Le piastre:classificazione
|
|
|
- Raffaele Roberti
- 8 anni fa
- Visualizzazioni
Transcript
1 Le piastre 1. piastre sottili h/l= 1/50-1/10 : piastre sottili con rigidezza flessionale che portano distribuzioni di carico bidimensionale prevalentemente attraverso momenti flettenti, momenti torcenti e taglio in una maniera simile alle travi 2. Membrane h/l<1/50: piastre molto sottili senza rigidezza flessionale che portano carichi prevalentemente attraverso azioni membranali assiali e taglio centrale. La capacità di sopportare i carichi può essere assimilata ad una reticolo di cavi in trazione dal momento che il momento resistente è trascurabile 1) 2)
2 Le piastre:classificazione 3. piastre moderatamente spesse h/l= 1/10-1/5 : piastre in cui l effetto del taglio sulle componenti normali viene messo in conto 4. Piastre spesse h/l>1/5: stato di sollecitazione tridimensionale 3) 4)
3 Studio delle piastre: breve storia
4 Studio delle piastre: breve storia
5 Studio delle piastre: breve storia
6 Studio delle piastre: breve storia
7 Studio delle piastre: breve storia
8 Studio delle piastre: breve storia
9 Le piastre: stato tensionale
10 Teoria di Kirchhoff delle piastre sottili
11 Teoria di Kirchhoff delle piastre sottili 1) Ipotesi sulla tensione: la tensione normale in direzione dello spessore della piastra è trascurabile 2) Ipotesi sulle deformazioni: la dilatazione lineare in direzione dello spessore della piastra è trascurabile 3) Gli scorrimenti angolari tra il piano della piastra e la fibra ortogonale a tale piano sono trascurabili Ipotesi valida solo nella teoria di Kirchhoff e che non influenza le equazioni di equilibrio in termini di sforzi generalizzati
12 Teoria di Kirchhoff delle piastre sottili la fibra ortogonale al piano medio della piastra risulta ortogonale alla superficie media della piastra a deformazione avvenuta
13 Teoria di Kirchhoff delle piastre sottili
14 Ipotesi cinematiche: dilatazione lineare in z e scorrimenti angolari in z trascurabili Ipotesi sulla dilatazione lineare ε z 0 w, = 0 = z Che integrata nello spessore fornisce w = w(, y) y,v φy φ,u Ipotesi sugli scorrimenti angolari γ γ yz z = 0 = 0 v u, z, z + w + w Che integrate nello spessore forniscono u = u v = v 0 0 zw zw,, y, y, = 0 = 0 z,w
15 Ipotesi cinematiche: dilatazione lineare in z e scorrimenti angolari in z trascurabili Il campo di spostamenti diventa ), ( ), ( ), (, 0 y zw y u y u =,u φ φy y,v Rotazione φ positiva se antioraria nel piano z attorno asse y Rotazione φy positiva se antioraria nel piano yz attorno asse ), ( ), ( ), ( ), (, 0, 0 y w w y zw y v y v y = = + = y w w z w v u w v u,, z,w
16 Teoria di Kirchhoff delle piastre sottili Introduciamo le curvature come le derivate delle rotazioni cambiate di segno dove : Curvature flessionali : Curvatura torsionale = = y y y y w w S w w y y,,,, / / / 0 0 / χ χ χ z y z y m m
17 Teoria di Kirchhoff delle piastre sottili dove Deformazioni 0 0 / / / 0 0 / v u y y e e e y y Dove in uno stato piano di tensione il tensore costitutivo è Tensioni
18 Sforzi specifici Integrando sullo spessore si ottengono gli sforzi specifici per unità di lunghezza N/m Si annulla in quanto integrale di funzione dispari su dominio pari
19 Momenti specifici Integrando sullo spessore si ottengono i momenti specifici per unità di lunghezza Nm/m
20 Sforzi membranali generalizzati
21 Sforzi flessionali : momenti specifici o generalizzati
22 Sforzi membranali : equazioni di equilibrio Equilibrio alla traslazione lungo e y Semplificando e dividendo per y nel limite per e y che tendono a zero
23 Sforzi flessionali
24 Sforzi flessionali: Equazioni di equilibrio Equilibrio alla traslazione lungo z.
25 Equilibrio alla rotazione attorno ad y ed Semplificando, dividendo per ΔΔy, ed eseguendo il limite per e y che tendono a 0 si ottiene
26 Teoria di Kirchhoff delle piastre sottili In definitiva le equazioni di equilibrio sono
27 Equazione di Sophie Germain Lagrange Sostituendo gli spostamenti Eh 2 1 υ Eh 2(1 + υ) Eh 12 3 u 0, ( u 1 [ 2 1 υ υeh υ 0, y + v v 0, 0, y Eh + ( u 2(1 + υ) υeh ) υ u 0, y 0, yy + v Eh υ 0, y v 0, yy ) + + υ 2 υ 1 w, + w yy + w yy + w yy + w yyyy ] = 2,, 2, 2, 1 υ 1+ υ 1 υ 1 υ f f y = 0 = 0 q In particolare l ultima equazione diventa w, + q D Detta equazione di Sophie Germain Lagrange Anche scritta in forma compatta come 3 Eh 12(1 υ ) 2w, yy + w, yyyy = dove D = 2 4 w = q D Rigidezza flessionale della piastra inflessa
28 Teoria di Kirchhoff delle piastre sottili 4 w = q D Una soluzione esatta del problema governato dall equazione di Sophie-Germain-Lagrange deve soddisfare l equazione stessa sotto le opportune condizioni al contorno. Essendo un equazione del IV ordine (8 costanti da determinare), occorrono 2 condizioni al contorno su ogni bordo: -Condizioni al contorno di tipo CINEMATICO -Condizioni al contorno di tipo STATICO: momento flettente, momento torcente e taglio
29 Teoria di Kirchhoff delle piastre sottili Osserviamo che i tagli Q e Qy non possono essere introdotti come sforzi generalizzati a causa del fatto che γz e γyz sono nulli Essi sono introdotti via equilibrio come gli sforzi staticamente equivalenti ai momenti flettente e torcente
30 Teoria di Kirchhoff delle piastre sottili Kirchhoff ha dimostrato che la condizione al bordo relativa alla componente tagliante deve essere M sn Wsn w = w oppure Tn + = V su s s Dove : Tn è lo sforzo trasversale relativo al bordo Γ di normale n Msn è il momento torcente generalizzato relativo al bordo Γ di normale n in direzione s V rappresenta un azione tagliante esterna applicata sul bordo Γ di normale n nota Wsn rappresenta un momento torcente esterno applicato sul bordo Γ di normale n in direzione s Γ
31 Teoria di Kirchhoff delle piastre sottili
32 Teoria di Kirchhoff delle piastre sottili Il taglio di Kirchhoff risulta essere una misura globale di azione traversale interna comprensiva di un contributo staticamente equivalente al momento torcente T n K = T n + T = T n + M s sn Il metodo seguito rappresenta solo un interpretazione meccanica del taglio di Kirchhoff dovuta Lord Kelvin e Tait alla fine del 800
33 Teoria di Kirchhoff delle piastre sottili I parametri cinematici indipendenti sul contorno sono w: inflessione w/ n : rotazione normale Infatti la rotazione tangente w/ s risulta nota una volta assegnato lo spostamento w sul tratto di contorno Analogamente si dimostra che possono essere assegnate solo 2 condizioni al contorno di tipo statico. Tali sollecitazioni devono essere coniugate nel senso del principio dei lavori virtuali all inflessione w ed alla derivata normale
34 Teoria di Kirchhoff delle piastre sottili Il lavoro virtuale delle caratteristiche di sollecitazione lungo un tratto del contorno vale L = c w M M ds ns n Qn ) wds n ( + + s c Per cui le caratteristiche di sollecitazione da assegnare sul contorno sono M T n n + momento flettente normale M s ns taglio di Kirchhoff
35 Taglio di Kirchhoff Effetti di Bordo dei momenti torcenti
36 Taglio di Kirchhoff Sollevamento degli spigoli
37 Teoria di Kirchhoff : risultanti rispetto ad una direzione generica
38 Teoria di Kirchhoff : momenti generalizzati di asse generico
39 Teoria di Kirchhoff delle piastre sottili
Piastre sottili: soluzioni esatte. Piastra ellittica incastrata al bordo soggetta a carico distribuito costante
Piastre sottili: soluzioni esatte Piastra ellittica incastrata al bordo soggetta a carico distribuito costante Piastre sottili: soluzioni esatte Piastra triangolare appoggiata al bordo soggetta a carico
Risoluzione delle Piastre Le piastre sottili in regime elastico
Corso di rogetto di Strutture OTENZA, a.a. 1 13 Risoluione delle iastre Le piastre sottili in regime elastico Dott. arco VONA DiSGG, Università di Basilicata [email protected] http://www.unibas.it/utenti/vona/
REGOLA DELLE MISCELE, TEORIA DELLA LAMINAZIONE
REGOLA DELLE MISCELE, TEORIA DELLA LAMINAZIONE Si va ad analizzare la matrice di legame costitutivo che lega le σ con le ε. Si va a considerare il materiale da isotropo a ortotropo ovvero una lamina che
za Bozza - Appunti di Scienza delle Costruzioni 1, dalle lezioni del prof. P. Podio-Guidugli, a.a. 2007/8 -
11 Calcolo di spostamenti e rotazioni in travature isostatiche 81 11 Calcolo di spostamenti e rotazioni in travature isostatiche Consideriamo d ora in avanti travature linearmente termoelastiche dello
Capitolo 11. TORSIONE (prof. Elio Sacco) 11.1 Sollecitazione di torsione Torsione nella sezione circolare
Capitolo TORSIONE (prof. Elio Sacco). Sollecitazione di torsione Si esamina il caso in cui la trave è soggetta ad una coppia torcente e 3 agente sulla base L della trave. Si utilizza il metodo seminverso
Capitolo 2 IL MODELLO TRAVE : TEORIA TECNICA. 2.1 Cinematica
Capitolo 2 IL MODELLO TRAVE : TEORIA TECNICA La trave T è un solido tridimensionale con una dimensione molto maggiore delle altre due; data una figura piana di dimensione caratteristica d ed area A, latrave
TEOREMA DI BETTI E LINEE DI INFLUENZA (prof. Elio Sacco)
Capitolo 5 TEOEMA DI BETTI E LINEE DI INFLUENZA (prof. Elio Sacco) 5.1 Teorema di Betti Siano S 1 = {b 1, p 1, û 1 } ed S 2 = {b 2, p 2, û 2 } due differenti sistemi di sollecitazioni agenti sul medesimo
Premessa 1. Notazione e simbologia Notazione matriciale Notazione tensoriale Operazioni tensoriali in notazione matriciale 7
Premessa 1 Notazione e simbologia 3 0.1 Notazione matriciale 3 0.2 Notazione tensoriale 4 0.3 Operazioni tensoriali in notazione matriciale 7 Capitolo 7 La teoria delle travi 9 7.1 Le teorie strutturali
MODELLO TRAVE DI TIMOSHENKO (prof. Elio Sacco)
Capitolo 3 MODELLO TRVE DI TIMOSHENKO (prof. Elio Sacco) 3. Cinematica La cinematica della trave è definita dalla deformazione dell asse e dalle rotazioni delle sezioni. Nel seguito viene trattato esclusivamente
Le deformazioni nelle travi rettilinee inflesse
2 Le deformazioni nelle travi rettilinee inflesse Tema 2.1 Per la struttura riportata in figura 2.1 determinare l espressione analitica delle funzioni di rotazione ed abbassamento, integrando le equazioni
Il modello di trave adottato dal Saint-Venant si basa sulle seguenti ipotesi:
IL PROBLEM DEL DE SINT-VENNT Il problema del De Saint-Venant è un particolare problema di equilibrio elastico di notevole interesse applicativo, potendosi considerare alla base della teoria tecnica delle
Resistenza dei materiali
Scheda riassuntiva capitoli 8-1 Resistenza dei materiali a resistenza dei materiali mette in relazione tra loro i seguenti elementi: Trazione/ Carichi compressione Taglio Flessione Torsione Deformazioni
ELEMENTI MONODIMENSIONALI : TRAVE
ELEMENTI MONODIMENSIONALI : TRAVE La trave è un elemento strutturale con una dimensione predominante sulle altre due. baricentro G sezione trasversale linea d asse rappresentazione schematica 1 ELEMENTI
REGISTRO DELLE LEZIONI 2006/2007. Tipologia. Addì Tipologia. Addì Tipologia
Introduzione ai contenuti del corso. Descrizione dell'organizzazione del corso e delle modalità di svolgimento delle lezioni e degli esami. Teoria lineare della trave. Ipotesi di base. Problema assiale:
CAPITOLO I TEORIA DELLA PIASTRA
CAPITOLO I TEORIA DELLA PIASTRA R. BARBONI TEORIA DELLA PIASTRA 3 1. La piastra Si consideri la struttura di figura con riferimento ad un sistema di coordinato con, nel piano medio e z ortogonale ad esso,
1 Equilibrio statico nei corpi deformabili
Equilibrio statico nei corpi deformabili Poiché i materiali reali non possono considerarsi rigidi, dobbiamo immaginare che le forze esterne creino altre forze interne che tendono ad allungare (comprimere)
-gdl>gdv il sistema è staticamente labile (trave labile, cioè in grado di muoversi);
Meccanica a trave Trave in equilibrio con due vincoli I gradi di libertà per un corpo sul piano sono 3, mentre quelli di un corpo nello spazio sono 6. Consideriamo un sistema di riferimento formato da:
Figura 1: Azioni generalizzate sul concio infinitesimo di piastra. dx dy = 0 (1)
Equazione risolvente delle piastre sottili Al fine di determinare l equazione della superficie elastica, cioè l unica incognita del problema, dato che tutte le altre grandezze sono scritte in funzione
Introduzione al corso Le Piastre
Corso di Progetto di Strutture POTENZA, a.a. 2012 2013 Introduzione al corso Le Piastre Dott. Marco VONA DiSGG, Università di Basilicata [email protected] http://www.unibas.it/utenti/vona/ PROGRAMMA
CENTRO DI TAGLIO E TORSIONE SPURIA IN TRAVI A PARETE SOTTILE ESERCIZIO 1
CENTR DI TAGLI E TRSINE SPURIA IN TRAVI A PARETE STTILE ESERCIZI 1 La sezione di figura, sietrica rispetto ad un asse orizzontale passante per, è soggetta all azione di taglio T agente in direzione verticale
Tutti i diritti riservati
Statica - Fondamenti di meccanica strutturale /ed Copright 00 The Companies srl e Corbusier - Progetto per il palazzo dei Soviet a osca 9 Problema. Impostiamo ora il problema deformativo per la trave di
Trave isostatica Studio della deformata con il metodo della LINEA ELASTICA
Trave isostatica Studio della deformata con il metodo della LINEA ELASTICA Trave a mensola, di rigidezza flessionale costante pari a EI, soggetta a forza verticale agente all estremo liero. Determinare
La modellazione delle strutture
La modellazione delle strutture 1 Programma 31-1-2012 Introduzione e brevi richiami al metodo degli elementi finiti 7-2-2012 La modellazione della geometria 14-2-2012 21-2-2012 28-2-2012 6-3-2012 13-32012
Teoria Classica della Laminazione
Teoria Classica della Laminazione Classical Lamination Theor - CLT { } { k } Procedura Inversa : Analisi del Laminato 1) Noto il vettore delle forze applicate si possono calcolare le deformazioni generalizzate
FINALE: PROVA 1: + = PROVA 2: + =
SCIENZA DELLE COSTRUZIONI: GES L - Z 2 a PROVA 29/06/2006 Tema C : allievo PROVA 1: + = PROVA 2: + = FINALE: ESERCIZIO 1 (punti 12) La struttura una volta iperstatica di figura è soggetta al carico q,
Analisi limite di sistemi di travi
Analisi limite di sistemi di travi L analisi limite o calcolo a rottura consente di valutare direttamente la capacità portante ultima di una struttura, ovvero di valutare direttamente lo stato limite ultimo
Tipologie di murature portanti
Tipologie di murature portanti Le murature costituite dall assemblaggio organizzato ed efficace di elementi e malta possono essere a singolo paramento, se la parete è senza cavità o giunti verticali continui
Capitolo 4. TRAVE AD ASSE CURVILINEO (prof. Elio Sacco) 4.1 Le equazioni dell arco Equazioni di equilibrio
Capitolo 4 TRAVE AD ASSE CURVILINEO (prof. Elio Sacco) 4.1 Le equaioni dell arco 4.1.1 Equaioni di equilibrio Si consideri una trave ad asse curvilineo. Per determinare le equaioni di equilibrio si consideri
Micromeccanica e Macromeccanica dei MaterialiCompositi
Micromeccanica e Macromeccanica dei Materialiompositi orso di Tecnologie dei Materiali non onvenzionali - Prof. Luigi arrino Micromeccanica Micromeccanica La micromeccanica studia le proprietà della singola
Sommario 1 VOLUME CAPITOLO 1 - Matrici 1 VOLUME CAPITOLO 3 - Geometria delle masse 1 VOLUME CAPITOLO 2 - Notazione indiciale
Sommario CAPITOLO 1 - Matrici...! Definizione! Matrici di tipo particolare Definizioni relative-! Definizioni ed operazioni fondamentali! Somma di matrici (o differenza)! Prodotto di due matrici! Prodotti
Quaderni di Complementi di Scienza delle Costruzioni - Ingegneria Meccanica -
Quaderni di Complementi di Scienza delle Costruzioni - Ingegneria Meccanica - Appunti dalle lezioni a cura di Stella Brach Anno Accademico 2010 / 2011 1. Il teorema di Castigliano e sue applicazioni Università
La torsione. Cristoforo Demartino. Università degli Studi di Napoli Federico II. 30 maggio 2012
Napoli, 30 maggio 2012 La torsione Cristoforo Demartino Università degli Studi di Napoli Federico II 30 maggio 2012 Napoli, 30 maggio 2012 Outline della lezione Introduzione Torsione in travi a sezione
PROVA SCRITTA DI TECNICA DELLE COSTRUZIONI DEL 05/12/2011 Esercizio n 1
PROVA SCRITTA DI TECNICA DELLE COSTRUZIONI DEL 05/1/011 Esercizio n 1 Sia data una sezione di c.a. avente dimensioni 40 x 60 cm. I materiali impiegati sono: a) calcestruzzo Rck=0 N/, b) acciaio tipo B450C.
1.3 Sistemi non lineari ad 1 grado di libertà. 1.4 Sistemi non lineari a 2 gradi di libertà 1.5 Sistemi multicorpo. 1.6 La dinamica del corpo rigido
V Indice XIII XVII 1 1 12 13 19 21 23 25 26 27 27 34 43 52 54 57 62 64 67 67 69 73 75 79 82 Prefazione Introduzione Cap. 1 Sistemi multi-corpo a 1-n gradi di libertà 1.1 Coordinate cartesiane, gradi di
EQUAZIONE DELLA LINEA ELASTICA
ESERCIZI SVOLTI O CON TRACCIA DI SOLUZIONE SU EQUAZIONE DELLA LINEA ELASTICA v 0.9 Calcolare lo spostamento verticale del pattino A della struttura utilizzando l equazione della linea elastica. Materiale:
La modellazione delle strutture
La modellazione delle strutture 1 Programma 31-1-2012 Introduzione e brevi richiami al metodo degli elementi finiti 7-2-2012 La modellazione della geometria 14-2-2012 21-2-2012 28-2-2012 6-3-2012 13-32012
Lezione Analisi Statica di Travi Rigide
Lezione Analisi Statica di Travi Rigide Analisi statica dei sistemi di travi rigide Dato un sistema di travi rigide soggetto a forze esterne. Il sistema è detto equilibrato se esiste un sistema di reazioni
Calcolo delle aste composte
L acciaio. Strutture in acciaio 1 Calcolo delle aste composte Calcolo della snellezza equivalente La snellezza equivalente viene calcolata con le seguenti relazioni: aste calastrellate: λ eq λ y + λ 1
Capitolo 3 La torsione Sollecitazioni semplici: la torsione
Capitolo 3 La torsione Sollecitazioni semplici: la torsione Definizione Un elemento strutturale è soggetto a sollecitazione di torsione quando su di esso agiscono due momenti uguali ed opposti giacenti
Il teorema dei lavori virtuali, l elasticità lineare ed il problema dell equilibrio elastico
5 Il teorema dei lavori virtuali, l elasticità lineare ed il problema dell equilibrio elastico Tema 5.1 Si consideri un corpo continuo libero nello spazio, di forma parallelepipedica e di dimensioni a
MST.1.01 Sia dato il portale in figura, con il trasverso BC indeformabile ed i montanti di rigidezza EJ.
Meccanica delle strutture Componenti di spostamento Sistemi iperstatici di travi Linea elastica e metodo di Ritz. Componenti di spostamento in sistemi isostatici di travi MST.1.01 Sia dato il portale in
Calcolo delle caratteristiche della sollecitazione nella struttura di fondazione. Interazione terreno-struttura. Procedimento tradizionale:
Ubi sunt leones? Calcolo delle caratteristiche della sollecitazione nella struttura di fondazione Interazione terreno-struttura Procedimento tradizionale: si trascura l influenza della sovrastruttura,
SCUOLA POLITECNICA-DICGIM ANNO ACCADEMICO 2014/2015 CORSO DI LAUREA
STRUTTURA SCUOLA POLITECNICA-DICGIM ANNO ACCADEMICO 2014/2015 CORSO DI LAUREA Ingegneria Gestionale e Informatica INSEGNAMENTO Scienza delle Costruzioni TIPO DI ATTIVITÀ Affine AMBITO DISCIPLINARE Attività
Corso di Scienza delle Costruzioni (Corso di Laurea Specialistica in Ingegneria Elettrica)
Corso di Scienza delle Costruzioni (Corso di Laurea Specialistica in Ingegneria Elettrica) Corso di Meccanica Analitica e dei Continui (Corso di Laurea Specialistica in Ingegneria Nucleare e della Sicurezza
Dispense del Corso di SCIENZA DELLE COSTRUZIONI. Sollecitazioni semplici PARTE TERZA. Prof. Daniele Zaccaria
Dispense del Corso di SCIENZA DELLE COSTRUZIONI Prof. Daniele Zaccaria Dipartimento di Ingegneria Civile Università di Trieste Piazzale Europa 1, Trieste PARTE TERZA Sollecitazioni semplici Corsi di Laurea
ARGOMENTI DI TECNICA DELLE COSTRUZIONI INDICE
Giuseppe Stagnitto Erica Barzoni ARGOMENTI DI TECNICA DELLE COSTRUZIONI Applicazioni ed approfondimenti del Corso di FONDAMENTI DI TECNICA DELLE COSTRUZIONI Appunti a cura degli studenti INDICE I - RICHIAMI
Teoria delle Strutture Corso di Laurea Magistrale in Ingegneria Edile e delle Costruzioni Civili docente: Prof. Riccardo Barsotti (marzo 2016)
Teoria delle Strutture Corso di Laurea Magistrale in Ingegneria Edile e delle Costruzioni Civili docente: Prof. Riccardo Barsotti (marzo 2016) Prerequisiti Superamento dell esame di Scienza delle Costruzioni.
ESERCIZI SVOLTI O CON TRACCIA DI SOLUZIONE SU STRUTTURE IPERSTATICHE
ESERCIZI SVOLTI O CON TRACCIA DI SOLUZIONE SU STRUTTURE IPERSTATICHE 1 PROVA SCRITTA 11 gennaio 2013 - Esercizio 2 Data la struttura di figura, ricavare le equazioni delle azioni interne (M, N, T) e tracciarne
Lezione. Tecnica delle Costruzioni
Lezione Tecnica delle Costruzioni 1 Comportamento e modellazione del cemento armato 2 Modellazione del cemento armato Comportamento del cemento armato Il comportamento del cemento armato dipende dalle
ALMA MATER STUDIORUM UNIVERSITÀ DEGLI STUDI DI BOLOGNA
ALMA MATER STUDIORUM UNIVERSITÀ DEGLI STUDI DI BOLOGNA FACOLTÀ DI INGEGNERIA Corso di Laurea Triennale in Ingegneria Civile Indirizzo Strutture D.I.S.T.A.R.T. Dipartimento di Ingegneria delle Strutture,
Politecnico di Torino - Facoltà di Ingegneria
Politecnico di Torino - Facoltà di Ingegneria Corso di laurea in Ingegneria Civile Rivisto:1/03/2011 Punti: 9 Laboratorio di sintesi finale F: Biasioli Argomenti: 1.3 Caratteristiche di sollecitazione,
Compositi: teoria dei laminati
Compositi: teoria dei laminati Introduzione Il laminato singolo Equazioni costitutive e proprietà Criteri di rottura Fibre fuori asse Introduzione: progettazione Materiali e frazione fibre Spessore laminato
CLASSE 3 A APPUNTI DAL CORSO DI COSTRUZIONI. Diagrammi delle sollecitazioni ESERCIZI SVOLTI IN AULA
the design of he Forth Bridge (Scotland) 1883-1890 by Sir John Fowler and Sir Benjamin Baker Nessun effetto è in natura sanza ragione; intendi la ragione e non ti bisogna sperienzia. Leonardo da Vinci
Horae. Horae Software per la Progettazione Architettonica e Strutturale
1 IL MATERIALE X-LAM Nel programma CDSWin il materiale X-LAM pu ò essere utilizzato solo come elemento parete verticale. Quindi, dal punto di vista strutturale, il suo comportamento è prevalentemente a
A4.4 La linea elastica
.4 La linea elastica Meccanica, Macchine ed Energia articolazione Energia Giuseppe Anzalone, Paolo Bassignana, Giuseppe Brafa Musicoro Copyright Ulrico Hoepli Editore S.p.A. poliglotta Linea elastica GB:
Lezione. Tecnica delle Costruzioni
Lezione ecnica delle Costruzioni La torsione CONSIDERAZIONI PRELIMINARI Occorre distinguere i seguenti due tipi di torsione: ORSIONE PER EQUILIBRIO allorché le forze esterne possono essere equilibrate
RELAZIONE ESERCITAZIONI AUTODESK INVENTOR
20 Ottobre 2015 RELAZIONE ESERCITAZIONI AUTODESK INVENTOR Corso di Costruzione di Macchine e Affidabilità C.d.L.M. in Ingegneria Meccanica Docente: Prof.ssa Cosmi Francesca Assistente: Dott.ssa Ravalico
Sollecitazioni semplici Il Taglio
Sollecitazioni semplici Il Taglio Considerazioni introduttive La trattazione relativa al calcolo delle sollecitazioni flessionali, è stata asata sull ipotesi ce la struttura fosse soggetta unicamente a
REGISTRO DELLE LEZIONI di Metodi agli Elementi Finiti
UNIVERSITÀ DEGLI STUDI CAGLIARI FACOLTÀ DI INGEGNERIA E ARCHITETTURA REGISTRO DELLE LEZIONI di Metodi agli Elementi Finiti dettate dal prof. Filippo Bertolino nell Anno Accademico 2013-14 ARGOMENTO DELLA
9 Travature elastiche
9 Travature elastiche 9 Travature elastiche La teoria delle travi fin qui introdotta ha consentito di determinare la soluzione statica per strutture staticamente determinate; tuttavia le sole equazioni
Capitolo 3 La torsione Sollecitazioni semplici: la torsione
Capitolo 3 La torsione Sollecitazioni semplici: la torsione Definizione Un elemento strutturale è soggetto a sollecitazione di torsione quando su di esso agiscono due momenti uguali ed opposti giacenti
6.4 j Flessione retta Stato di tensione. e ricavando s u dalla relazione precedente si ha: = pr s
6ttI_NUNZIANTE_1 /6/11 17:59 Pagina 455 6.4 j Flessione retta j 455 e ricavando s u dalla relaione precedente si ha: d pr s θ s che è anche nota come formula di ariotte per i tubi in parete sottile. In
PressoFlessione. b=33. Trasportando la forza P verso l alto della quantità b = -33 mm, abbiamo la seguente situazione:
Esercizio N.1 Sapendo che la grandezza della forza orizzontale P è 8 kn, determinare la tensione (a) nel punto A, (b) nel punto B. Lo schema statico e le azioni interne sull asta sono le seguenti. P b=33
Unità 7: Il caso delle travi F=6000 N = = 40. R ya 2000 F T y. = = Nmm
omportamento meccanico dei materiali Esercizio 1 Una trave di sezione rettangolare 040 mm lunga m, appoggiata alle estremità, è soggetta ad un carico verticale di 000 che agisce nella mezzeria. alcolare
Comportamento Meccanico dei Materiali. 4 Soluzione degli esercizi proposti. Esercizio 4-1
Esercizio 4-1 Una piastra in S355 EN 1007/1 (Fe510 UNI 7070) delle dimensioni indicate in figura viene sollecitata da un carico assiale T 64 kn. Con riferimento alla sezione con intaglio, calcolare i coefficienti
SCIENZA DELLE COSTRUZIONI: GES L - Z 2 a PROVA 27/06/2005 Tema G : allievo
SCIENZA DELLE COSTRUZIONI: GES L - Z 2 a PROVA 27/06/2005 Tema G : allievo EI, ma deformabile termicamente; le variazioni termiche nei 2 tratti sono opposte di segno, nulle entrambe lungo la linea d'assi.
Criteri di Resistenza e Sicurezza
Criteri di Resistenza e Sicurezza Per uno stato di tensione monoassiale sono sufficienti le due tensioni limiti t e c per delimitare il dominio di crisi. z F z z z t y z x ε z F Teorie di rottura Carichi
Corso di Progetto di Strutture. POTENZA, a.a Pareti in c.a.
Corso di Progetto di Strutture POTENZA, a.a. 2012 2013 Pareti in c.a. Dott. Marco VONA Scuola di Ingegneria, Università di Basilicata [email protected] http://www.unibas.it/utenti/vona/ PARETI La parete
Meccanica Applicata alle Macchine
Meccanica Applicata alle Macchine 06-11-013 TEMA A 1. Un cilindro ed una sfera omogenei di uguale massa m ed uguale raggio r sono collegati tra loro da un telaio di massa trascurabile mediante coppie rotoidali
ESERCIZIO 2 (punti 13) La sezione di figura è
SCIENZA DELLE COSTRUZIONI: GES L - Z 2 a PROVA 27/06/2005 Tema A : allievo ESERCIZIO 1 (punti 13) Data la struttura una volta iperstatica di figura, soggetta alla variazione termica uniforme sulla biella
MECCANICA COMPUTAZIONALE DELLE STRUTTURE
MEANIA OMPUTAZIONALE DELLE STRUTTURE Elio Sacco DiMSAT Università di assino Tel: 0776.299659 Email: [email protected] Motivazione Fenomeno in natura Leggi della fisica Risoluzione (Meccanica computazionale)
VINCOLI CEDEVOLI ANELASTICAMENTE
VINCOLI CEDEVOLI ANELASTICAMENTE IL cedimento anelastico detto anche cedimento impresso è indipendente dai carichi applicati ed è definito da un valore assegnato. Esso provoca sollecitazioni solo nelle
Esercitazioni. Costruzione di Macchine A.A
Esercitazioni di Costruzione di Macchine A.A. 2002-200 Manovellismo ordinario centrato Esercitazione n 1 2 Una macchina per prove di fatica su molle a balestra aziona, attraverso un giunto che trasmette
E data la sezione inflessa di c.a. di dimensioni B=30 cm, H=60 cm, con semplice armatura (As=25 cm 2 ).
PROVA SCRITTA DI TECNICA DELLE COSTRUZIONI DEL 9/0/007 Esercizio n 1 Sia data una colonna di acciaio HEA 40 alla quale è collegata, con un vincolo a cerniera, una trave IPE 400. Il collegamento bullonato
Sollecitazioni semplici La flessione
Sollecitazioni semplici La flessione Considerazioni introduttive Un altro tipo di sollecitazione semplice particolarmente importante è la flessione, ossia lo stato di sforzo conseguente all applicazione
Giacomo Sacco Appunti di Costruzioni Edili
Giacomo Sacco Appunti di Costruzioni Edili Le tensioni dovute a sforzo normale, momento, taglio e a pressoflessione. 1 Le tensioni. Il momento, il taglio e lo sforzo normale sono le azioni che agiscono
DUTTILITA STRUTTURALE RIFLESSIONE!
DUTTILITA STRUTTURALE RIFLESSIONE! Sotto l azione di terremoti violenti, le strutture escono sensibilmente dal regime elastico, manifestando elevati impegni in campo plastico tuttavia nelle pratiche applicazioni
6 Stato Limite Ultimo per tensioni normali
6 Stato Limite Ultimo per tensioni normali Legami costitutivi non lineari Si considerano i seguenti legami costitutivi non lineari del calcestruzzo e dell acciaio Legame parabola - rettangolo Legame stress
Considerazioni introduttive
a linea elastica onsiderazioni introduttie In un elemento strutturale deformabile in cui una dimensione è prealente rispetto alle altre due, è possibile determinare la configurazione secondo la uale uesto
Scienza delle costruzioni - Luigi Gambarotta, Luciano Nunziante, Antonio Tralli ESERCIZI PROPOSTI
. Travi isostatiche ad asse rettilineo ESERCIZI PROPOSTI Con riferimento alle tre strutture isostatiche di figura, costituite da tre tratti, determinare: ) Reazioni vincolari; ) Diagrammi del momento flettente
Stabilità dell equilibrio elastico: formulazione generale
Stabilità dell equilibrio elastico: formulazione generale Travi soggette a carico di punta Instabilità flesso-torsionale Instabilità per avvitamento solo torsionale Cenni alla teoria di Timoshenko-Vlasov
BOZZA. Lezione n. 6. Rigidezze e coefficienti di trasmissione
ezione n. 6 Rigidezze e coefficienti di trasmissione ffinché si possa utilizzare efficacemente il metodo dell equilibrio nella soluzione di travature iperstatiche, occorre ricavare, per le varie membrature,
Elementi finiti solidi
Esercitazioni del corso di Costruzione di Macchine 2 e Progettazione FEM a cura dell ing. Francesco Villa Elementi finiti solidi Costruzione di Macchine 2 e Progettazione FEM Prof. Sergio Baragetti Dalmine
SIMULAZIONE DELLA PROVA DI MATEMATICA DELL ESAME DI STATO
ANNO SCOLASTICO 2012-13 SIMULAZIONE DELLA PROVA DI MATEMATICA DELL ESAME DI STATO INDIRIZZO: SCIENTIFICO CORSO DI ORDINAMENTO Risoluzione Problema 1 a) Poiché per ogni valore di a l espressione analitica
2 Classificazione delle sezioni trasversali
2 Classificazione delle sezioni trasversali 2.1 Influenza dei fenomeni di instabilità L acciaio è un materiale con legame costitutivo simmetrico a trazione e compressione (par. 1.1), ma un elemento strutturale
Solai e solette con armatura incrociata: comportamento e calcolo
Solai e solette con armatura incrociata: comportamento e calcolo Consideriamo la piastra di figura a riferita a un sistema di assi cartesiani x e y, e in particolare le due strisce ortogonali t x e t y
Corso di Riabilitazione Strutturale
Corso di Riabilitazione Strutturale POTENZA, a.a. 2011 2012 VALUTAZIONE DIEDIFICI ESISTENTI IN C.A. I PARTE ANALISI E STRATEGIE DI INTERVENTO Dott. Marco VONA DiSGG, Università di Basilicata [email protected]
Corso di Tecnica delle Costruzioni I e II Prof. Ing. Antonio Formisano
Scuola Politecnica e delle Scienze di Base DIpartimento di STrutture per l Ingegneria e l Architettura (DI.ST.) Corso di Tecnica delle Costruzioni I e II Prof. Ing. Antonio Formisano PROGRAMMA DEL CORSO
modulo D I ponti I ponti in acciaio Calcolo degli assoni
ESERCIZIO SVOLTO I ponti in acciaio Per il collegamento di due aree destinate a parco pubblico, fra loro separate da una strada larga 9,00 m, si deve realizzare una passerella pedonale in acciaio con la
