare; allora la y risulta discontinua (figura 3.15). bordo 1-4 e bordi paralleli ad x: sono continui w e y, mentre è discontinua x. Figura 3.15
6 Formulazione di Kirchhoff Si conclude che la funzione di spostamento non è compatibile, ma è completa. Pertanto la soluzione converge all aumentare del numero di elementi, ma non se ne conosce il verso. Formulazione di Mindlin I tre spostamenti generalizzati sono tra loro indipendenti e quindi per rappresentare le frecce e le rotazioni si debbono utilizzare tre polinomi indipendenti: w= x+ 3 y+ 4 xy x = x+ 7 y+ 8 xy y = x+ 11 y+ 12 xy
7 Elemento guscio L elemento guscio nasce dalla combinazione dell elemento membranale, caratterizzato da due g.d.l. (traslazioni) per nodo, e dell elemento piastra, caratterizzato da tre g.d.l per nodo (una traslazione e due rotazioni). E pertanto un elemento a cinque gradi di libertà per nodo in grado di analizzare problemi con spostamenti nel piano (due componenti di traslazione), spostamenti fuori dal piano (una componente di traslazione) e due rotazioni intorno ad assi giacenti del piano dell elemento. Le relazioni di equilibrio dei due tipi di elementi: {Q m }=[k m ]{q m } per l elemento membranale {Q p }=[k p ]{q p } per l elemento piastra possono combinarsi nella: Q Q m k m q 0 Q p k 0 p q m p che rappresenta la relazione di equilibrio per l elemento guscio. Per la trattazione di certi casi occorre aggiungere un sesto g.d.l., rappresentato dalla rotazione intorno all asse z: z. In figura 3.16 è riportata la deformata in regime di postbuckling di una struttura tubolare, a parete sottile, di sezione quadra, discretizzata con elementi guscio
8
9
10
11 Tipi di elementi
12 Tipi di elementi
13 Generazione degli elementi triangolari della famiglia di Lagrange
14 Generazione degli elementi rettangolari della famiglia di Lagrange
15 Elemento triangolare quadratico a 6 nodi (EP12) Funzione di spostamento: 2 2, u x y a a x a y a x a xy a y v( x, y) a a x a y a x a xy a y Le funzioni di forma N i risulteranno quadratiche in x ed y e l elemento triangolare quadratico sarà in grado di rappresentare deformazioni e tensioni che variano linearmente. La matrice di rigidezza dell elemento è 12x12 e si ricava da: xmax ymax T k t B E B x min y min dx dy
16 Studi Comparativi
17
Piastre sottili: soluzioni esatte. Piastra ellittica incastrata al bordo soggetta a carico distribuito costante
Piastre sottili: soluzioni esatte Piastra ellittica incastrata al bordo soggetta a carico distribuito costante Piastre sottili: soluzioni esatte Piastra triangolare appoggiata al bordo soggetta a carico
Le piastre:classificazione
Le piastre 1. piastre sottili h/l= 1/50-1/10 : piastre sottili con rigidezza flessionale che portano distribuzioni di carico bidimensionale prevalentemente attraverso momenti flettenti, momenti torcenti
Premessa 1. Notazione e simbologia Notazione matriciale Notazione tensoriale Operazioni tensoriali in notazione matriciale 7
Premessa 1 Notazione e simbologia 3 0.1 Notazione matriciale 3 0.2 Notazione tensoriale 4 0.3 Operazioni tensoriali in notazione matriciale 7 Capitolo 7 La teoria delle travi 9 7.1 Le teorie strutturali
EQUAZIONE DELLA LINEA ELASTICA
ESERCIZI SVOLTI O CON TRACCIA DI SOLUZIONE SU EQUAZIONE DELLA LINEA ELASTICA v 0.9 Calcolare lo spostamento verticale del pattino A della struttura utilizzando l equazione della linea elastica. Materiale:
Elementi finiti solidi
Esercitazioni del corso di Costruzione di Macchine 2 e Progettazione FEM a cura dell ing. Francesco Villa Elementi finiti solidi Costruzione di Macchine 2 e Progettazione FEM Prof. Sergio Baragetti Dalmine
La modellazione delle strutture
La modellazione delle strutture 1 Programma 31-1-2012 Introduzione e brevi richiami al metodo degli elementi finiti 7-2-2012 La modellazione della geometria 14-2-2012 21-2-2012 28-2-2012 6-3-2012 13-32012
REGOLA DELLE MISCELE, TEORIA DELLA LAMINAZIONE
REGOLA DELLE MISCELE, TEORIA DELLA LAMINAZIONE Si va ad analizzare la matrice di legame costitutivo che lega le σ con le ε. Si va a considerare il materiale da isotropo a ortotropo ovvero una lamina che
REGISTRO DELLE LEZIONI di Metodi agli Elementi Finiti
UNIVERSITÀ DEGLI STUDI CAGLIARI FACOLTÀ DI INGEGNERIA E ARCHITETTURA REGISTRO DELLE LEZIONI di Metodi agli Elementi Finiti dettate dal prof. Filippo Bertolino nell Anno Accademico 2013-14 ARGOMENTO DELLA
1. Impostazione di un semplice modello FEM
Progettazione Assistita di Strutture Meccaniche 24/06/2011, pagina 1/5 Cognome: Anno accademico in cui si è seguito il corso Nome: [2010/2011] [2009/2010] [2008/2009] [........ ] Matricola: Componenti
La modellazione delle strutture
La modellazione delle strutture 1 Programma 31-1-2012 Introduzione e brevi richiami al metodo degli elementi finiti 7-2-2012 La modellazione della geometria 14-2-2012 21-2-2012 28-2-2012 6-3-2012 13-32012
Teoria delle Strutture Corso di Laurea Magistrale in Ingegneria Edile e delle Costruzioni Civili docente: Prof. Riccardo Barsotti (marzo 2016)
Teoria delle Strutture Corso di Laurea Magistrale in Ingegneria Edile e delle Costruzioni Civili docente: Prof. Riccardo Barsotti (marzo 2016) Prerequisiti Superamento dell esame di Scienza delle Costruzioni.
Risoluzione delle Piastre Le piastre sottili in regime elastico
Corso di rogetto di Strutture OTENZA, a.a. 1 13 Risoluione delle iastre Le piastre sottili in regime elastico Dott. arco VONA DiSGG, Università di Basilicata [email protected] http://www.unibas.it/utenti/vona/
REGISTRO DELLE LEZIONI 2006/2007. Tipologia. Addì Tipologia. Addì Tipologia
Introduzione ai contenuti del corso. Descrizione dell'organizzazione del corso e delle modalità di svolgimento delle lezioni e degli esami. Teoria lineare della trave. Ipotesi di base. Problema assiale:
Resistenza dei materiali
Scheda riassuntiva capitoli 8-1 Resistenza dei materiali a resistenza dei materiali mette in relazione tra loro i seguenti elementi: Trazione/ Carichi compressione Taglio Flessione Torsione Deformazioni
Modellazione e calcolo assistito di strutture meccaniche
Modellazione e calcolo assistito di strutture meccaniche Lezione 1 Introduzione al metodo FEM Il metodo degli elementi finiti FEM: Finite Element Method E un metodo numerico Inizialmente è stato sviluppato
Introduzione al corso Le Piastre
Corso di Progetto di Strutture POTENZA, a.a. 2012 2013 Introduzione al corso Le Piastre Dott. Marco VONA DiSGG, Università di Basilicata [email protected] http://www.unibas.it/utenti/vona/ PROGRAMMA
R. BARBONI COSTRUZIONI AEROSPAZIALI L elemento finito
R. BARBONI COSRUZIONI AEROSPAZIALI 17 4. L elemento finito Nella realtà, aste, travi, piastre, gusci,... non sono sollecitati solo con carichi applicati ai loro estremi ed il loro comportamento non può
Gradi di libertà e vincoli. Moti del corpo libero
Gradi di libertà e vincoli Moti del corpo libero Punto materiale Il punto materiale descrive un corpo di cui interessa individuare solo la sua posizione Nel piano la posizione di un punto si individua
METODO DEGLI ELEMENTI FINITI
Barlow Points In teoria potremmo valutare tensioni e deformazioni, o i gradienti per altri tipi di analisi, in qualsiasi punto interno all elemento. Tuttavia le tensioni e le deformazioni previste dal
Scienza delle costruzioni - Luigi Gambarotta, Luciano Nunziante, Antonio Tralli ESERCIZI PROPOSTI
. Travi isostatiche ad asse rettilineo ESERCIZI PROPOSTI Con riferimento alle tre strutture isostatiche di figura, costituite da tre tratti, determinare: ) Reazioni vincolari; ) Diagrammi del momento flettente
Edifici in muratura. L edificio soggetto a carichi verticali. Catania, 21 aprile 2004 Bruno Calderoni. DAPS, Università di Napoli Federico II
Edifici in muratura L edificio soggetto a carichi verticali Catania, 21 aprile 2004 Bruno Calderoni DAPS, Università di Napoli Federico II L edificio del D.M. 20/11/87 L edificio della 3 a classe. La normativa
Il modello di trave adottato dal Saint-Venant si basa sulle seguenti ipotesi:
IL PROBLEM DEL DE SINT-VENNT Il problema del De Saint-Venant è un particolare problema di equilibrio elastico di notevole interesse applicativo, potendosi considerare alla base della teoria tecnica delle
Sommario 1 VOLUME CAPITOLO 1 - Matrici 1 VOLUME CAPITOLO 3 - Geometria delle masse 1 VOLUME CAPITOLO 2 - Notazione indiciale
Sommario CAPITOLO 1 - Matrici...! Definizione! Matrici di tipo particolare Definizioni relative-! Definizioni ed operazioni fondamentali! Somma di matrici (o differenza)! Prodotto di due matrici! Prodotti
Università degli Studi di Cagliari - Facoltà di Ingegneria e Architettura. Fondamenti di Costruzioni Meccaniche Tensione e deformazione Carico assiale
Esercizio N.1 Un asta di acciaio è lunga 2.2 m e non può allungarsi più di 1.2 mm quando le si applica un carico di 8.5 kn. Sapendo che E = 200 GPa, determinare: (a) il più piccolo diametro dell asta che
Università degli Studi della Basilicata Facoltà di Ingegneria
Università degli Studi della Basilicata Facoltà di Ingegneria Corso di TECNICA DELLE COSTRUZIONI Docente: Collaboratori: Prof. Ing. Angelo MASI Dr. Ing. Giuseppe Santarsiero Ing. Vincenzo Manfredi RICHIAMI
Solai e solette con armatura incrociata: comportamento e calcolo
Solai e solette con armatura incrociata: comportamento e calcolo Consideriamo la piastra di figura a riferita a un sistema di assi cartesiani x e y, e in particolare le due strisce ortogonali t x e t y
CLASSE 3 A APPUNTI DAL CORSO DI COSTRUZIONI. Diagrammi delle sollecitazioni ESERCIZI SVOLTI IN AULA
the design of he Forth Bridge (Scotland) 1883-1890 by Sir John Fowler and Sir Benjamin Baker Nessun effetto è in natura sanza ragione; intendi la ragione e non ti bisogna sperienzia. Leonardo da Vinci
Lezione PONTI E GRANDI STRUTTURE. Prof. Pier Paolo Rossi Università degli Studi di Catania
Lezione PONTI E GRANDI TRUTTURE Prof. Pier Paolo Rossi Università degli tudi di Catania Linee di influenza Definizione Dicesi linea di influenza della grandezza G nella sezione, Il diagramma che indica
ALLEGATO CORPO PRINCIPALE
Committente : Provincia Regionale di Ragusa Località : Porto di Pozzallo (RG) Opera : Realizzazione della stazione passeggeri nel porto di Pozzallo ALLEGATO CORPO PRINCIPALE 1. VERIFICHE DEI NODI TRAVE
Compositi: teoria dei laminati
Compositi: teoria dei laminati Introduzione Il laminato singolo Equazioni costitutive e proprietà Criteri di rottura Fibre fuori asse Introduzione: progettazione Materiali e frazione fibre Spessore laminato
Corso di Costruzioni Aeronautiche
Corso di Costruzioni Aeronautiche Analisi Modale Elementi Monodimensionali 11 Dicembre 2013 Ing. Mauro Linari Senior Project Manager MSC Softw are S.r.l. Definizione Oscillazione libera non smorzata Oscillazione
ALMA MATER STUDIORUM UNIVERSITÀ DEGLI STUDI DI BOLOGNA
ALMA MATER STUDIORUM UNIVERSITÀ DEGLI STUDI DI BOLOGNA FACOLTÀ DI INGEGNERIA Corso di Laurea Triennale in Ingegneria Civile Indirizzo Strutture D.I.S.T.A.R.T. Dipartimento di Ingegneria delle Strutture,
Sollecitazioni semplici Il Taglio
Sollecitazioni semplici Il Taglio Considerazioni introduttive La trattazione relativa al calcolo delle sollecitazioni flessionali, è stata asata sull ipotesi ce la struttura fosse soggetta unicamente a
Introduzione ai codici di calcolo agli Elementi Finiti
Introduzione ai codici di calcolo agli Elementi Finiti Introduzione agli elementi finiti Gli elementi finiti nascono negli anni 50 per risolvere problemi nell ambito dell ingegneria delle strutture. Tale
Le piastre Progettazione
Corso di Progetto di Strutture POTENZA, a.a. 2012 2013 Le piastre Progettazione Dott. Marco VONA Scuola di Ingegneria, Università di Basilicata [email protected] http://www.unibas.it/utenti/vona/ CONTENUTI
IL SAP 2000 E IL CALCOLO DELLE SOLLECITAZIONI PER LA TRAVE CONTINUA
prof. Renato Giannini IL SAP 2000 E IL CALCOLO DELLE SOLLECITAZIONI PER LA TRAVE CONTINUA (arch. Lorena Sguerri) Combinazioni di carico Solaio a due campate con mensola (balcone): combinazioni di carico
PROGETTAZIONE DI STRUTTURE MECCANICHE
PROGETTAZIONE DI STRUTTURE MECCANICHE Andrew Ruggiero A.A. 2011/12 Analisi matriciale delle strutture: caratterizzazione degli elementi A. Gugliotta, Elementi finiti Parte I Elementi e strutture Una qualsiasi
Giacomo Sacco Appunti di Costruzioni Edili
Giacomo Sacco Appunti di Costruzioni Edili Le tensioni dovute a sforzo normale, momento, taglio e a pressoflessione. 1 Le tensioni. Il momento, il taglio e lo sforzo normale sono le azioni che agiscono
1 Schemi alle differenze finite per funzioni di una variabile
Introduzione In questa dispensa vengono forniti alcuni elementi di base per la soluzione di equazioni alle derivate parziali che governano problemi al contorno. A questo scopo si introducono, in forma
EQUILIBRIO DI UN PUNTO MATERIALE, DI UN SITEMA DI PUNTI EDIUNCORPORIGIDO
EQUILIBRIO DI UN PUNTO MATERIALE, DI UN SITEMA DI PUNTI EDIUNCORPORIGIDO Equilibrio di un Punto Materiale Definizione 1 Un punto materiale è in una posizione di equilibrio quando posto in quella posizione
Il teorema dei lavori virtuali, l elasticità lineare ed il problema dell equilibrio elastico
5 Il teorema dei lavori virtuali, l elasticità lineare ed il problema dell equilibrio elastico Tema 5.1 Si consideri un corpo continuo libero nello spazio, di forma parallelepipedica e di dimensioni a
Calcolo delle caratteristiche della sollecitazione nella struttura di fondazione. Interazione terreno-struttura. Procedimento tradizionale:
Ubi sunt leones? Calcolo delle caratteristiche della sollecitazione nella struttura di fondazione Interazione terreno-struttura Procedimento tradizionale: si trascura l influenza della sovrastruttura,
Analisi dei carichi: travi T1-9 9 e T1-10
Analisi dei carichi: travi T1-9 9 e T1-10 10 Carico q Solaio interno Fascia piena s=20 cm 2.50-0.42=2.08 0.28 4.96 5.00 10.32 1.4 1.80 5.00 T1-7 9 10 Solaio balcone Fascia piena s=16 cm Tamponatura Parapetto
Costruzioni in zona sismica
Costruzioni in zona sismica Lezione 7 Sistemi a più gradi di libertà Il problema dinamico viene formulato con riferimento a strutture con un numero finito di gradi di libertà. Consideriamo le masse concentrate
calcolo Corso di Progettazione strutturale 1 Roma Tre Fac. Di Architettura prof. Camillo Nuti Prog. Strutturale 1
Analisi strutturale Modelli di calcolo Prof. Camillo Nuti Corso di Progettazione strutturale 1 Roma Tre Fac. Di Architettura 1 2 Luce efficace di calcolo () (a) Elementi non continui i (b) Elementi continui
Scienza delle Costruzioni Il
Alberto T aliercio Corso di Scienza delle Costruzioni Il +-... ---+... ' ---+ ' ' \ ---+,3cr ---+ cr I ---+ I I I ---+ / +- / _,, ---+ +- ---+ IUAV - VENEZIA H 9679 BIBLIOTECA CENTRALE - Alberto Taliercio
Calcolo di una trave a C
Calcolo di una trave a C Analisi matematica e FEM con Abaqus Giacomo Barile 26/01/2015 Calcolo analitico e simulato di una trave a C di differenti materiali (ERGAL e Graphite/Epoxy) sottoposta ad uno sforzo
CAPITOLO I TEORIA DELLA PIASTRA
CAPITOLO I TEORIA DELLA PIASTRA R. BARBONI TEORIA DELLA PIASTRA 3 1. La piastra Si consideri la struttura di figura con riferimento ad un sistema di coordinato con, nel piano medio e z ortogonale ad esso,
1.3 Sistemi non lineari ad 1 grado di libertà. 1.4 Sistemi non lineari a 2 gradi di libertà 1.5 Sistemi multicorpo. 1.6 La dinamica del corpo rigido
V Indice XIII XVII 1 1 12 13 19 21 23 25 26 27 27 34 43 52 54 57 62 64 67 67 69 73 75 79 82 Prefazione Introduzione Cap. 1 Sistemi multi-corpo a 1-n gradi di libertà 1.1 Coordinate cartesiane, gradi di
Impostazione e controllo del progetto di edifici antisismici in cemento armato secondo le indicazioni delle Norme Tecniche per le Costruzioni 2008
Corso di aggiornamento Impostazione e controllo del progetto di edifici antisismici in cemento armato secondo le indicazioni delle Norme Tecniche per le Costruzioni 2008 Aula Oliveri, Facoltà di Ingegneria
A4.4 La linea elastica
.4 La linea elastica Meccanica, Macchine ed Energia articolazione Energia Giuseppe Anzalone, Paolo Bassignana, Giuseppe Brafa Musicoro Copyright Ulrico Hoepli Editore S.p.A. poliglotta Linea elastica GB:
1 La struttura. Esempio di calcolo
1 La struttura La struttura oggetto di questo esempio di calcolo è un edificio per civile abitazione realizzato su due superfici fuori terra e piano interrato. Le pareti e le solette, portanti, del piano
Formulazione delle equazioni del moto per un sistema lineare a tre gradi di libertà. Proprietà delle matrici di rigidezza e di flessibilità
Formulazione delle equazioni del moto per un sistema lineare a tre gradi di libertà Proprietà delle matrici di rigidezza e di flessibilità Prof. Adolfo Santini - Dinamica delle Strutture Introduzione In
Setti in C.A. -Trave parete forata
Setti in C.A. -Trave parete forata Rif. Bibliografico Pozzati, vol IIa pag.379 Consideriamo una parete di irrigidimento costituito da un setto in c.a. in cui sono praticate delle aperture (es. parete di
Quaderni di Complementi di Scienza delle Costruzioni - Ingegneria Meccanica -
Quaderni di Complementi di Scienza delle Costruzioni - Ingegneria Meccanica - Appunti dalle lezioni a cura di Stella Brach Anno Accademico 2010 / 2011 4. La torsione alla de Saint Venant Università di
Setti in C.A. -Trave parete forata
Setti in C.A. -Trave parete forata Rif. Bibliografico Pozzati, vol IIa pag.379 Consideriamo una parete di irrigidimento costituito da un setto in c.a. in cui sono praticate delle aperture (es. parete di
Assemblaggio degli Elementi: Soluzione del Problema Strutturale Discreto
Il Metodo degli Elementi Finiti Assemblaggio degli Elementi: Soluzione del Problema Strutturale Discreto Dalle dispense del prof. Dario Amodio e dalle lezioni del prof. Giovanni Santucci Per ottenere la
3. Vettori, Spazi Vettoriali e Matrici
3. Vettori, Spazi Vettoriali e Matrici Vettori e Spazi Vettoriali Operazioni tra vettori Basi Trasformazioni ed Operatori Operazioni tra Matrici Autovalori ed autovettori Forme quadratiche, quadriche e
Considerazioni introduttive
a linea elastica onsiderazioni introduttie In un elemento strutturale deformabile in cui una dimensione è prealente rispetto alle altre due, è possibile determinare la configurazione secondo la uale uesto
Sollecitazioni delle strutture
Sollecitazioni delle strutture I pilastri e i muri portanti sono tipicamente sollecitati a compressione Le travi e i solai sono sollecitati a flessione L indeformabilità di questi elementi costruttivi
Il Principio dei lavori virtuali
Il Principio dei lavori virtuali Il P..V. rientra nella classe di quei principi energetici che indicano che i sistemi evolvono nel senso di minimizzare l energia associata ad ogni stato di possibile configurazione.
MECCANICA COMPUTAZIONALE
MECCANICA COMPUTAZIONALE Capitolo 1 Introduzione Rev. 21 aprile 2008 (rev. 21/04/2008) Capitolo 1: 1/28 Argomenti trattati nel capitolo 1 Esempi di problemi strutturali complessi Limiti degli approcci
ESERCIZIO 1 (Punti 9)
UNIVERSITA DI PISA - ANNO ACCADEMICO 007-8 CORSO DI LAUREA IN ING. ELETTRICA (N.O.) CORSO DI MECCANICA E TECNICA DELLE COSTRUZIONI MECCANICHE VERIFICA INTERMEDIA DEL 15-06-009 ESERCIZIO 1 (Punti 9) Data
APPENDICE. Dati. Per l'analisi delle velocità dei veicoli si assumono i seguenti dati: Caratteristiche dei veicoli:
APPENDICE Di seguito si riporta il computo delle velocità dei due veicoli al momento dell'urto, utilizzando le leggi del moto e la conservazione della quantità di moto. Il calcolo è stato svolto utilizzando
Cenni di meccanica computazionale ed applicazione per strutture con elementi beam
Cenni di meccanica computazionale ed applicazione per strutture con elementi beam Tecnica delle Costruzioni II - 5 Marzo 201 1 Rigid jointed frames beam elements Resistono ad effetti combinati di azioni
Dispense del Corso di SCIENZA DELLE COSTRUZIONI. Sollecitazioni semplici. Prof. Daniele Zaccaria
Dispense del Corso di SCIENZA DELLE COSTRUZIONI Prof. Daniele Zaccaria Dipartimento di Ingegneria Civile e Architettura Università di Trieste Piazzale Europa 1, Trieste Sollecitazioni semplici Corsi di
Lezione 24 - Esercitazioni di Algebra e Geometria - Anno accademico
CONICHE in A ~ (C) Punti propri (x P,y P ) hanno coordinate omogenee [(x P,y P, )], Punti impropri hanno coordinate omogenee [(l,m, )]. L equazione di una conica in coordinate non omogenee (x,y) C: a,
Corso di Scienza delle Costruzioni (Corso di Laurea Specialistica in Ingegneria Elettrica)
Corso di Scienza delle Costruzioni (Corso di Laurea Specialistica in Ingegneria Elettrica) Corso di Meccanica Analitica e dei Continui (Corso di Laurea Specialistica in Ingegneria Nucleare e della Sicurezza
Il Teorema dei Lavori Virtuali, l Elasticità Lineare ed il Problema dell Equilibrio Elastico
Il Teorema dei Lavori Virtuali, l Elasticità Lineare ed il Problema dell Equilibrio Elastico Tema 1 Si consideri un corpo continuo libero nello spazio, di forma parallelepipedica e dimensioni a = 1 cm,
Progettazione Assistita da Calcolatore Soluzione Molla a Spirale Appello 4 luglio 2013
Progettazione Assistita da Calcolatore Molla a Spirale Appello 4 luglio 2013 Sulla base di quanto indicato dal testo, il modello geometrico da adottare è quello di una geometria di sole superfici ottenute
Compito di Meccanica Razionale M-Z
Compito di Meccanica Razionale M-Z 11 giugno 213 1. Tre piastre piane omogenee di massa m aventi la forma di triangoli rettangoli con cateti 4l e 3l sono saldate lungo il cateto più lungo come in figura
2. Si Discretizzano i carichi in CARICHI CONCENTRATI in modo da riprodurre gli andamenti delle azioni interne. Si opera in pi passi: 2a.
1 Prove Statiche Permettono la verifica del comportamento elastico struttura allo scopo di validare il modello numerico Le prove prevedono: 1. Struttura completa (full-scale) Sottostruttura (Es. solo centina,
CAP. 9 LA FORMULAZIONE ISOPARAMETRICA
Metodi agli Elementi Finiti - (AA 5/ 6) CAP. 9 LA FORMULAZIONE ISOPARAMETRICA 9. Introduzione Questo capitolo introduce la famiglia degli elementi isoparametrici. Il nome deriva dal fatto che si utilizzano
Dispense del Corso di SCIENZA DELLE COSTRUZIONI. Sollecitazioni semplici PARTE TERZA. Prof. Daniele Zaccaria
Dispense del Corso di SCIENZA DELLE COSTRUZIONI Prof. Daniele Zaccaria Dipartimento di Ingegneria Civile Università di Trieste Piazzale Europa 1, Trieste PARTE TERZA Sollecitazioni semplici Corsi di Laurea
Esercizio su sforzi tangenziali indotti da taglio T in trave inflessa
Esercizio su sforzi tangenziali indotti da taglio T in trave inflessa t = 15 h = 175 Si consideri la sezione rappresentata in figura (sezione di trave inflessa) sulla quale agisca un taglio verticale T
Dalla meccanica del continuo alle Equazioni di Lagrange g per i solidi elastici. Dinamica delle Strutture Aerospaziali
Dalla meccanica del continuo alle Equazioni di Lagrange g per i solidi elastici Franco Mastroddi http://www.diaa.uniroma1.it/docenti/f.mastroddi dal Dinamica delle Strutture Aerospaziali Anno Accademico
Esercitazione 04: Collegamenti bullonati
Meccanica e ecnica delle Costruzioni Meccaniche Esercitazioni del corso. Periodo II Prof. Leonardo BERII Ing. Ciro SAUS Esercitazione 04: Collegamenti bullonati Indice 1 Flangia bullonata sottoposta a
TECNICA DELLE COSTRUZIONI: II MODULO. Modellazione
Modellazione La struttura spaziale può essere analizzata nel suo complesso, con le attuali capacità del P, abbastanza agevolmente. Tuttavia con opportuni accorgimenti è possibile suddividere la struttura
Dinamica del corpo rigido
Dinamica del corpo rigido Antonio Pierro Definizione di corpo rigido Moto di un corpo rigido Densità Momento angolare Momento d'inerzia Per consigli, suggerimenti, eventuali errori o altro potete scrivere
POLITECNICO DI BARI I FACOLTÀ DI INGEGNERIA CORSO DI LAUREA IN INGEGNERIA MECCANICA DIPARTIMENTO DI INGEGNERIA MECCANICA E GESTIONALE
POLITECNICO DI BARI I FACOLTÀ DI INGEGNERIA CORSO DI LAUREA IN INGEGNERIA MECCANICA DIPARTIMENTO DI INGEGNERIA MECCANICA E GESTIONALE TESI DI LAUREA IN MECCANICA DEI MATERIALI DESIGN OTTIMO DI UN ANTENNA
Cerchio di Mohr. n y. n x
t nm m t n P n s n Sia P un punto generico del continuo e z una generica retta passante per esso. Fissato un riferimento cartesiano {,, z}, siano n=[n n 0] T ed m=[m m 0] T due versori ortogonali nel piano
1 - Matrice delle masse e delle rigidezze
Cilc per tutti gli appunti (AUOMAZIONE RAAMENI ERMICI ACCIAIO SCIENZA delle COSRUZIONI ) e-mail per suggerimenti SEMPLICE ESEMPIO NUMERICO DEL MEODO DI ANALISI DINAMICA Si vuole qui chiarire con un semplice
Micromeccanica e Macromeccanica dei MaterialiCompositi
Micromeccanica e Macromeccanica dei Materialiompositi orso di Tecnologie dei Materiali non onvenzionali - Prof. Luigi arrino Micromeccanica Micromeccanica La micromeccanica studia le proprietà della singola
PROVA SCRITTA DI TECNICA DELLE COSTRUZIONI DEL 05/12/2011 Esercizio n 1
PROVA SCRITTA DI TECNICA DELLE COSTRUZIONI DEL 05/1/011 Esercizio n 1 Sia data una sezione di c.a. avente dimensioni 40 x 60 cm. I materiali impiegati sono: a) calcestruzzo Rck=0 N/, b) acciaio tipo B450C.
LEZIONE 1. IL PROGETTO STRUTTURALE Parte 2. La modellazione. Corso di TECNICA DELLE COSTRUZIONI Chiara CALDERINI A.A
Corso di TECNICA DELLE COSTRUZIONI Chiara CALDERINI A.A. 2007-2008 Facoltà di Architettura Università degli Studi di Genova LEZIONE 1 IL PROGETTO STRUTTURALE Parte 2. La modellazione LA MODELLAZIONE INPUT
LEZIONE N 46 LA TORSIONE ALLO S.L.U.
LEZIONE N 46 LA ORSIONE ALLO S.L.U. Supponiamo di sottoporre a prova di carico una trave di cemento armato avente sezione rettangolare b x H soggetta a momento torcente uniforme. All interno di ogni sua
CORSO DI COMPLEMENTI DI MECCANICA. Prof. Vincenzo Niola
CORSO DI COMPLEMENTI DI MECCANICA Prof. Vincenzo Niola SISTEMI A DUE GRADI DI LIBERTÀ Lo studio dei sistemi a più gradi di libertà verrà affrontato facendo riferimento, per semplicità, solo a sistemi conservativi,
ESERCIZIO 2 (punti 13) La sezione di figura è
SCIENZA DELLE COSTRUZIONI: GES L - Z 2 a PROVA 27/06/2005 Tema A : allievo ESERCIZIO 1 (punti 13) Data la struttura una volta iperstatica di figura, soggetta alla variazione termica uniforme sulla biella
Calcolo della risposta di un sistema lineare viscoso a più gradi di libertà con il metodo dell Analisi Modale
Calcolo della risposta di un sistema lineare viscoso a più gradi di libertà con il metodo dell Analisi Modale Lezione 1/ Prof. Adolfo Santini - Dinamica delle Strutture 1 Disaccoppiamento delle equazioni
Calcolo delle aste composte
L acciaio. Strutture in acciaio 1 Calcolo delle aste composte Calcolo della snellezza equivalente La snellezza equivalente viene calcolata con le seguenti relazioni: aste calastrellate: λ eq λ y + λ 1
Teoria Classica della Laminazione
Teoria Classica della Laminazione Classical Lamination Theor - CLT { } { k } Procedura Inversa : Analisi del Laminato 1) Noto il vettore delle forze applicate si possono calcolare le deformazioni generalizzate
Capitolo 9. Visualizzazione risultati
Capitolo 9 Visualizzazione risultati Questo capitolo presenta una panoramica dei comandi e delle procedure per la visualizzazione dei risultati ottenuti dal calcolo. Verranno affrontati i seguenti argomenti
ESERCITAZIONE -- ASTA PORTACOMPARATORE
ESERCITAZIONE -- ASTA PORTACOMPARATORE 1 Progettare l asta di un comparatore (determinarne diametro e materiale) OBIETTIVO minimizzare il costo F VINCOLI FUNZIONALI freccia massima di inflessione, tolleranza
