1 Equilibrio statico nei corpi deformabili
|
|
|
- Enrico Paolini
- 9 anni fa
- Visualizzazioni
Transcript
1 Equilibrio statico nei corpi deformabili Poiché i materiali reali non possono considerarsi rigidi, dobbiamo immaginare che le forze esterne creino altre forze interne che tendono ad allungare (comprimere) e/o flettere, eventualmente fino alla rottura, il corpo in esame. Consideriamo a livello qualitativo la distribuzione delle forze all interno di un prisma rettangolare appoggiato alle estremità e sottoposto ad una forza esterna (carico) come in figura. l/ l/ La condizione di staticità impone l equilibrio delle forze esterne ovvero e dei momenti esterni ovvero + = =. Confrontando le due equazioni così ottenute si ha = = e con questa scelta la forza totale esterna ed il momento totale esterno sono nulli. Tuttavia non solo il prisma nella sua interezza è in equilibrio, ma anche ogni sua parte. sserviamo dunque il diagramma di corpo libero (BD) di una parte del prisma (tratteggiata in figura) ed esaminiamo le forze che vi agiscono. / /
2 / / ffinché la parte in esame sia in equilibrio, la sezione di prisma alla sua sinistra (con cerchietti in figura) deve esercitare una forza uguale ed opposta a quella esterna ( ). E però necessario imporre l equilibrio anche sul momento: si nota infatti che mentre la forza interna esercita un momento nullo rispetto al punto, la forza esterna esercita invece rispetto allo stesso punto il seguente momento M = =. Perché si abbia equilibrio è necessario dunque supporre l esistenza di un momento interno uguale ed opposto al suddetto. / Momento interno / Quindi in tutti i punti del prisma vi sono forze e momenti interni; essi, per garantire l equilibrio in ogni parte del prisma, devono avere i seguenti andamenti in funzione di. Si noti che il momento interno aumenta orza verticale interna l l/ 0 linearmente in funzione della lunghezza fino a l, poi decresce linearmente fino a zero all estremo sinistro. E possibile anche spiegare la presenza dei momenti osservando che le forze esterne hanno l effetto di piegare il prisma come in figura (ovviamente
3 Momento interno l / 4 l l/ 0 esagerata) la parte superiore risulta in compressione mentre quella inferi- B D / / C ore è in tensione. Sulla superficie di separazione (C) agiscono delle forze che prendono il nome di sollecitazioni-sforzi (stress). Questi agiscono sulla superficie C come indicato in figura, opponendosi alla compressione fra i punti ed ed opponendosi alla trazione fra i punti e C. M C vviamente tale configurazione di forze è una coppia che produce un momento non nullo sul punto. E questo il momento interno il cui andamento è stato precedentemente studiato e poiché deve essere uguale ed opposto al momento esterno si ha la seguente relazione sul suo modulo M =. Per semplificare lo studio della deformazione cui è sottoposto il prisma introduciamo alcune ipotesi. Innanzitutto consideriamo il prisma come composto da un numero infinito di lamelle orizzontali infinitamente sottili; assumiamo inoltre che ognuna di esse agisca indipendentemente dalle altre, supponiamo cioè che non vi siano nè sforzi di taglio nè pressioni laterali fra 3
4 lamelle adiacenti, in modo che ciascuna di esse sia soggetta solo ad una forza assiale (tensione o compressione). Un altra ipotesi semplificatrice è che ogni sezione piana normale all asse del prisma rimanga piana una volta applicato il carico. Infine si suppone di rimanare nell ambito del comportamente elastico del corpo, che valga cioè la legge di Hooke. Consideriamo ora le due sezioni (aa, bb ) del corpo deformato indicate in figura. In seguito all applicazione del carico tali sezioni, pur rimanendo R a b c.n. d f e f a b piane, risultano ruotate una rispetto all altra attorno alla normale all asse cd. Si osservi che questo asse, che divide la parte del corpo in trazione da quella in compressione, è l unico a rimanere indeformato ed e per questo detto asse neutro (a.n.). Indichiamo con la distanza della generica fibra longitudinale ff dall asse neutro. Essa si trova in trazione e possiamo calcolare l allungamento ef osservando che ef = dc (ovviamente prima dell applicazione del carico tutte le fibre hanno la stessa lunghezza dell asse neutro). L allungamento relativo risulta dunque ε = δl L = ef ef = ef cd. Dalla similitudine fra i triangoli isosceli fde e dc si ottiene ε = ef cd = de R = df R = R e, ricordando la legge di Hooke, si calcola lo sforzo (forza per unita di area) = σ = Eε = E R 4
5 dove si è indicato con la sezione trasversale del prisma e con E il modulo di Young dello stesso. Consideriamo ora la stessa sezione rettangolare di cui sopra in prospettiva (vedi figura). Si rappresenta con d l elemento d area infinitesimo alla a.n. Elemento d area distanza dall asse neutro. La forza interna applicata su questo elemento è data da d = σd = E R d ed esercita il seguente momento attorno all asse neutro dm = d = d = E R d. La risultante dei momenti sull intera sezione si ottiene integrando su tutta la sua area. E M = R d. Se indichiamo con I il momento secondo d area I = d otteniamo la seguente formula M = EI R. Dunque il momento flettente agente su ogni sezione del prisma è proporzionale al modulo di Young del corpo e all inverso del raggio di curvatura del prisma stesso. 5
6 . Momento secondo d area Si consideri la seguente sezione del prisma Il momento secondo d area è per d H B definizione I = d = h h. Raggio di curvatura Bd = [ 3 B3 ] h h = 3 B(h3 8 + h3 8 ) = Bh3 Se facciamo l ipotesi che (), la formula del raggio di curvatura R = ( + ( ) ) 3 si riduce a R. lla medesima conclusione, nell approssimazione di piccole deformazioni ( () ), possiamo arrivare osservando, in figura che R B θ + δθ θ + d d d = tgϑ ϑ d d +d = tg(ϑ + dϑ) ϑ + dϑ 6
7 da cui si ottiene dϑ = (ϑ + dϑ) ϑ = d d +d d d. Si ricorda inoltre che, detto ds l arco infinitesimo, ds Rdϑ e, sempre nel caso di piccole curvature, si ha Pertanto ds d. R dϑ ds dϑ d d = d +d + d d d = ( + d) () d = 7
Giacomo Sacco Appunti di Costruzioni Edili
Giacomo Sacco Appunti di Costruzioni Edili Le tensioni dovute a sforzo normale, momento, taglio e a pressoflessione. 1 Le tensioni. Il momento, il taglio e lo sforzo normale sono le azioni che agiscono
Sollecitazioni semplici La flessione
Sollecitazioni semplici La flessione Considerazioni introduttive Un altro tipo di sollecitazione semplice particolarmente importante è la flessione, ossia lo stato di sforzo conseguente all applicazione
CENTRO DI TAGLIO E TORSIONE SPURIA IN TRAVI A PARETE SOTTILE ESERCIZIO 1
CENTR DI TAGLI E TRSINE SPURIA IN TRAVI A PARETE STTILE ESERCIZI 1 La sezione di figura, sietrica rispetto ad un asse orizzontale passante per, è soggetta all azione di taglio T agente in direzione verticale
Università degli Studi di Cagliari - Facoltà di Ingegneria e Architettura. Fondamenti di Costruzioni Meccaniche Tensione e deformazione Carico assiale
Esercizio N.1 Un asta di acciaio è lunga 2.2 m e non può allungarsi più di 1.2 mm quando le si applica un carico di 8.5 kn. Sapendo che E = 200 GPa, determinare: (a) il più piccolo diametro dell asta che
3) DIMENSIONAMENTO DI UNA SEZIONE INFLESSA
3) DIMENSIONAMENTO DI UNA SEZIONE INFLESSA Quanto segue ci consente di dimensionare l altezza di una trave inflessa con un criterio di imporre che la tensione massima agente sulla sezione della trave sia
17/03/2014. Le prove meccaniche distruttive. Tipologie di deformazione. Sistemi di Produzione D. Antonelli, G. Murari C.L.U.T.
Le prove meccaniche distruttive Le prove meccaniche distruttive Sistemi di Produzione D. Antonelli, G. Murari C.L.U.T. Editrice, 2008 capitolo 3 Tecnologia meccanica S. Kalpakjian, S. R. Schmid Pearson
ELEMENTI MONODIMENSIONALI : TRAVE
ELEMENTI MONODIMENSIONALI : TRAVE La trave è un elemento strutturale con una dimensione predominante sulle altre due. baricentro G sezione trasversale linea d asse rappresentazione schematica 1 ELEMENTI
Esercitazioni. Costruzione di Macchine A.A
Esercitazioni di Costruzione di Macchine A.A. 2002-200 Manovellismo ordinario centrato Esercitazione n 1 2 Una macchina per prove di fatica su molle a balestra aziona, attraverso un giunto che trasmette
1.6. Momenti di forze parallele rispetto a un asse. Ricerca grafica e analitica 16
Prefazione Avvertenze 1 Elementi di teoria dei vettori...i I.1. Generalità...I 1.2. Composizione delle forze...2 Risultante di forze aventi la stessa retta d'applicazione 3 Risultante di forze concorrenti
CORSO DI PROGETTAZIONE COSTRUZIONI ED IMPIANTI PROF. STEFANO CATASTA A.S DIAGRAMMI DELLE SOLLECITAZIONI
CORSO DI PROGETTAZIONE COSTRUZIONI ED IMPIANTI A.S. 2012-2013 DIAGRAMMI DELLE SOLLECITAZIONI Caratteristiche delle sollecitazioni Una struttura equilibrata vede le sezioni subire traslazioni e/o rotazioni
SEZIONI A PARETE SOTTILE SFORZI TANGENZIALI E CENTRO DI TAGLIO
SEZIONI A PAREE SOILE SFORZI ANGENZIALI E CENRO DI AGLIO La relazione di Jourawski che lega l azione di taglio agente nella sezione di una trave con le sollecitazioni tangenziali medie agenti su su una
CLASSE 3 A APPUNTI DAL CORSO DI COSTRUZIONI LA DEFORMAZIONE DEI MATERIALI SOTTO CARICO
the design of he Forth Bridge (Scotland) 1883-1890 by Sir John Fowler and Sir Benjamin Baker Nessun effetto è in natura sanza ragione; intendi la ragione e non ti bisogna sperienzia. Leonardo da Vinci
Cenni sulle proprietà elastiche dei solidi
Cenni sulle proprietà elastiche dei solidi La nozione di corpo rigido deriva dal fatto che i corpi solidi sono caratterizzati dall avere una forma ed un volume non facilmente modificabili. Nella realtà
Il modello di trave adottato dal Saint-Venant si basa sulle seguenti ipotesi:
IL PROBLEM DEL DE SINT-VENNT Il problema del De Saint-Venant è un particolare problema di equilibrio elastico di notevole interesse applicativo, potendosi considerare alla base della teoria tecnica delle
Sollecitazioni delle strutture
Sollecitazioni delle strutture I pilastri e i muri portanti sono tipicamente sollecitati a compressione Le travi e i solai sono sollecitati a flessione L indeformabilità di questi elementi costruttivi
Flessione semplice. , il corrispondente raggio di curvatura R del tubo vale:
Esercizio N.1 Il tubo rettangolare mostrato è estruso da una lega di alluminio per la quale σ sn = 280 MPa e σ U = 420 Mpa e E = 74 GPa. Trascurando l effetto dei raccordi, determinare (a) il momento flettente
4 SOLLECITAZIONI INDOTTE. 4.1 Generalità
4 SOLLECITAZIONI INDOTTE 4.1 Generalità Le azioni viste inducono uno stato pensionale interno alla struttura e all edificio che dipende dalla modalità con cui le azioni si esplicano. Le sollecitazioni
ESERCIZIO 1. Figura 1: gancio della gru
ESERCIZIO 1 Si consideri la sezione critica A-A di un gancio di una gru le cui dimensioni sono riportate in Figura 1. La sezione, di forma trapezoidale, è illustrata nella seguente figura. Si determini
Esempi di domande per scritto e orale
260 A.Frangi, 208 Appendice D Esempi di domande per scritto e orale D. LE e PLV Risolvere il problema 7.6.6 Risolvere il problema 7.6.7 Nella pagina del docente relativa a Scienza delle Costruzioni allievi
ESERCIZI SVOLTI. 13 Le strutture a telaio 13.1 I canali statici delle forze
1 ESERIZI SVOLTI 1 Studiare il portale a tre cerniere di figura a soggetto al carico ripartito uniforme orizzontale q kn/m che agisce sul piedritto e tracciare i diagrammi delle sollecitazioni. H R R a
Flessione deviata. A B t mm A 1. x 50 mm y mm x mm y mm
Esercizio N.1 (pag. 81) La coppia M agisce in un piano verticale passante per l asse baricentrico di una trave la cui sezione trasversale è mostrata in figura. Determinare la tensione nel punto A. Soluzione
Analisi incrementale di travi e telai EPP: Il diagramma Momento-Curvatura
Analisi incrementale di travi e tai EPP: Il diagramma omento-curvatura Ipotesi di Eulero-Bernoulli: sezione trasversale rimane piana, normale all asse inflesso dla trave γ0, scorrimento nullo Il diagramma
Lezione Analisi Statica di Travi Rigide
Lezione Analisi Statica di Travi Rigide Analisi statica dei sistemi di travi rigide Dato un sistema di travi rigide soggetto a forze esterne. Il sistema è detto equilibrato se esiste un sistema di reazioni
3.Dinamica e forze. La dinamica è quella parte della meccanica che studia il moto di un corpo facendo riferimento alle cause esterne che lo generano.
3.Dinamica e forze La dinamica è quella parte della meccanica che studia il moto di un corpo facendo riferimento alle cause esterne che lo generano. Le due grandezze fondamentali che prendiamo in considerazione
Indice I vettori Geometria delle masse
Indice 1 I vettori 1 1.1 Vettori: definizioni................................ 1 1.2 Componenti scalare e vettoriale di un vettore secondo una retta orientata. 2 1.3 Operazioni di somma, differenza tra
Equilibrio di un punto materiale (anelli, giunti ecc.)
Equilibrio di un punto materiale (anelli, giunti ecc.) Per l equilibrio di un punto basta Obiettivo: verificare che Σ F i 0 Determinare le forze trasmesse al nodo da tutti gli elementi concorrenti, e
Lezione. Tecnica delle Costruzioni
Lezione Tecnica delle Costruzioni 1 Comportamento e modellazione del cemento armato 2 Modellazione del cemento armato Comportamento del cemento armato Il comportamento del cemento armato dipende dalle
PROVA SCRITTA DI TECNICA DELLE COSTRUZIONI DEL 05/12/2011 Esercizio n 1
PROVA SCRITTA DI TECNICA DELLE COSTRUZIONI DEL 05/1/011 Esercizio n 1 Sia data una sezione di c.a. avente dimensioni 40 x 60 cm. I materiali impiegati sono: a) calcestruzzo Rck=0 N/, b) acciaio tipo B450C.
Sollecitazioni semplici Il Taglio
Sollecitazioni semplici Il Taglio Considerazioni introduttive La trattazione relativa al calcolo delle sollecitazioni flessionali, è stata asata sull ipotesi ce la struttura fosse soggetta unicamente a
Capitolo 11. TORSIONE (prof. Elio Sacco) 11.1 Sollecitazione di torsione Torsione nella sezione circolare
Capitolo TORSIONE (prof. Elio Sacco). Sollecitazione di torsione Si esamina il caso in cui la trave è soggetta ad una coppia torcente e 3 agente sulla base L della trave. Si utilizza il metodo seminverso
2 - Principi di Meccanica e di Equilibrio
2 - Principi di Meccanica e di Equilibrio Cause dei fenomeni meccanici (quiete e moto) 1/2 Nella Meccanica Classica (Meccanica Newtoniana) si assume che tra corpi diversi, così come tra le diverse parti
ESERCIZIO 1.2 (punti 15) - Siano note le misurazioni estensimetriche seguenti come in figura: ALLIEVO
SCIENZA DELLE COSTRUZIONI: GES L - Z APPELLO 23/07/2007 TEMA A ALLIEVO PROVA 1: + = PROVA 2: + + = APPELLO: ESERCIZIO 1.1 (punti 18) - Data la struttura di figura, si chiede di: 1.1a - effettuare l analisi
Pressoflessione. Introduzione
Pressoflessione verifica allo stato limite ultimo Introduzione Sperimentalmente, si osserva che il comportamento di una sezione in C.A. con armatura semplice, soggetta a sollecitazione di pressoflessione
Considerazioni introduttive
a linea elastica onsiderazioni introduttie In un elemento strutturale deformabile in cui una dimensione è prealente rispetto alle altre due, è possibile determinare la configurazione secondo la uale uesto
Unità 7: Il caso delle travi F=6000 N = = 40. R ya 2000 F T y. = = Nmm
omportamento meccanico dei materiali Esercizio 1 Una trave di sezione rettangolare 040 mm lunga m, appoggiata alle estremità, è soggetta ad un carico verticale di 000 che agisce nella mezzeria. alcolare
Don Bosco 2014/15, Classe 3B - Primo compito in classe di Fisica
Don Bosco 014/15, Classe B - Primo compito in classe di Fisica 1. Enuncia il Teorema dell Energia Cinetica. Soluzione. Il lavoro della risultante delle forze agenti su un corpo che si sposta lungo una
Proprietà dei materiali
meccaniche Proprietà dei materiali modulo elastico carico di snervamento resistenza a trazione durezza tenacità tenacità a frattura resistenza a fatica resilienza modulo di creep tempo di rilassamento
Scienza delle costruzioni - Luigi Gambarotta, Luciano Nunziante, Antonio Tralli ESERCIZI PROPOSTI
. Travi isostatiche ad asse rettilineo ESERCIZI PROPOSTI Con riferimento alle tre strutture isostatiche di figura, costituite da tre tratti, determinare: ) Reazioni vincolari; ) Diagrammi del momento flettente
Corso di Progetto di Strutture. POTENZA, a.a Pareti in c.a.
Corso di Progetto di Strutture POTENZA, a.a. 2012 2013 Pareti in c.a. Dott. Marco VONA Scuola di Ingegneria, Università di Basilicata [email protected] http://www.unibas.it/utenti/vona/ PARETI La parete
Figura 5.102: legami costitutivi reali di calcestruzzo e acciaio. Figura 5.103: Trave continua in c.a. sottoposta a carichi di esercizio.
5.7 Calcolo a rottura per travi continue in c.a. Figura 5.102: legami costitutivi reali di calcestruzzo e acciaio. Figura 5.103: Trave continua in c.a. sottoposta a carichi di esercizio. Figura 5.104:
Sollecitazioni semplici La flessione
Sollecitazioni semplici La flessione Considerazioni introduttive Un altro tipo di sollecitazione semplice particolarmente importante è la flessione, ossia lo stato di sforzo conseguente all applicazione
DIAGRAMMI DELLE SOLLECITAZIONI
1 DISPENSA N 5 DIAGRAMMI DELLE SOLLECITAZIONI Consideriamo una struttura qualsiasi, per esempio una trave appoggiata, sollecitata da carichi generici. Dopo avere trovato le reazioni vincolari, il prossimo
La Meccanica dei Materiali si occupa del comportamento di corpi solidi sottoposti all azione di forze e momenti.
Stato di sforzo La Meccanica dei Materiali si occupa del comportamento di corpi solidi sottoposti all azione di forze e momenti. Questo comportamento include deformazioni, fratture e separazione di parti,
Resistenza dei materiali
Scheda riassuntiva capitoli 8-1 Resistenza dei materiali a resistenza dei materiali mette in relazione tra loro i seguenti elementi: Trazione/ Carichi compressione Taglio Flessione Torsione Deformazioni
Tipologie di murature portanti
Tipologie di murature portanti Le murature costituite dall assemblaggio organizzato ed efficace di elementi e malta possono essere a singolo paramento, se la parete è senza cavità o giunti verticali continui
Le piastre:classificazione
Le piastre 1. piastre sottili h/l= 1/50-1/10 : piastre sottili con rigidezza flessionale che portano distribuzioni di carico bidimensionale prevalentemente attraverso momenti flettenti, momenti torcenti
TEORIA DELLE LASTRE SOTTILI
TEORIA DELLE LASTRE SOTTILI Pavimentazioni rigide D( ) = q-kw δ 4 w δ 4 w δ 4 w + 2 + δx 4 δx 2 δy 2 δy 4 D= EH 3 /(12(1-μ 2 )) : rigidità flessionale della lastra H : spessore della lastra E : modulo
Le deformazioni nelle travi rettilinee inflesse
2 Le deformazioni nelle travi rettilinee inflesse Tema 2.1 Per la struttura riportata in figura 2.1 determinare l espressione analitica delle funzioni di rotazione ed abbassamento, integrando le equazioni
B4 Costruzioni in calcestruzzo armato (4)
B4 Costruzioni in calcestruzzo armato (4) Verifiche agli Stati Limite Ultimi per tensioni normali (Rev 11/2018) Le seguenti slides costituiscono solo una base per lo sviluppo delle lezioni e, pertanto,
Università degli Studi di Cagliari - Facoltà di Ingegneria e Architettura
Esercizio N.1 a trave a mensola ha sezione trasversale costante e porta un carico F nella sua estremità libera. Determinare lo spostamento verticale del punto. Soluzione Iniziamo calcolando le reazioni
Equilibrio statico sul piano inclinato
Esperienza 3 Equilibrio statico sul piano inclinato Obiettivi - Comprendere la differenza tra grandezze vettoriali e grandezze scalari attraverso lo studio delle condizioni di equilibrio statico di un
Corso di Scienza delle Costruzioni (Corso di Laurea Specialistica in Ingegneria Elettrica)
Corso di Scienza delle Costruzioni (Corso di Laurea Specialistica in Ingegneria Elettrica) Corso di Meccanica Analitica e dei Continui (Corso di Laurea Specialistica in Ingegneria Nucleare e della Sicurezza
Collegio di Merito Bernardo Clesio Università di Trento
Collegio di Merito Bernardo Clesio Università di Trento 23 luglio 2012 Prova per i candidati per le facoltà scientifiche Esercizio 1. Descrivere tutti i polinomi p(x) con coefficienti reali tali che per
Calcolo dei calastrelli e delle diagonali
1 Calcolo dei calastrelli e delle diagonali La funzione dei calastrelli e delle diagonali è quella di conferire un elevata rigidità all asta composta, con una notevole limitazione della sua inflessione
Esercitazione 3 - Calcolo delle azioni interne
Università degli Studi di ergamo orso di Laurea in Ingegneria Tessile orso di Elementi di Meccanica Esercitazione - alcolo delle azioni interne Esercizio n. La struttura di figura.a è composta da due aste
Scienza dei Materiali 1 Esercitazioni
Scienza dei Materiali 1 Esercitazioni 6. Elasticità ver. 1.3 Sforzo e deformazione Sia dato un provino di lunghezza l avente area della sezione A, sottoposto ad una forza di trazione F. A causa di questa
PressoFlessione. b=33. Trasportando la forza P verso l alto della quantità b = -33 mm, abbiamo la seguente situazione:
Esercizio N.1 Sapendo che la grandezza della forza orizzontale P è 8 kn, determinare la tensione (a) nel punto A, (b) nel punto B. Lo schema statico e le azioni interne sull asta sono le seguenti. P b=33
Meccanica del punto materiale
Meccanica del punto materiale Princìpi della dinamica. Forze. Momento angolare. Antonio Pierro @antonio_pierro_ (https://twitter.com/antonio_pierro_) Per consigli, suggerimenti, eventuali errori o altro
CAPITOLO 7 TEOREMA DI AMPERE
CAPITOLO 7 DI 7.1 Prima legge elementare di Laplace Le correnti generano i campi magnetici. Per calcolare il campo magnetico prodotto da un filo percorso da corrente dobbiamo usare una procedura simile
Calcolare la tensione T della corda e la reazione vincolare N in C.
1 Esercizio Un cilindro di raggio R = 20 cm e massa m = 150 Kg è appoggiato su un piano inclinato di un angolo θ = 30 o ed è tenuto fermo da una corda tesa orizzontalmente; l attrito statico tra il cilindro
Capitolo 4. TRAVE AD ASSE CURVILINEO (prof. Elio Sacco) 4.1 Le equazioni dell arco Equazioni di equilibrio
Capitolo 4 TRAVE AD ASSE CURVILINEO (prof. Elio Sacco) 4.1 Le equaioni dell arco 4.1.1 Equaioni di equilibrio Si consideri una trave ad asse curvilineo. Per determinare le equaioni di equilibrio si consideri
Metallurgia e Materiali non Metallici. Prova di trazione. Marco Colombo.
Metallurgia e Materiali non Metallici Prova di trazione Marco Colombo [email protected] 16/03/2016 La prova di trazione uniassiale Una delle più comuni e importanti prove distruttive, si ricavano
1) METODO DELLE SEZIONI DI RITTER
1) METODO DELLE SEZIONI DI RITTER Un altro metodo per il calcolo di una travatura reticolare isostatica è quello delle sezioni di Ritter. Prendiamo in esame la stessa struttura dell esercizio precedente
