Setti in C.A. -Trave parete forata
|
|
|
- Amanda Contini
- 9 anni fa
- Visualizzazioni
Transcript
1 Setti in C.A. -Trave parete forata Rif. Bibliografico Pozzati, vol IIa pag.379 Consideriamo una parete di irrigidimento costituito da un setto in c.a. in cui sono praticate delle aperture (es. parete di un vano ascensore) La parete viene idealizzata come un sistema formato da ritti o mensole, aventi le sezioni appiattite e costanti a1s1 ed as, e collegati da dei traversi aventi luce a e sezione di momento di inerzia Jtr Pensiamo distribuite le sollecitazioni applicate ai ritti dai traversi 1
2 Risultano allora uguali: Setti in C.A. le linee elastiche dei ritti (v1vv) le rotazioni delle sezioni rette (ϕ1 ϕdv/dx) le curvature Tra i momenti flettenti dei ritti sussiste la relazione Dove: J 1 M 1 J 1 M J 3 3 sa sa 1, J 1 1
3 Il traverso Deformata antisimmetrica Il momento flettente si annulla in mezzeria e le sollecitazioni agli estremi valgono ( trascurando lo sforzo normale): M M b c M tr T T T b c tr M a tr 3
4 Il traverso J tr dx / h Supponiamo che i traversi siano diffusi sull altezza dei ritti Alla sezione di una lamella di ritto alta dx compete un momento di inerzia Jtr dx/h Le sezioni estreme di un generico traverso ruotano di ϕ e si spostano relativamente di u ϕ(a1+a)/ ϕ(l-a), quindi agli estremi M b M c M tr 6EJ a tr ϕ(l a) 6EJ tr lϕ a 4
5 Il traverso Deformata antisimmetrica Il momento flettente si annulla in mezzeria e le sollecitazioni agli estremi valgono ( trascurando lo sforzo normale): M b 6EJ Mc M tr a tr l ϕ T b M tr 1EJ Tc Ttr 3 a a tr l ϕ 5
6 Il traverso J tr dx / h 6EJ tr Mc M tr lϕ a Mb Cui corrisponde il taglio 1EJ t dx 3 a dove 1EJ trl a h k 3 tr l ϕ dx h k l ϕdx 6
7 Setti in C.A. Rif. Bibliografico Pozzati, vol IIa pag.379 7
8 Setti in C.A. Il momento flettente sull intera mensola costituita dai due ritti vale H ( tdx) l M (x) + k dv M (x) + k[v(h) v(x)] M(x) M (x) x Dove M0 è il momento dovuto ai carichi esterni ed l è la distanza tra gli assi dei ritti Tra la linea elastica v(x) ed M sussiste la relazione: H x dove d v EJ tot dx M(x) s 3 J tot J1 + J (a1 + 1 a 3 ) 8
9 L equazione dove Diventa d v EJ tot dx s 3 J tot J1 + J (a1 + a 1 H Setti in C.A. ( tdx) l M (x) + k dv M (x) + k[v(h) v(x)] M(x) M (x) d v(x) α dx 0 x v(x) 3 M(x) ) M 0 H x (x) + kv(h) EJ tot Che ammette l integrale generale somma della soluzione particolare vp e della soluzione dell omogenea associata v(x) A cosh αx + Bsinh αx + v α p (x) k EJ tot Dove A e B sono costanti da determinare imponendo le condizioni al contorno 9
10 Integrali particolari Carico uniforme q (rivolto secondo y>0) q(h x) M0(x) M0(x) vp(x) v(h) + k qej k tot 10
11 Integrali particolari Carico concentrato P M (x) P(H x) v p (x) v(h) + p 0 M0(x) k 11
12 Sollecitazioni Nota la linea elastica, si ricavano le sollecitazioni Per esempio per il ritto i-esimo in caso di carico distribuito q Mi (x) EJiv''(x) EJiα (A cosh αx + Asinh αx) + Lo sforzo normale al livello x è EJ i q k Per un traverso N (x) i H H k dni dv l x x k l [v(h) v(x)] 6EJ a M tr tr l dv dx 1
13 Estensioni Si possono trattare anche casi di due file di aperture o pareti su pilastri 13
14 Osservazioni Considerando il traverso dotato di rigidezza flessionale si ottiene uno stato di sollecitazione intermedio tra quello in cui si ha un unica mensola costituita dai ritti funzionanti come trave unica e quello in cui i ritti sono collegati da semplici bielle e si comportano come travi separate 14
15 Metodo di Rosman-Beck Ora si tiene in conto la deformabilità assiale dei ritti Si considera l influenza della deformazione nei ritti per sforzo assiale 15
16 Metodo di Rosman-Beck Si consideri lo spostamento verticale relativo totale u delle sezioni C e C Consideriamo il primo ritto avente J1, A1 soggetto a momento M1 e sforzo normale N I II 16
17 u u I II M ( x) dx 1 EJ Metodo di Rosman-Beck Lo spostamento relativo di due sezioni C e C distanti dx risulta u III 1 u u a + a I + u II + u N ( x) dx ; spostamento assiale da sforzo normale EA 1 3 N a hdx 4EJ tr 1 III ; rotazione per braccio causato dall' incremento di taglio sul traverso I 17 II
18 Metodo di Rosman-Beck L incremento di spostamento dovuto al momento flettente è dato dalla rotazione per il braccio M 1(x)dx EJ a + a 1 u I 1 Il momento sul ritto 1 sarà dato da M 0 x 1(x) M0(x) + l( tdx) ρ 1 l Dove il coefficiente di ripartizione è [ M ] 0 (x) + N(x) ρ 1 ρ 1 J 1 J + 1 J I II 18
19 Metodo di Rosman-Beck L incremento di spostamento in mezzeria del traverso causato dall incremento T (verso x<0 ) si scrive come (freccia mensola sotto forza concentrata lunga a/) u III T(a / ) 3EJ tr 3 Ta 4EJ tr 3 Pensando diffusa la presenza dei traversi, alla generica lamella dx compete un taglio tdx ed un momento di inerzia Jtrdx/h L incremento infinitesimo di sforzo assiale dn nel ritto dntdx dt/dxd N/dx l allungamento infinitesimo diventa du III 3 dt a Jtrdx 4E h 3 dt a h 4EJ dx tr d N dx 3 a h 4EJ tr 19
20 Metodo di Rosman-Beck Per la lamella lunga dx, l allungamento si può scrivere come u III du III dx d N dx 3 a hdx 4EJ tr 0
21 Metodo di Rosman-Beck Analogamente si può scrivere la relazione per il ritto, per il quale lo spostamento deve essere uguale a quello del ritto 1 Eguagliando tali spostamenti si ottiene d N α λ N M dx l 0 dove 1J trl Jtot(A1 + A ) α λ a a hjtot A1A l 1
22 Metodo di Rosman-Beck L integrale generale si scrive come N Acosh λx + Bsinh λx + N p ( x) Dove l integrale particolare nel caso di carico distribuito uniforme N p ( x) qα l 4 λ α l λ Mentre A e B sono da determinare con le condizioni ai limiti M 0
23 Metodo di Rosman-Beck 3
24 Esempio Con la deformazione assiale dei ritti senza la deformazione assiale dei ritti 4
25 Diagrammi per il calcolo semplificato Esistono delle soluzioni dell equazione differenziale alla Rosman-Beck relative a casi tipici Nel seguito analizziamo il caso di una mensola con aperture incastrata alla base e soggetta ad un carico uniforme Pozzati, II B pag 345 5
26 Diagrammi per il calcolo semplificato Variazione dello N con β λh J tot (A1 + A λ a 1 + A1Al Da cui si può ricavare J ) 1 M ( M + Nl) 1 0 J tot 6
27 Diagrammi per il calcolo semplificato Variazione del taglio con β λh J tot (A 1 + A a 1 + A1Al ) λ 7
28 Osservazioni -Se la rigidezza dei traversi tende all infinito, anche λ e β tendono all infinito Gli sforzi tendono al valore che avrebbero se il complesso dei due ritti si comportasse come un unica trave -Se la rigidezza dei traversi tende a divenire molto piccola, sforzo normale N e taglio t si annullano ed il momento flettente tende al valore 8
29 Osservazioni L esame dei diagrammi rivela che la presenza dei traversi dà un contributo significativo soltanto per valori di β circa superiori a 0.5 Per β >10 non si commettono errori sensibili se si considerano i traversi infinitamente rigidi 9
30 Setto forato di controventamento q0.583 t/m 30
31 Setto forato di controventamento 31
32 Setto forato di controventamento Particolari costruttivi in tre dimensioni delle armature dei setti sismici. 3
33 Pareti in CA, verifiche &nameDLFE pdf 33
34 Pareti in CA, verifiche &nameDLFE pdf 34
35 Pareti in CA, verifiche &nameDLFE pdf 35
36 Pareti in CA, verifiche &nameDLFE pdf 36
37 armatura &nameDLFE pdf 37
38 Minimi di armatura &nameDLFE pdf 38
39 Minimi di armatura &nameDLFE pdf 39
40 Minimi di armatura &nameDLFE pdf 40
41 Minimi di armatura &nameDLFE pdf 41
42 Minimi di armatura &nameDLFE pdf 4
43 Minimi di armatura &nameDLFE pdf 43
44 Minimi di armatura &nameDLFE pdf 44
45 Minimi di armatura &nameDLFE pdf 45
Setti in C.A. -Trave parete forata
Setti in C.A. -Trave parete forata Rif. Bibliografico Pozzati, vol IIa pag.379 Consideriamo una parete di irrigidimento costituito da un setto in c.a. in cui sono praticate delle aperture (es. parete di
Corso di Progetto di Strutture. POTENZA, a.a Pareti in c.a.
Corso di Progetto di Strutture POTENZA, a.a. 2012 2013 Pareti in c.a. Dott. Marco VONA Scuola di Ingegneria, Università di Basilicata [email protected] http://www.unibas.it/utenti/vona/ PARETI La parete
MST.1.01 Sia dato il portale in figura, con il trasverso BC indeformabile ed i montanti di rigidezza EJ.
Meccanica delle strutture Componenti di spostamento Sistemi iperstatici di travi Linea elastica e metodo di Ritz. Componenti di spostamento in sistemi isostatici di travi MST.1.01 Sia dato il portale in
Tutti i diritti riservati
Statica - Fondamenti di meccanica strutturale /ed Copright 00 The Companies srl e Corbusier - Progetto per il palazzo dei Soviet a osca 9 Problema. Impostiamo ora il problema deformativo per la trave di
za Bozza - Appunti di Scienza delle Costruzioni 1, dalle lezioni del prof. P. Podio-Guidugli, a.a. 2007/8 -
11 Calcolo di spostamenti e rotazioni in travature isostatiche 81 11 Calcolo di spostamenti e rotazioni in travature isostatiche Consideriamo d ora in avanti travature linearmente termoelastiche dello
Lezione 40 - I corollari di Mohr
ezione 40 - I corollari di Mohr ü [.a. 011-01 : ultima revisione 9 agosto 011] In questa ezione si illustra un metodo per calcolare lo spostamento o la rotazione di un punto di una trave rettilinea, sfruttando
Trave isostatica Studio della deformata con il metodo della LINEA ELASTICA
Trave isostatica Studio della deformata con il metodo della LINEA ELASTICA Trave a mensola, di rigidezza flessionale costante pari a EI, soggetta a forza verticale agente all estremo liero. Determinare
Edifici in muratura. L edificio soggetto a carichi verticali. Catania, 21 aprile 2004 Bruno Calderoni. DAPS, Università di Napoli Federico II
Edifici in muratura L edificio soggetto a carichi verticali Catania, 21 aprile 2004 Bruno Calderoni DAPS, Università di Napoli Federico II L edificio del D.M. 20/11/87 L edificio della 3 a classe. La normativa
IL FATTORE DI STRUTTURA PER IL C.A.
IL FATTORE DI STRUTTURA PER IL C.A. Adriano Castagnone Tutti i diritti sono riservati. Per ogni informazione scrivere a: [email protected] 2 3 Introduzione Tra i diversi parametri necessari per il
Le deformazioni nelle travi rettilinee inflesse
2 Le deformazioni nelle travi rettilinee inflesse Tema 2.1 Per la struttura riportata in figura 2.1 determinare l espressione analitica delle funzioni di rotazione ed abbassamento, integrando le equazioni
Teoria e Progetto dei Ponti
Corso di Teoria e Progetto dei Ponti Università degli Studi di Pavia Teoria e Progetto dei Ponti 1/51 Teoria e Progetto dei Ponti Anno Accademico 08/09 Prof. Gian Michele Calvi Corso di Teoria e Progetto
Alcune strutture, seppur adeguatamente dimensionate dal punto di vista della resistenza, raggiungono il cedimento per fenomeni di instabilità.
lcune strutture, seppur adeguatamente dimensionate dal punto di vista della resistenza, raggiungono il cedimento per fenomeni di instabilità. osservazione diretta mostra che il comportamento delle travi
INTRODUZIONE AI DUE VOLUMI... XIX CAP. 1 METODO DELLE FORZE E METODO DEGLI SPOSTAMENTI PREMESSE IL METODO DELLE FORZE...
INDICE INTRODUZIONE AI DUE VOLUMI............ XIX VOLUME II CAP. 1 METODO DELLE FORZE E METODO DEGLI SPOSTAMENTI.............. 1 1.1 PREMESSE.................. 1 1.2 IL METODO DELLE FORZE............ 2
in B, cioè Pl 2 /(3EJ), e della risultante del caricamento triangolare, cioè Pl 2 /(2EJ). In conclusione, il taglio in A nella trave ausiliaria vale
Si considera la trave di lunghezza l, incastrata in B e caricata in A da una coppia concentrata C, (a). Si vuole calcolare la freccia e la rotazione della trave nei punti A e D. La Figura (b) mostra l
Il Principio dei lavori virtuali
Il Principio dei lavori virtuali Il P..V. rientra nella classe di quei principi energetici che indicano che i sistemi evolvono nel senso di minimizzare l energia associata ad ogni stato di possibile configurazione.
Soluzione dei compiti del Corso di Tecnica delle Costruzioni
Corso di Laurea CEA Indirizzi Ambiente ed Infrastrutture Soluzione dei compiti del Corso di Tecnica delle Costruzioni Maurizio Orlando Lorenzo R. Piscitelli Versione 1.0 aggiornamento 15 GENNAIO 2017 Pagina
Durabilità. Strutture Muratura. altro. altro
Nuove Norme Tecniche per le Costruzioni Alcune particolarità per le strutture murarie Contributi di G. Di Carlo, F. Di Trapani, G. Macaluso Durabilità altro Strutture Muratura altro Articolazione della
Costruzioni in zona sismica
Costruzioni in zona sismica Lezione 7 Sistemi a più gradi di libertà Il problema dinamico viene formulato con riferimento a strutture con un numero finito di gradi di libertà. Consideriamo le masse concentrate
ESERCIZIO 2 (punti 13) La sezione di figura è
SCIENZA DELLE COSTRUZIONI: GES L - Z 2 a PROVA 27/06/2005 Tema A : allievo ESERCIZIO 1 (punti 13) Data la struttura una volta iperstatica di figura, soggetta alla variazione termica uniforme sulla biella
ESERCIZI SVOLTI. 12 Travi iperstatiche 12.2 Travi continue
1 Travi iperstatiche 1. Travi continue 1 ESERCIZI SVOLTI 1 1..4 Travi continue con sbalzi e con incastri Studiare la trave continua omogenea e a sezione costante rappresentata in figura, soggetta ai carichi
Esercitazioni. Costruzione di Macchine A.A
Esercitazioni di Costruzione di Macchine A.A. 2002-200 Manovellismo ordinario centrato Esercitazione n 1 2 Una macchina per prove di fatica su molle a balestra aziona, attraverso un giunto che trasmette
26 - La linea elastica e le strutture a telaio
26 - a linea elastica e le strutture a telaio ü [A.a. 2012-201 : ultima revisione 7 maggio 201] In questa Esercitazione si estende il metodo della linea elastica alle strutture a telaio, in cui ogni elemento
BOZZA. Lezione n. 6. Rigidezze e coefficienti di trasmissione
ezione n. 6 Rigidezze e coefficienti di trasmissione ffinché si possa utilizzare efficacemente il metodo dell equilibrio nella soluzione di travature iperstatiche, occorre ricavare, per le varie membrature,
Indice I vettori Geometria delle masse
Indice 1 I vettori 1 1.1 Vettori: definizioni................................ 1 1.2 Componenti scalare e vettoriale di un vettore secondo una retta orientata. 2 1.3 Operazioni di somma, differenza tra
STRUTTURE MONOPIANO Schema di edificio monopiano con campate di grande luce e tegoli di copertura a doppia pendenza Struttura monopiano con portali indipendenti supportanti copertura e facciata perimetrale
CORSO DI PROGETTAZIONE COSTRUZIONI ED IMPIANTI
CORSO DI PROGETTAZIONE COSTRUZIONI ED IMPIANTI LA SOLUZIONE DELLE TRAVI CONTINUE - EQUAZIONE DEI TRE MOMENTI LA SOLUZIONE DELLE TRAVI CONTINUE La trave continua è uno schema ricorrente nella tecnica delle
TRAVE SU SUOLO ELASTICO
Capitolo 3 TRAVE SU SUOLO ELASTICO (3.1) Combinando la (3.1) con la (3.2) si ottiene: (3.2) L equazione differenziale può essere così riscritta: (3.3) La soluzione dell equazione differenziale di ordine
PROGETTAZIONE DI STRUTTURE MECCANICHE
PROGETTAZIONE DI STRUTTURE MECCANICHE Andrew Ruggiero A.A. 2011/12 Analisi matriciale delle strutture: caratterizzazione degli elementi A. Gugliotta, Elementi finiti Parte I Elementi e strutture Una qualsiasi
EQUAZIONE DELLA LINEA ELASTICA
ESERCIZI SVOLTI O CON TRACCIA DI SOLUZIONE SU EQUAZIONE DELLA LINEA ELASTICA v 0.9 Calcolare lo spostamento verticale del pattino A della struttura utilizzando l equazione della linea elastica. Materiale:
1 Equilibrio statico nei corpi deformabili
Equilibrio statico nei corpi deformabili Poiché i materiali reali non possono considerarsi rigidi, dobbiamo immaginare che le forze esterne creino altre forze interne che tendono ad allungare (comprimere)
ESERCIZIO 1 (Punti 9)
UNIVERSITA DI PISA - ANNO ACCADEMICO 007-8 CORSO DI LAUREA IN ING. ELETTRICA (N.O.) CORSO DI MECCANICA E TECNICA DELLE COSTRUZIONI MECCANICHE VERIFICA INTERMEDIA DEL 15-06-009 ESERCIZIO 1 (Punti 9) Data
Solai e solette con armatura incrociata: comportamento e calcolo
Solai e solette con armatura incrociata: comportamento e calcolo Consideriamo la piastra di figura a riferita a un sistema di assi cartesiani x e y, e in particolare le due strisce ortogonali t x e t y
Lezione PONTI E GRANDI STRUTTURE. Prof. Pier Paolo Rossi Università degli Studi di Catania
Lezione PONTI E GRANDI TRUTTURE Prof. Pier Paolo Rossi Università degli tudi di Catania Linee di influenza Definizione Dicesi linea di influenza della grandezza G nella sezione, Il diagramma che indica
INTRODUZIONE AI DUE VOLUMI... XIX STRUTTURE LINEARI PIANE ISOSTATICHE Strutture lineari piane Strutture lineari spaziali...
INDICE INTRODUZIONE AI DUE VOLUMI............ XIX VOLUME I STRUTTURE LINEARI PIANE ISOSTATICHE CAP. 1 TIPOLOGIE STRUTTURALI.......... 1 1.1 DEFINIZIONI.................. 1 1.2 STRUTTURE LINEARI...............
l effetto prevalente è lo spostamento trasversale del punto di applicazione della forza, ossia (d), che vale:
1) SULLA RIGIDEZZA Quando una struttura è soggetta ad un carico, questo produce una serie di effetti: spostamenti, tensioni e deformazioni. Nel caso riportato in figura (1), la forza F produce la deformata
Flessione semplice. , il corrispondente raggio di curvatura R del tubo vale:
Esercizio N.1 Il tubo rettangolare mostrato è estruso da una lega di alluminio per la quale σ sn = 280 MPa e σ U = 420 Mpa e E = 74 GPa. Trascurando l effetto dei raccordi, determinare (a) il momento flettente
Lezione 23: Sistemi a più gradi di libertà: sistemi continui (3)
Lezione 3: Sistemi a più gradi di libertà: sistemi continui 3) Federico Cluni maggio 5 Oscillazioni forzate Si è visto che, nel caso di oscillazioni libere, il moto della trave è dato dalla funzione vx,
Lezione 42 - Le linee di influenza degli spostamenti
Lezione 42 - Le linee di influenza degli spostamenti ü [A.a. 2012-201 : ultima revisione 8 Aprile 2014] Influence line method presents the higher level of analysis of a structure, than the fixed load approach.
Il modello di trave adottato dal Saint-Venant si basa sulle seguenti ipotesi:
IL PROBLEM DEL DE SINT-VENNT Il problema del De Saint-Venant è un particolare problema di equilibrio elastico di notevole interesse applicativo, potendosi considerare alla base della teoria tecnica delle
Ulteriori considerazioni sui vincoli di un solaio
Ulteriori considerazioni sui vincoli di un solaio Dopo aver affrontato, nella precedente Gazzetta, lo studio teorico degli schemi statici dei solai, con questa nota si vuole approfondire lo specifico argomento
Scritto d esame di Analisi Matematica I
Capitolo 2: Scritti d esame 07 Pisa, 8 Gennaio 999. Studiare il comportamento della serie al variare del parametro α > /2. ( ) n n sin α n 2α 2. Sia ( ) f(x) = log + sin3 x. 2 (a) Determinare la derivata
Università degli Studi della Basilicata Facoltà di Ingegneria
Università degli Studi della Basilicata Facoltà di Ingegneria Corso di TECNICA DELLE COSTRUZIONI Docente: Collaboratori: Prof. Ing. Angelo MASI Dr. Ing. Giuseppe Santarsiero Ing. Vincenzo Manfredi RICHIAMI
CORSO DI LAUREA IN ING. ELETTRICA CORSO DI MECCANICA E TECNICA DELLE COSTRUZIONI MECCANICHE ANNO ACCADEMICO VERIFICA DI RIGIDEZZA DI ALBERO
CORSO DI LAUREA IN ING. ELETTRICA CORSO DI MECCANICA E TECNICA DELLE COSTRUZIONI MECCANICHE ANNO ACCADEMICO 25-6 VERIFICA DI RIGIDEZZA DI ALBERO E' dato l'albero riportato in Figura, recante all'estermità
Lezione 33- Le travi ad una campata II
ezione 33- e travi ad una campata II ü [.a. 2011-2012 : ultima revisione 14 giugno 2012] In questa lezione si studiano le travi ad una sola campata con i piu' comuni tipi di vincolo e soggetti ai piu'
CENTRO DI TAGLIO E TORSIONE SPURIA IN TRAVI A PARETE SOTTILE ESERCIZIO 1
CENTR DI TAGLI E TRSINE SPURIA IN TRAVI A PARETE STTILE ESERCIZI 1 La sezione di figura, sietrica rispetto ad un asse orizzontale passante per, è soggetta all azione di taglio T agente in direzione verticale
6 Stato Limite Ultimo per tensioni normali
6 Stato Limite Ultimo per tensioni normali Legami costitutivi non lineari Si considerano i seguenti legami costitutivi non lineari del calcestruzzo e dell acciaio Legame parabola - rettangolo Legame stress
Calcolo della deformata elastica
alcolo della deformata elastica Metodo della linea elastica Si integra l equazione differenziale del secondo ordine della linea elastica " ( M ( ottenuta con le conenzioni y, M ( M imponendo le condizioni
Esempi di stima della freccia elastica di elementi inflessi di sezione trasversale costante
16.4.7 Esempi di stima della freccia elastica di elementi inflessi di sezione trasversale costante Nota. Si riportano, di seguito, alcuni esempi per la stima della freccia elastica di elementi inflessi
TEMI D ESAME DI ANALISI MATEMATICA I
TEMI D ESAME DI ANALISI MATEMATICA I Corso di laurea quadriennale) in Fisica a.a. 003/04 Prova scritta del 3 aprile 003 ] Siano a, c parametri reali. Studiare l esistenza e, in caso affermativo, calcolare
Valutazione della curvatura media di un elemento strutturale in c.a.
16.4 Stato limite di deformazione 16.4.1 Generalità Lo stato limite di deformazione può essere definito come la perdita di funzionalità della struttura a causa di una sua eccessiva deformazione. Segnali
Analisi limite di sistemi di travi
Analisi limite di sistemi di travi L analisi limite o calcolo a rottura consente di valutare direttamente la capacità portante ultima di una struttura, ovvero di valutare direttamente lo stato limite ultimo
ESAME DI STATO DI ISTITUTO TECNICO PER GEOMETRI
ESME DI STTO DI ISTITUTO TECNICO PER GEOMETRI Corso di ordinamento Sessione ordinaria 008 Soluzione tema di costruzioni a) relazione in premessa La passerella viene prevista con struttura mista metallo
Considerazioni introduttive
a linea elastica onsiderazioni introduttie In un elemento strutturale deformabile in cui una dimensione è prealente rispetto alle altre due, è possibile determinare la configurazione secondo la uale uesto
Le piastre:classificazione
Le piastre 1. piastre sottili h/l= 1/50-1/10 : piastre sottili con rigidezza flessionale che portano distribuzioni di carico bidimensionale prevalentemente attraverso momenti flettenti, momenti torcenti
4 SOLLECITAZIONI INDOTTE. 4.1 Generalità
4 SOLLECITAZIONI INDOTTE 4.1 Generalità Le azioni viste inducono uno stato pensionale interno alla struttura e all edificio che dipende dalla modalità con cui le azioni si esplicano. Le sollecitazioni
SCUOTIMENTO DEL TERRENO - Accelerogramma
SCUOTIMENTO DEL TERRENO - Accelerogramma 0.45 0.4 0.35 0.3 0.25 0.2 0.15 0.1 0.05 0-0.05-0.1-0.15-0.2-0.25-0.3 0 1 2 3 4 5 6 7 8 9 10 11 Time [s ec] 12 13 14 15 16 17 18 19 20 AMPLIFICAZIONE SISMICA MAPPA
i i i i = = 39000*5, *0, *5, = =
Premessa La fondazione in questione appartiene ad un fabbricato ad ossatura intelaiata, realizzata con travi e pilastri in c.a., a tre elevazioni fuori terra. Il fabbricato è destinato a civile abitazione.
Lezione. Tecnica delle Costruzioni
Lezione Tecnica delle Costruzioni 1 Comportamento e modellazione del cemento armato 2 Modellazione del cemento armato Comportamento del cemento armato Il comportamento del cemento armato dipende dalle
ELEMENTI MONODIMENSIONALI : TRAVE
ELEMENTI MONODIMENSIONALI : TRAVE La trave è un elemento strutturale con una dimensione predominante sulle altre due. baricentro G sezione trasversale linea d asse rappresentazione schematica 1 ELEMENTI
FINALE: PROVA 1: + = PROVA 2: + =
SCIENZA DELLE COSTRUZIONI: GES L - Z 2 a PROVA 29/06/2006 Tema C : allievo PROVA 1: + = PROVA 2: + = FINALE: ESERCIZIO 1 (punti 12) La struttura una volta iperstatica di figura è soggetta al carico q,
Lezione Analisi Statica di Travi Rigide
Lezione Analisi Statica di Travi Rigide Analisi statica dei sistemi di travi rigide Dato un sistema di travi rigide soggetto a forze esterne. Il sistema è detto equilibrato se esiste un sistema di reazioni
DUTTILITA STRUTTURALE RIFLESSIONE!
DUTTILITA STRUTTURALE RIFLESSIONE! Sotto l azione di terremoti violenti, le strutture escono sensibilmente dal regime elastico, manifestando elevati impegni in campo plastico tuttavia nelle pratiche applicazioni
2. METODO DEGLI SPOSTAMENTI O EQUAZIONE DELLA LINEA ELASTICA, PER LA SOLUZIONE DI TRAVI IPERSTATICHE
METODO DEGLI SPOSTAMENTI CORSO DI PROGETTAZIONE STRUTTURALE B a.a. 00/0 Prof. G. Salerno Appunti elaborati da Arch. C. Provenzano. STRUTTURE IPERSTATICHE Una truttura i dice ipertatica o taticamente indeterminata
Definizione di Lavoro
Definizione Lavoro Caso Forza intensità costante che agisce lungo una retta: L = F s = Fs Caso Forza intensità e rezione variabile: s L = F ds = F ( s) ds 0 0 F(s) componente della forza lungo s. s Nel
IL PROGETTO DI TRAVI IN C.A.P. IPERSTATICHE
7 I PROGETTO DI TRAVI I C.A.P. IPERSTATICHE 7.1 Il sistema equivalente alla precompressione a valutazione delle caratteristiche della sollecitazione nelle travi in c.a.p. può essere condotta, in alternativa
Esercitazioni di Costruzioni navali. Claudio Chisari
Esercitazioni di Costruzioni navali Claudio Chisari 11 ottobre 6 Indice Indice i 1 Robustezza del grigliato del doppiofondo 1 1.1 Caso considerato........................... 1 1. Calcolo delle caratteristiche
Corso di Analisi e Progetto di Strutture A.A. 2012/13 E. Grande. Regolarità Aspettigeneraliecriteridiimpostazione della carpenteria
Corso di Analisi e Progetto di Strutture A.A. 2012/13 E. Grande Regolarità Aspettigeneraliecriteridiimpostazione della carpenteria criterio base: REGOLARITA STRUTTURALE compattezza, simmetria, uniformità
Lezione 33- Le travi ad una campata II
ezione 33- e travi ad una campata II [Ultima revisione: 5 febbraio 009] In questa lezione si studiano le travi ad una sola campata con i piu' comuni tipi di vincolo e soggetti ai piu' comuni tipi di carico
TEOREMA DI BETTI E LINEE DI INFLUENZA (prof. Elio Sacco)
Capitolo 5 TEOEMA DI BETTI E LINEE DI INFLUENZA (prof. Elio Sacco) 5.1 Teorema di Betti Siano S 1 = {b 1, p 1, û 1 } ed S 2 = {b 2, p 2, û 2 } due differenti sistemi di sollecitazioni agenti sul medesimo
Capitolo 4. TRAVE AD ASSE CURVILINEO (prof. Elio Sacco) 4.1 Le equazioni dell arco Equazioni di equilibrio
Capitolo 4 TRAVE AD ASSE CURVILINEO (prof. Elio Sacco) 4.1 Le equaioni dell arco 4.1.1 Equaioni di equilibrio Si consideri una trave ad asse curvilineo. Per determinare le equaioni di equilibrio si consideri
1) Applicando la definizione di derivata, calcolare la derivata in x = 0 delle funzioni: c) x + 1 d)x sin x.
Funzioni derivabili Esercizi svolti 1) Applicando la definizione di derivata, calcolare la derivata in x = 0 delle funzioni: a)2x 5 b) x 3 x 4 c) x + 1 d)x sin x. 2) Scrivere l equazione della retta tangente
LEZIONE 1. IL PROGETTO STRUTTURALE Parte 2. La modellazione. Corso di TECNICA DELLE COSTRUZIONI Chiara CALDERINI A.A
Corso di TECNICA DELLE COSTRUZIONI Chiara CALDERINI A.A. 2007-2008 Facoltà di Architettura Università degli Studi di Genova LEZIONE 1 IL PROGETTO STRUTTURALE Parte 2. La modellazione LA MODELLAZIONE INPUT
Prefazione 1 Studio delle deformazioni elastiche con la teoria di Mohr Criteri introduttivi...
Prefazione 1 Studio delle deformazioni elastiche con la teoria di Mohr... 1.1. Criteri introduttivi......... 1.2. Equazioni di Mohr...5 1.3. Trave a sbalzo: rotazione di una sezione..6 Trave incastrata
Formulazione dell equazione del moto. Prof. Adolfo Santini - Dinamica delle Strutture 1
Formulazione dell equazione del moto Prof. Adolfo Santini - Dinamica delle Strutture 1 Sistema a un grado di libertà In alcuni sistemi strutturali la massa, lo smorzamento e la rigidezza sono concentrati
Figura 5.102: legami costitutivi reali di calcestruzzo e acciaio. Figura 5.103: Trave continua in c.a. sottoposta a carichi di esercizio.
5.7 Calcolo a rottura per travi continue in c.a. Figura 5.102: legami costitutivi reali di calcestruzzo e acciaio. Figura 5.103: Trave continua in c.a. sottoposta a carichi di esercizio. Figura 5.104:
Dettagli costruttivi - scale
Dettagli costruttivi - scale http://efficienzaenergetica.ediliziain rete.it/produzioni/scale-cls 3/21/2014 42 Dettagli costruttivi 3/21/2014 43 Scala a soletta rampante gradini riportati pianerottolo 20
Sistemi vibranti ad 1 gdl
Università degli Studi di Bergamo Dipartimento di Ingegneria Sistemi vibranti ad 1 gdl - vibrazioni forzate - rev. 1. Le vibrazioni forzate di un sistema ad 1 gdl sono descritte dall equazione: mẍ + cẋ
ESERCIZI SVOLTI. Verifica allo SLU di ribaltamento (tipo EQU) 9 Spinta delle terre e muri di sostegno 9.3 Il progetto dei muri di sostegno
ESERCIZI SVOLTI Seguendo le prescrizioni delle N.T.C. 008 effettuare le verifiche agli SLU di ribaltamento, di scorrimento sul piano di posa e di collasso per carico limite dell insieme fondazione-terreno
TIPOLOGIE STRUTTURALI E FATTORI DI STRUTTURA
CORSO DI AGGIORNAMENTO SULLA NORMATIVA SISMICA DI CUI ALL ORDINANZA 3274 DEL 20 03 2003, 08 aprile 21 maggio 2004 TIPOLOGIE STRUTTURALI E FATTORI DI STRUTTURA 1 LIVELLI DI PROTEZIONE SISMICA 2.5 Le costruzioni
Lezione 43 - Le linee di influenza delle c.s.i.
Lezione 43 - Le linee di influenza delle c.s.i. ü [.a. 2012-2013 : ultima revisione 8 prile 2014] In questa Lezione si continua lo studio delle linee di influenza, affrontando il secondo gruppo di possibili
BOZZA. Lezione n. 10. Il metodo dell equilibrio: esempio #4 La rigidezza alla traslazione
ezione n. 10 Il metodo dell equilibrio: esempio #4 a rigidezza alla traslazione E opportuno estendere lo studio effettuato fino a questo punto anche al caso di strutture in cui siano possibili spostamenti
BOZZA. Lezione n. 12. Il metodo dell equilibrio Effetti delle variazioni termiche nelle strutture
ezione n. Il metodo dell equilibrio Effetti delle variazioni termiche nelle strutture e variazioni termiche che agiscono sulle strutture possono essere classificate in: variazioni che producono solo spostamenti
TELAIO A NODI SPOSTABILI Esempio
L = 6 m TELAIO A ODI SPOSTABILI Esempio La struttura di un edificio per uffici è costituita da una serie di telai come in figura, posti ad interasse di 5 m. Verificare le colonne in acciaio S235 (Fe360).
Inflessione delle travi
Inflessione delle travi In precedenza si è esplicitato il legame sollecitazione-curvature-tensioni nelle travi, ma non è ancora stato affrontato il problema del calcolo delle frecce di inflessione Il calcolo
Esercitazione 1 C.A. DIAGRAMMI DI INVILUPPO
Esercitazione 1 C.A. DIAGRAMMI DI INVILUPPO 6.1 Inviluppo delle azioni di progetto 6.1.1 Esempio 1 Si consideri la trave ad una campata con mensola soggetta ai carichi illustrati in figura: Figura 0.1
Scienza delle costruzioni - Luigi Gambarotta, Luciano Nunziante, Antonio Tralli ESERCIZI PROPOSTI
. Travi isostatiche ad asse rettilineo ESERCIZI PROPOSTI Con riferimento alle tre strutture isostatiche di figura, costituite da tre tratti, determinare: ) Reazioni vincolari; ) Diagrammi del momento flettente
TRAVE SU SUOLO ELASTICO
RAVE SU SUOO EASICO a trattazione della trave su suolo elastico è un tipico esempio di problema diffusivo, ovvero il carico concentrato viene distribuito su una zona di terreno più ampia rispetto alla
Solai e solette con armatura incrociata
modulo B3 Le strutture in cemento armato Unità Elementi strutturali verticali e orizzontali Solai e solette con armatura incrociata I solai e le solette che presentano una armatura resistente in una sola
ESERCIZI SVOLTI O CON TRACCIA DI SOLUZIONE SU STRUTTURE IPERSTATICHE
ESERCIZI SVOLTI O CON TRACCIA DI SOLUZIONE SU STRUTTURE IPERSTATICHE 1 PROVA SCRITTA 11 gennaio 2013 - Esercizio 2 Data la struttura di figura, ricavare le equazioni delle azioni interne (M, N, T) e tracciarne
Calcolo dei calastrelli e delle diagonali
1 Calcolo dei calastrelli e delle diagonali La funzione dei calastrelli e delle diagonali è quella di conferire un elevata rigidità all asta composta, con una notevole limitazione della sua inflessione
Formulazione delle equazioni del moto per un sistema lineare a tre gradi di libertà. Proprietà delle matrici di rigidezza e di flessibilità
Formulazione delle equazioni del moto per un sistema lineare a tre gradi di libertà Proprietà delle matrici di rigidezza e di flessibilità Prof. Adolfo Santini - Dinamica delle Strutture Introduzione In
Pressoflessione. Introduzione
Pressoflessione verifica allo stato limite ultimo Introduzione Sperimentalmente, si osserva che il comportamento di una sezione in C.A. con armatura semplice, soggetta a sollecitazione di pressoflessione
DETERMINAZIONE DELLE REAZIONI VINCOLARI E DIAGRAMMI DELLE CARATTERISTICHE DELLA SOLLECITAZIONE
DETERMINAZIONE DEE REAZIONI VINCOARI E DIAGRAMMI DEE CARATTERISTICHE DEA SOECITAZIONE ESERCIZIO DATI: = cm F = 8 kn p = kn/m E A G A ) ANAISI CINEMATICA E STATICA DE SISTEMA Il sistema è piano e costituito
Progetto di strutture in cemento armato
Progetto di strutture in cemento armato Progetto di un edificio in cemento armato soggetto ad azioni miche secondo l O.P.C.. 3274 (2 a parte) Catania, 30 marzo 2004 Pier Paolo Rossi PROGETTO A TAGLIO DELLE
Università degli Studi Guglielmo Marconi
Analisi elementi strutturali di un edificio in CA il Solaio + la trave (I) Solaio: Argomenti Esempio progetto solaio a 2 campate di luce uguale 5 m Diverse fasi procedimento di metodologia di calcolo:
CORSO DI COMPLEMENTI DI MECCANICA. Prof. Vincenzo Niola
CORSO DI COMPLEMENTI DI MECCANICA Prof. Vincenzo Niola SISTEMI A DUE GRADI DI LIBERTÀ Lo studio dei sistemi a più gradi di libertà verrà affrontato facendo riferimento, per semplicità, solo a sistemi conservativi,
Meccanica Applicata alle Macchine
Meccanica Applicata alle Macchine 06-11-013 TEMA A 1. Un cilindro ed una sfera omogenei di uguale massa m ed uguale raggio r sono collegati tra loro da un telaio di massa trascurabile mediante coppie rotoidali
