Problemi parabolici. u(0, t) = u(l, t) = 0 t (1)

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Problemi parabolici. u(0, t) = u(l, t) = 0 t (1)"

Transcript

1 Problemi parabolici L esempio più semplice di equazione differenziale di tipo parabolico è costituito dall equazione del calore, che in una dimensione spaziale è data da u t (x, t) ku xx (x, t) = x [, L] t T La funzione u(x, t) rappresenta la temperatura all istante t nel punto x di una barra di lunghezza L, e k è il coefficiente di conduzione termica, che assumiamo costante, ovviamente positiva All equazione differenziale vanno aggiunte due condizioni agli estremi dell intervallo e una condizione iniziale Per semplicità prendiamo condizioni al bordo di Dirichlet omogenee, per cui il problema diventa u t (x, t) ku xx (x, t) = x [, L] t T u(, t) = u(l, t) = t (1) u(x, ) = u (x) x [, L] (Naturalmente, per ragioni di continuità della soluzione bisognerà assumere compatibilità sui dati, ossia u () = u (L) = ) Per dimostrare l esistenza di una soluzione di (1) procediamo per separazione di variabili Cerchiamo cioè la soluzione nella forma u(x, t) = w(x)v(t) con w(x), v(t) Sostituendo nell equazione differenziale si ottiene w(x)v (t) kw (x)v(t) = v (t) kv(t) = w (x) w(x) Una funzione della sola variabile t coincide con una funzione della sola variabile x se e solo se entrambe le funzioni sono costanti Quindi: v (t) kv(t) = w (x) w(x) = λ (costante) 1

2 La funzione w(x) risolve allora, usando le condizioni ai limiti, il problema { w (x) λw(x) = x [, L] w() = w(l) = Esaminiamo i vari casi: λ positivo, nullo, o negativo, tenendo presente che si cerca w(x) Caso λ = : l equazione diventa w (x) = w(x) = C 1 + C x Le condizioni w() = w(l) = implicano C 1 = C = w (escluso) Caso λ > : la soluzione dell equazione differenziale è data da w(x) = C 1 e λx + C e λx e le condizioni w() = w(l) = implicano anche in questo caso che w (escluso) Caso λ = µ < : è l unico caso che dà soluzione non identicamente nulla Infatti si ha: w(x) = A sin(µx) + B cos(µx) w() = B = w(l) = A sin(µl) = µl = nπ Quindi si ha: w n (x) = A sin(µ n x) con µ n = nπ L n = 1,, 3, In corrispondenza ai valori ammissibili µ n trovati, la funzione v(t) risolve v (t) = µ nkv(t), e dunque v n (t) = Ce µnkt Conseguentemente, per ogni n si avrà u n (x, t) = A n e µ nkt sin(µ n x) n = 1,, 3, e la soluzione cercata sarà della forma u(x, t) = A n e µ n kt sin(µ n x) n=1 Resta da imporre la condizione iniziale u(x, ) = u (x) per trovare i coefficienti A n Poichè u(x, ) = A n sin(µ n x), n=1

3 bisogna sviluppare il dato iniziale u (x) in serie di Fourier di seni: u (x) = u n sin(µ n x) n=1 (serie di Fourier per u (x)) Uguagliando le due serie termine a termine si trovano i coefficienti A n, che devono essere uguali ai coefficienti di Fourier u n di u (x) Si è quindi dimostrata l esistenza di una soluzione di (1) Per dimostrare che il problema è ben posto resta da dimostrare l unicità e la dipendenza continua dai dati (che in questo caso si riducono al solo dato iniziale u (x)) Unicità: osserviamo innanzitutto che, se u è una soluzione, moltiplicando l equazione differenziale per u, integrando su [, L] e integrando per parti si ottiene: t 1 d dt 1 d dt u t u dx + k u (x, t) dx + k u (x, t) dx = k u x dx k [ u x u ] L u x(x, t) dx = = da cui u x(x, t) dx e quindi () La funzione E(t) = u (x, t) dx verifica E (t) e quindi è una funzione decrescente In particolare E(t) = u (x, t) dx E() = u (x, ) dx = (u (x)) dx (3) Come al solito procederemo per contraddizione Supponiamo che u 1 u siano due soluzioni del problema La differenza u risolve: u t (x, t) ku xx (x, t) = x [, L] t T u(, t) = u(l, t) = t u(x, ) = x [, L] Applicando la relazione (3) alla funzione u(x, t) si ha: (u(x, t)) dx Quindi la soluzione è unica (u(x, )) dx t u t 3

4 Stabilità: una prima stima di stabilità si ottiene immediatamente da (3) Infatti, la soluzione unica u(x, t) verifica u (x, t) dx (u (x)) dx t [, T ] Volendo ottenere una stabilità globale, riprendendo la relazione () e integrando in t si ottiene: 1 T 1 da cui 1 d ( ) T ( ) u (x, t) dx dt + k (u x (x, t)) dx dt = dt u (x, T ) dx 1 T ( ) u (x, ) dx + k (u x (x, t)) dx dt = u (x, T ) dx + k T ( ) (u x (x, t)) dx dt = 1 (u (x)) dx L estensione del problema (1) al caso di due dimensioni spaziali è: trovare u(x, t) (x = (x 1, x ) R ) soluzione di: u t (x, t) k u(x, t) = in Q T = [, T ] u(x, ) = u (x) x (4) u(x, t) = x, t [, T ] Il problema può essere studiato come nel caso 1D per separazione di variabili Tuttavia, volendo trattare problemi più generali (con presenza di un termine di sorgente di calore, con condizioni ai limiti non omogenee eccetera), abbandoniamo lo studio della formulazione forte del problema e passiamo alla formulazione variazionale La scrittura generale dei problemi parabolici, che sono problemi ai valori iniziali e ai limiti, è la seguente: si cerca u = u(x, t), soluzione di: u + Lu = f in [, T ] t u(x, ) = u (x) x + CL di Dirichlet e/o Neumann su t dove L è un operatore differenziale ellittico (uno dei vari visti), e f = f(x, t) è una funzione assegnata Per la risoluzione numerica del problema tramite 4 (5)

5 il metodo degli elementi finiti va innanzitutto scritta la formulazione debole di (5) Formulazione variazionale del problema (5) Per fissare le idee assumiamo ad esempio u = su [, T ] Procediamo in modo formale, usando quanto appreso per le formulazioni variazionali di problemi ellittici: per ogni t > moltiplichiamo l equazione differenziale per una funzione test v = v(x) e integriamo sul dominio Cerchiamo poi, per ogni t > una funzione u(x, t) H() 1 tale che t > u vdx + a(u, v) = t f vdx v H 1 () (6) con u(x, ) = u (x), dove a(u, v) è la forma bilineare associata ad L Se a(, ) è ellittica, si ha esistenza, unicità e stabilità In realtà basta meno: è sufficiente che a(, ) sia debolmente ellittica, cioè: α > e λ : a(v, v) + λ v α v 1 v H 1 () Discretizzazione con elementi finiti Sia T h una suddivisione di in triangoli, e sia V h H() 1 una spazio di elementi finiti, di dimensione N L approssimazione di (6) è la seguente: t > Trovare u h (x, t) V h tale che : u h t v (7) hdx + a(u h, v h ) = f v h dx v h V h con u h (x, ) = u h, dove u h è una approssimazione di u (x) in V h Il problema (7) viene chiamato semidiscretizzazione di (6), in quanto è una discretizzazione nelle sole variabili spaziali Procedendo come fatto nel capitolo precedente, sia {ϕ 1 (x), ϕ (x),, ϕ N (x)} una base in V h ; si avrà u h (x, t) = u j (t)ϕ j (x), e i coefficienti u j (t) sono le incognite del problema (7) Sostituendo in (7) e scrivendo il problema sulla base si ottiene: ( N ) u j (t)ϕ j ϕ i dx + a( u j (t) ϕ j, ϕ i ) = f ϕ i dx i = 1,,, N 5

6 ossia u j (t) ϕ j ϕ i dx + } {{ } m ij u j (t) a(ϕ j, ϕ i ) = f ϕ i dx }{{} a ij }{{} f i (t) i = 1,,, N (8) Posto: M = {M ij } matrice di massa A = {A ij } matrice di rigidità u 1 (t) f ϕ 1 dx u (t) f ϕ dx U(t) = = incognita F (t) = = termine noto u N (t) f ϕ N dx u (x 1 ) u (x ) U () = = dato iniziale u (x N ) il sistema (8) può essere riscritto come { M U(t) + AU(t) = F (t) U() = U () (Problema di Cauchy) (9) Ci si è dunque ricondotti a un sistema di equazioni differenziali ordinarie ai valori iniziali che, essendo M invertibile, può essere riscritto come U(t) = M 1 AU(t) + M 1 F (t), U() = U () Per risolvere il sistema (9) si possono usare le differenze finite in tempo, approssimando semplicemente la derivata temporale con un rapporto incrementale: suddiviso [, T ] in NT intervalli di lunghezza t = T, in ogni NT istante t k si ha U (t k ) U(t k) U(t k 1 ) t 6 k = 1,,, NT

7 I restanti termini possono essere trattati in vari modi Denotando rispettivamente con U (k), F (k) le approssimazioni di U(t k ), F (t k ), si ottengono vari schemi: ( U (k) U (k 1) ) M + A U (k 1) = F (k 1) k = 1,,, NT t (metodo di Eulero esplicito) ( U (k) U (k 1) ) M + A U (k) = F (k) k = 1,,, NT t (metodo di Eulero implicito) ( U (k) U (k 1) ) ) M +A (θu (k) +(1 θ)u (k 1) = θf (k) +(1 θ)f (k 1) t k = 1,,, NT, θ 1 (θ-metodo, esplicito per θ =, implicito per < θ 1) Nel caso esplicito si ottiene: (θ = ) { M U (k) = M U (k 1) t(a U (k 1) F (k 1) ) k = 1,,, NT U () = dato Per trovare la soluzione ad ogni istante temporale bisogna risolvere un sistema di equazioni lineari con matrice M (sempre la stessa ad ogni passo temporale) e termine noto già calcolato all istante precedente Questo spiega perché lo schema si chiama esplicito Nel caso totalmente implicito si ha: (θ = 1) { (M + t A) U (k) = M U (k 1) + t F (k) k = 1,,, NT U () = dato In questo caso la matrice del sistema può cambiare da un istante all altro (se t non è costante), e nel termine noto la parte F (k) va calcolata Questo rende gli schemi cosiddetti impliciti più costosi Per ( θ = 1 ) si ottiene: ( M + t ) ( A U (k) = M t ) A U (k 1) + 1 (F (k 1) + F (k) ) 7

8 Lo schema esplicito è il meno costoso, ma richiede che affinché lo schema converga t c h Esempio: applicazione al problema (4) La formulazione variazionale di (4) è: t > Trovare u(x, t) H() 1 : u(x, ) = u (x) u t v dx + k u v dx = f v dx v = v(x) H 1 () e il problema approssimato diventa (come da (7)) u j (t) ϕ j ϕ i dx + } {{ } m ij u j (t) k ϕ j ϕ i } {{ } a ij = f ϕ i dx }{{} f i (t) i = 1,,, N Usiamo Elementi Finiti lineari a tratti e continui: V h = {v C () : v T P 1 (T ) T T h, v = } Le matrici di massa e di rigidezza dipendono solo dalle variabili spaziali, e possono essere costruite una volta per tutte a partire dalle matrici elementari, esattamente come visto nel caso di problemi ellittici Il termine noto dovrà essere approssimato tramite una formula di quadratura a scelta 8

DOMANDE D ESAME (tempo a disposizione per due domande: 1 ora)

DOMANDE D ESAME (tempo a disposizione per due domande: 1 ora) DOMANDE D ESAME (tempo a disposizione per due domande: 1 ora) 1. Equazione del trasporto omogenea su R: esistenza, unicità e stabilità. Si consideri il problema u t + 3u x =, u(x, ) = cos(2πx). Si ha u(x,

Dettagli

Equazioni differenziali del 2 ordine Prof. Ettore Limoli. Sommario. Equazione differenziale omogenea a coefficienti costanti

Equazioni differenziali del 2 ordine Prof. Ettore Limoli. Sommario. Equazione differenziale omogenea a coefficienti costanti Equazioni differenziali del 2 ordine Prof. Ettore Limoli Sommario Equazione differenziale omogenea a coefficienti costanti... 1 Equazione omogenea di esempio... 2 Equazione differenziale non omogenea a

Dettagli

Il metodo di Galerkin Elementi Finiti Lineari

Il metodo di Galerkin Elementi Finiti Lineari Il metodo di Galerkin Elementi Finiti Lineari Si consideri il problema: u(x) = f(x), x (, ), u() = 0, u() = 0. Se ne fornisca la corrispondente formulazione debole. Si costruiscano inoltre la matrice di

Dettagli

19 Marzo Equazioni differenziali.

19 Marzo Equazioni differenziali. 19 Marzo 2019 Equazioni differenziali. Definizione 1. Si chiama equazione differenziale una relazione che coinvolge una o più derivate di una funzione incognita y(x), la funzione stessa, funzioni di x

Dettagli

Analisi Matematica A e B Soluzioni prova scritta parziale n. 4

Analisi Matematica A e B Soluzioni prova scritta parziale n. 4 Analisi Matematica A e B Soluzioni prova scritta parziale n. Corso di laurea in Fisica, 08-09 7 aprile 09. Determinare le soluzioni u(x) dell equazione differenziale u + u u = sin x + ex + e x. Soluzione.

Dettagli

Introduzione al Metodo agli Elementi Finiti (FEM) (x, y) Γ Tale formulazione viene detta Formulazione forte del problema.

Introduzione al Metodo agli Elementi Finiti (FEM) (x, y) Γ Tale formulazione viene detta Formulazione forte del problema. Introduzione al Metodo agli Elementi Finiti (FEM) Consideriamo come problema test l equazione di Poisson 2 u x 2 + 2 u = f(x, y) u = f y2 definita su un dominio Ω R 2 avente come frontiera la curva Γ,

Dettagli

Dispense del corso di Metodi Numerici per le Equazioni Differenziali

Dispense del corso di Metodi Numerici per le Equazioni Differenziali Dispense del corso di Metodi Numerici per le Equazioni Differenziali Progetto numerico al calcolatore - Parte III Soluzione agli elementi finiti di un problema parabolico Mario Putti Dipartimento di Matematica

Dettagli

Modelli matematici ambientali a.a. 2015/16 Introduzione alle equazioni differenziali

Modelli matematici ambientali a.a. 2015/16 Introduzione alle equazioni differenziali Modelli matematici ambientali a.a. 2015/16 Introduzione alle equazioni differenziali Argomenti trattati Introduzione ai modelli Equazioni differenziali del primo ordine Metodi risolutivi:integrazione diretta

Dettagli

Introduzione alle equazioni differenziali attraverso esempi. 20 Novembre 2018

Introduzione alle equazioni differenziali attraverso esempi. 20 Novembre 2018 Introduzione alle equazioni differenziali attraverso esempi 20 Novembre 2018 Indice: Equazioni separabili. Esistenza e unicità locale della soluzione di un Problemi di Cauchy. Equazioni differenziali lineari

Dettagli

Analisi Matematica 2. Michele Campiti. Prove scritte di. Ingegneria Industriale a.a

Analisi Matematica 2. Michele Campiti. Prove scritte di. Ingegneria Industriale a.a Michele Campiti Prove scritte di Analisi Matematica 2 Ingegneria Industriale a.a. 20 202 Grafico della funzione f(x, y) := sin(2x 2 y) cos(x 2y 2 ) in [ π/2, π/2] 2 Raccolta delle tracce di Analisi Matematica

Dettagli

y + P(x) y + Q(x) y = 0 y(x) = c 1y 1(x) + c 2 y 2(x).

y + P(x) y + Q(x) y = 0 y(x) = c 1y 1(x) + c 2 y 2(x). Proposizione 4. Se y 1(x) e y (x) sono soluzioni linearmente indipendenti di y + P(x) y + Q(x) y = 0 ogni altra soluzione della stessa equazione si scrive nella forma per una scelta opportuna delle costanti

Dettagli

1 Schemi alle differenze finite per funzioni di una variabile

1 Schemi alle differenze finite per funzioni di una variabile Introduzione In questa dispensa vengono forniti alcuni elementi di base per la soluzione di equazioni alle derivate parziali che governano problemi al contorno. A questo scopo si introducono, in forma

Dettagli

1 x 2 y 2 dxdy D. 3 (1 ρ2 ) 3/2 = 1 3. = π 12.

1 x 2 y 2 dxdy D. 3 (1 ρ2 ) 3/2 = 1 3. = π 12. INGEGNERIA CIVILE - AMBIENTE E TERRITORIO ANALISI MATEMATICA II SOLUZIONI DELLA PROVA SCRITTA DEL 19-6-15 ESERCIZIO 1 Calcolare 1 x y dxdy D dove D è il dominio piano delimitato dalla curva x + y = x e

Dettagli

Analisi Matematica 3, a.a Scritto del quinto appello, 11 settembre 2019 Testi 1

Analisi Matematica 3, a.a Scritto del quinto appello, 11 settembre 2019 Testi 1 Scritto del quinto appello, 11 settembre 019 Testi 1 1. a) Dato u L 1 R), sia vx) := u x); esprimere ˆv in termini di û. b) Caratterizzare le funzioni u L 1 R) tali che û è una funzione dispari a valori

Dettagli

Equazioni di Evoluzione

Equazioni di Evoluzione Equazioni di Evoluzione Le equazioni di evoluzione descrivono fenomeni che variano in funzione del tempo, tra gli altri per esempio fenomeni di onde, termodinamici, di dinamica delle popolazioni. Le equazioni

Dettagli

Esercizi sulla soluzione dell equazione delle onde con il metodo della serie di Fourier

Esercizi sulla soluzione dell equazione delle onde con il metodo della serie di Fourier Esercizi sulla soluzione dell equazione delle onde con il metodo della serie di Fourier Corso di Fisica Matematica 2, a.a. 2013-2014 Dipartimento di Matematica, Università di Milano 13 Novembre 2013 1

Dettagli

()Probablità, Statistica e Processi Stocastici

()Probablità, Statistica e Processi Stocastici Probablità, Statistica e Processi Stocastici Riassunto Abbiamo introdotto le equazioni differenziali stocastiche, equazioni del tipo dx t = b (t, X t ) dt + σdb t (o un po più generali) dove B t è il moto

Dettagli

Equazioni separabili. Un esempio importante

Equazioni separabili. Un esempio importante Equazioni separabili. Un esempio importante Esempio La soluzione generale dell equazione y = αy, α R (1) è data da y(x) = Ke αx, K R (2) C è un unica soluzione costante: y = 0: cioè y(x) = 0 per ogni x.

Dettagli

DIARIO DELLE LEZIONI DEL CORSO DI FISICA MATEMATICA A.A. 2013/2014 CORSO DI LAUREA MAGISTRALE IN INGEGNERIA MECCANICA

DIARIO DELLE LEZIONI DEL CORSO DI FISICA MATEMATICA A.A. 2013/2014 CORSO DI LAUREA MAGISTRALE IN INGEGNERIA MECCANICA DIARIO DELLE LEZIONI DEL CORSO DI FISICA MATEMATICA A.A. 2013/2014 CORSO DI LAUREA MAGISTRALE IN INGEGNERIA MECCANICA DANIELE ANDREUCCI DIP. SCIENZE DI BASE E APPLICATE PER L INGEGNERIA UNIVERSITÀ LA SAPIENZA

Dettagli

Calcolo Scientifico e Matematica Applicata Scritto Generale, , Ingegneria Meccanica

Calcolo Scientifico e Matematica Applicata Scritto Generale, , Ingegneria Meccanica Calcolo Scientifico e Matematica Applicata Scritto Generale, 17.12.2018, Ingegneria Meccanica Valutazione degli esercizi: 1 4, 2 10, 3 8, 4 8 1. Risolvere, con il metodo degli integrali generali, il seguente

Dettagli

Metodo di separazione di variabili e applicazione delle serie di Fourier alle soluzioni di alcune EDP

Metodo di separazione di variabili e applicazione delle serie di Fourier alle soluzioni di alcune EDP Metodo di separazione di variabili e applicazione delle serie di Fourier alle soluzioni di alcune EDP Docente:Alessandra Cutrì Equazione delle onde unidimensionale non omogenea u tt (x, t = a 2 u xx (x,

Dettagli

Matematica II - ING ELT Appello del 27/7/2009. Nome e cognome:... Recupero I parte Recupero II parte Scritto completo. { x log y. se y > 0 f(x, y) :=

Matematica II - ING ELT Appello del 27/7/2009. Nome e cognome:... Recupero I parte Recupero II parte Scritto completo. { x log y. se y > 0 f(x, y) := Matematica II - ING ELT Appello del 27/7/2009 Nome e cognome:...... Scegliere una delle opzioni sottostanti Matricola:... Recupero I parte Recupero II parte Scritto completo Esercizio 1 Si consideri la

Dettagli

1 Introduzione all operatore di Laplace.

1 Introduzione all operatore di Laplace. CORSO DI ANALISI IN PIÙ VARIABILI II CORSO DI LAUREA IN MATEMATICA L OPERATORE DI LAPLACE 1 Introduzione all operatore di Laplace. Diamo un esempio di un problema di fisica matematica la cui equazione

Dettagli

Equazioni differenziali e teoria della misura

Equazioni differenziali e teoria della misura SISSA Area Matematica Esame di ammissione per il corso di Analisi Matematica, Modelli e Applicazioni 2 settembre 23 Il candidato risolva CINQUE dei seguenti problemi, e indichi chiaramente sulla prima

Dettagli

Analisi Matematica I per Ingegneria Gestionale, a.a Scritto del terzo appello, 19 febbraio 2018 Testi 1

Analisi Matematica I per Ingegneria Gestionale, a.a Scritto del terzo appello, 19 febbraio 2018 Testi 1 Scritto del terzo appello, 9 febbraio 208 Testi Prima parte, gruppo.. Per ciascuno dei seguenti punti dare le coordinate (polari o cartesiane) che mancano: a) = 0, = ; r = α = b) = 3, = 3; r = α = c) r

Dettagli

DIARIO DELLE LEZIONI DEL CORSO DI FISICA MATEMATICA A.A. 2012/2013 CORSO DI LAUREA MAGISTRALE IN INGEGNERIA MECCANICA

DIARIO DELLE LEZIONI DEL CORSO DI FISICA MATEMATICA A.A. 2012/2013 CORSO DI LAUREA MAGISTRALE IN INGEGNERIA MECCANICA DIARIO DELLE LEZIONI DEL CORSO DI FISICA MATEMATICA A.A. 2012/2013 CORSO DI LAUREA MAGISTRALE IN INGEGNERIA MECCANICA DANIELE ANDREUCCI DIP. SCIENZE DI BASE E APPLICATE PER L INGEGNERIA UNIVERSITÀ LA SAPIENZA

Dettagli

Equazioni differenziali

Equazioni differenziali Equazioni differenziali Generalità sulle equazioni differenziali ordinarie del primo ordine Si chiama equazione differenziale ordinaria[ ] del primo ordine un equazione nella quale compare y = y e la sua

Dettagli

Analisi Vettoriale - A.A Foglio di Esercizi n Esercizio. y [17] + y [15] = 0. z + z = 0

Analisi Vettoriale - A.A Foglio di Esercizi n Esercizio. y [17] + y [15] = 0. z + z = 0 Analisi Vettoriale - A.A. 23-24 Foglio di Esercizi n. 5 Determinare l integrale generale di 1. Esercizio y [17] + y [15] = Posto y [15] = z l equazione proposta diventa Il cui integrale generale é z +

Dettagli

Equazioni differenziali del primo ordine: casi particolari e teorema di esistenza per il problema di Cauchy

Equazioni differenziali del primo ordine: casi particolari e teorema di esistenza per il problema di Cauchy Equazioni differenziali del primo ordine: casi particolari e teorema di esistenza per il problema di Cauchy 10 maggio 2010 Supponiamo che f(x, y) sia una funzione continua definita in un rettangolo del

Dettagli

Daniela Lera A.A

Daniela Lera A.A Daniela Lera Università degli Studi di Cagliari Dipartimento di Matematica e Informatica A.A. 2014-2015 Equazioni Differenziali Si consideri il seguente problema: Quali sono le curve y = f (x) del piano

Dettagli

Analisi Matematica 3/Analisi 4 - SOLUZIONI (20/01/2016)

Analisi Matematica 3/Analisi 4 - SOLUZIONI (20/01/2016) Corso di Laurea in Matematica Docente: Claudia Anedda Analisi Matematica 3/Analisi 4 - SOLUZIONI (//6) ) i) Dopo averla classificata, risolvere l equazione differenziale tẋ x = t cos(t), t >. ii) Scrivere

Dettagli

DIARIO DELLE LEZIONI DEL CORSO DI FISICA MATEMATICA A.A. 2011/2012 CORSO DI LAUREA MAGISTRALE IN INGEGNERIA MECCANICA

DIARIO DELLE LEZIONI DEL CORSO DI FISICA MATEMATICA A.A. 2011/2012 CORSO DI LAUREA MAGISTRALE IN INGEGNERIA MECCANICA DIARIO DELLE LEZIONI DEL CORSO DI FISICA MATEMATICA A.A. 2011/2012 CORSO DI LAUREA MAGISTRALE IN INGEGNERIA MECCANICA DANIELE ANDREUCCI DIP. SCIENZE DI BASE E APPLICATE PER L INGEGNERIA UNIVERSITÀ LA SAPIENZA

Dettagli

Analisi Vettoriale - A.A Foglio di Esercizi n. 4 Soluzioni

Analisi Vettoriale - A.A Foglio di Esercizi n. 4 Soluzioni Analisi Vettoriale - A.A. 2003-2004 Foglio di Esercizi n. 4 Soluzioni. Esercizio Assegnata l equazione differenziale y = y sin(y) disegnare, in modo qualitativo, i grafici delle soluzioni. Si tratta di

Dettagli

Capitolo 8. Metodi spettrali. 8.1 Trasformata di Fourier discreta. Sia u L 2 ([a,b] C) periodica (u(a) = u(b)) e N > 0 pari e fissato. Allora.

Capitolo 8. Metodi spettrali. 8.1 Trasformata di Fourier discreta. Sia u L 2 ([a,b] C) periodica (u(a) = u(b)) e N > 0 pari e fissato. Allora. Capitolo 8 Metodi spettrali 81 Trasformata di Fourier discreta Sia u L 2 [a,b] C) periodica ua) = ub)) e N > 0 pari e fissato Allora ove È facile vedere che e dunque ux) = m= φ F mx) = eim 1 N/2)2πx a)/b

Dettagli

Equazioni differenziali

Equazioni differenziali 4 Equazioni differenziali Determinare le primitive di una funzione f(x) significa risolvere y (x) = f(x) dove l incognita è la funzione y(x). Questa equazione è un semplice esempio di equazione differenziale.

Dettagli

Politecnico di Milano Ingegneria Industriale Analisi e Geometria 2 Secondo compito in itinere 30 Giugno 2016

Politecnico di Milano Ingegneria Industriale Analisi e Geometria 2 Secondo compito in itinere 30 Giugno 2016 Politecnico di Milano Ingegneria Industriale Analisi e Geometria Secondo compito in itinere Giugno 6 Cognome: Nome: Matricola: Es.: 9 punti Es.: 9 punti Es.: 6 punti Es.4: 9 punti Totale. Si consideri

Dettagli

Equazioni differenziali

Equazioni differenziali Equazioni differenziali Hynek Kovarik Università di Brescia Analisi Matematica 1 Hynek Kovarik (Università di Brescia) Equazioni differenziali Analisi Matematica 1 1 / 30 Formulazione del problema In generale

Dettagli

Risoluzione del compito n. 1 (Febbraio 2018/1)

Risoluzione del compito n. 1 (Febbraio 2018/1) Risoluzione del compito n. Febbraio 8/) PROBLEMA Considerate la curva Φθ) = rθ)cosθ, rθ)senθ, θ/ ), θ. a) Determinate la funzione rθ) in modo che il sostegno di Φ stia sulla superficie conica C = {z =

Dettagli

Esercizio Determinare l integrale generale delle seguenti equazioni differenziali lineari del primo ordine: (i) y = 3y cos(x);

Esercizio Determinare l integrale generale delle seguenti equazioni differenziali lineari del primo ordine: (i) y = 3y cos(x); 134 Capitolo 4. Equazioni differenziali ordinarie del problema di Cauchy (4.28) bisogna risolvere il sistema lineare (nelle incognite c 1,..., c n )) c 1 y 1 (x 0 ) +... + c n y n (x 0 ) = y 0, c 1 y 1

Dettagli

Soluzioni Analitiche e Numeriche Applicate all Ingegneria Ambientale

Soluzioni Analitiche e Numeriche Applicate all Ingegneria Ambientale Soluzioni Analitiche e Numeriche Applicate all Ingegneria Ambientale Massimiliano Martinelli massimiliano.martinelli@gmail.com Università Politecnica delle Marche, Ancona Facoltà di Ingegneria 11-12 Marzo

Dettagli

Metodi alle differenze finite per equazioni paraboliche in più variabili spaziali

Metodi alle differenze finite per equazioni paraboliche in più variabili spaziali Capitolo 5 Metodi alle differenze finite per equazioni paraboliche in più variabili spaziali 5. Metodo delle linee Supponiamo di dover risolvere un equazione alle derivate parziali nelle variabili indipendenti

Dettagli

5.3 Equazioni differenziali: alcuni problemi al contorno

5.3 Equazioni differenziali: alcuni problemi al contorno 5.3. EQUAZIONI DIFFERENZIALI: ALCUNI PROBLEMI AL CONTORNO 45 5.2.7 Il metodo di Runge-Kutta Esistono diversi metodi detti di Runge-Kutta che fanno uso di varie medie delle pendenze in t 0, t 1 e in punti

Dettagli

Equazioni differenziali. f(x, u, u,...,u (n) )=0,

Equazioni differenziali. f(x, u, u,...,u (n) )=0, Lezione Equazioni differenziali Un equazione differenziale è una relazione del tipo f(x, u, u,...,u (n) )=, che tiene conto del valori di una funzione (incognita) u e delle sue derivate fino ad un certo

Dettagli

Soluzioni degli esercizi del primo esonero di Analisi Matematica 4 Anno Accademico 2016/17

Soluzioni degli esercizi del primo esonero di Analisi Matematica 4 Anno Accademico 2016/17 Soluzioni degli esercizi del primo esonero di Analisi Matematica 4 Anno Accademico 06/7 Scriverò qui le soluzioni degli servizi del primo esonero di Analisi Matematica 4. Due avvertenze. Ricordo che ho

Dettagli

DIARIO DELLE LEZIONI DEL CORSO DI FISICA MATEMATICA CORSO DI LAUREA MAGISTRALE IN INGEGNERIA MECCANICA

DIARIO DELLE LEZIONI DEL CORSO DI FISICA MATEMATICA CORSO DI LAUREA MAGISTRALE IN INGEGNERIA MECCANICA DIARIO DELLE LEZIONI DEL CORSO DI FISICA MATEMATICA CORSO DI LAUREA MAGISTRALE IN INGEGNERIA MECCANICA DANIELE ANDREUCCI DIP. SCIENZE DI BASE E APPLICATE PER L INGEGNERIA UNIVERSITÀ LA SAPIENZA VIA A.SCARPA

Dettagli

Corso di Calcolo Numerico

Corso di Calcolo Numerico Prof. L. Brandolini Corso di Calcolo Numerico Dott.ssa N. Franchina Laboratorio 6 Equazioni differenziali ordinarie: metodi impliciti 3 Novembre 26 Esercizi di implementazione Un equazione differenziale

Dettagli

Compito di Analisi Matematica, Seconda parte, COGNOME: NOME: MATR.:

Compito di Analisi Matematica, Seconda parte, COGNOME: NOME: MATR.: Compito di Analisi Matematica, Seconda parte, gennaio 9 Tema X COGNOME: NOME: MATR.: Esercizio. ( Determinare al variare di β R la soluzione di y (x + y (x + y(x = e x + x tale che y( = β = y (. ( Al variare

Dettagli

Esame di Fisica Matematica 2, a.a (8/7/2014)

Esame di Fisica Matematica 2, a.a (8/7/2014) Esame di Fisica Matematica 2, a.a. 23-24 (8/7/24) Tempo a disposizione: DUE ORE. Svolgere tutti gli esercizi, che hanno lo stesso nel determinare il voto finale. Scrivere chiaramente e a stampatello nome,

Dettagli

Analisi Matematica B Soluzioni prova scritta parziale n. 4

Analisi Matematica B Soluzioni prova scritta parziale n. 4 Analisi Matematica B Soluzioni prova scritta parziale n. 4 Corso di laurea in Fisica, 017-018 4 maggio 018 1. Risolvere il problema di Cauchy { u u sin x = sin(x), u(0) = 1. Svolgimento. Si tratta di una

Dettagli

Corso di Calcolo Numerico

Corso di Calcolo Numerico Corso di Laurea in Ingegneria Gestionale Sede di Fermo Corso di 9 - EQUAZIONI DIFFERENZIALI ORDINARIE valori iniziali Valori iniziali Ci occuperemo della soluzione numerica di equazioni del prim ordine

Dettagli

SISSA Area Matematica Esame di ammissione per il corso di Analisi Matematica, Modelli e Applicazioni 27 marzo 2019

SISSA Area Matematica Esame di ammissione per il corso di Analisi Matematica, Modelli e Applicazioni 27 marzo 2019 SISSA Area Matematica Esame di ammissione per il corso di Analisi Matematica, Modelli e Applicazioni 27 marzo 2019 Il candidato risolva CINQUE dei seguenti problemi, e indichi chiaramente sulla prima pagina

Dettagli

Compito numero 2 - Compito intero

Compito numero 2 - Compito intero Esercitazione 6 - Correzione esame dell 8//3 Lucia Pilleri 9//3 Compito numero - Compito intero Esercizio del parziale - del compito intero Risolvere, mediante la fattorizzazione P A = LU, il sistema lineare

Dettagli

Metodi numerici per ODE. Metodi numerici per ODE

Metodi numerici per ODE. Metodi numerici per ODE Problema di Cauchy Consideriamo un equazione differenziale (sistema di equazioni) del primo ordine in forma normale con condizioni iniziali assegnate. { y (x) = f (x, y(x)) x [x 0, x F ] y(x 0 ) = y 0

Dettagli

Corso di Analisi Matematica 1 - professore Alberto Valli

Corso di Analisi Matematica 1 - professore Alberto Valli Università di Trento - Corso di Laurea in Ingegneria Civile e Ingegneria per l Ambiente e il Territorio - 8/9 Corso di Analisi Matematica - professore Alberto Valli foglio di esercizi - dicembre 8 Integrali

Dettagli

determinare una soluzione y(t) dell equazione completa e, quindi dedurne tutte le y(t) soluzioni dell equazione.

determinare una soluzione y(t) dell equazione completa e, quindi dedurne tutte le y(t) soluzioni dell equazione. ANALISI VETTORIALE Soluzione esercizi 4 febbraio 2011 10.1. Esercizio. Assegnata l equazione lineare omogenea di primo ordine y + a y = 0 determinare le soluzioni di tale equazione in corrispondenza ai

Dettagli

Corso di Calcolo Numerico

Corso di Calcolo Numerico Prof. L. Brandolini Corso di Calcolo Numerico Dott.ssa N. Franchina Laboratorio 5 Equazioni differenziali ordinarie: metodi espliciti 25 Novembre 215 Esercizi di implementazione Un equazione differenziale

Dettagli

6.3 Equazioni lineari del secondo ordine

6.3 Equazioni lineari del secondo ordine si supponga di conoscerne una soluzione ψ(x). Si verifichi che con la sostituzione y(x) = ψ(x) + 1, l equazione diventa lineare nell incognita v(x) v(x). Utilizzando questo metodo, si risolva l equazione

Dettagli

Analisi Matematica 2 - A

Analisi Matematica 2 - A Analisi Matematica 2 - A Soluzione Appello scritto del 29 Gennaio 2013 Esercizio 1 (10 punti Si consideri il Problema di Cauchy { y = y + y(0 = 0, dove y è la funzione incognita ed è la sua variabile.

Dettagli

CALCOLO NUMERICO Prof. L. Gori Prova d esame

CALCOLO NUMERICO Prof. L. Gori Prova d esame CALCOLO NUMERICO Prof. L. Gori Prova d esame 2-7-998 ESERCIZIO. Data la seguente formula di quadratura: f(x)dx = ( ) 3 3 2 f + Af( x) + R 6 0 (.) Determinare A e x in modo che il grado di precisione sia.

Dettagli

1 x 2 y 2 dxdy D. 3 (1 ρ2 ) 3/2 = 1 3. = π 12.

1 x 2 y 2 dxdy D. 3 (1 ρ2 ) 3/2 = 1 3. = π 12. INGEGNERIA CIVILE - AMBIENTE E TERRITORIO ANALISI MATEMATICA II SOLUZIONI DELLA PROVA SCRITTA DEL 19-6-15 ESERCIZIO 1 Calcolare 1 x y dxdy D dove D è il dominio piano delimitato dalla curva x + y x e dalle

Dettagli

INTERPOLAZIONI CON SPLINE

INTERPOLAZIONI CON SPLINE INTERPOLAZIONI CON SPLINE Assegnati gli n +1valori che la funzione f assume nei nodi x i, si costruisce un interpolazione polinomiale a tratti. In ognuno degli intervalli [x i 1,x i ] il polinomio interpolatore

Dettagli

TEMI D ESAME DI ANALISI MATEMATICA I

TEMI D ESAME DI ANALISI MATEMATICA I TEMI D ESAME DI ANALISI MATEMATICA I Corso di laurea quadriennale) in Fisica a.a. 003/04 Prova scritta del 3 aprile 003 ] Siano a, c parametri reali. Studiare l esistenza e, in caso affermativo, calcolare

Dettagli

Prima prova in Itinere Ist. Mat. 1, Prima parte, Tema ALFA COGNOME: NOME: MATR.:

Prima prova in Itinere Ist. Mat. 1, Prima parte, Tema ALFA COGNOME: NOME: MATR.: Prima prova in Itinere Ist. Mat. 1, Prima parte, Tema ALFA 1) L applicazione lineare f : R 3 R 2 data da f(x, y, z) = (3x + 2y + z, kx + 2y + kz) è suriettiva A: sempre; B: mai; C: per k 1 D: per k 2;

Dettagli

Contenuti delle lezioni:

Contenuti delle lezioni: Contenuti delle lezioni: 1. Introduzione ed esempi di Equazioni alle Derivate Parziali; 2. Classificazione delle Equazioni alle Derivate Parziali (PDE) 3. Derivazione numerica 4. Metodi numerici alle differenze

Dettagli

Equazioni differenziali lineari

Equazioni differenziali lineari Sito Personale di Ettore Limoli Lezioni di Matematica Prof. Ettore Limoli Sommario Lezioni di Matematica... Equazioni differenziali lineari... Generalità... Equazione differenziale lineare omogenea del

Dettagli

Integrazione di equazioni differenziali lineari. Il metodo di Cauchy

Integrazione di equazioni differenziali lineari. Il metodo di Cauchy 1 EQUAZIONI DIFFERENZIALI LINEARI OMOGENEE Integrazione di equazioni differenziali lineari. Il metodo di Cauchy Marcello Colozzo 1 Equazioni differenziali lineari omogenee Sia data l equazione differenziale

Dettagli

Esercitazione del 6 Dicembre 2011

Esercitazione del 6 Dicembre 2011 Facoltà di Ingegneria dell Università degli Studi di Firenze CdS in Ingegneria per l Ambiente, le Risorse ed il Territorio Complementi di Analisi Matematica A.A. 11/1 Esercitazione del 6 Dicembre 11 Attenzione:

Dettagli

Correzione del quarto compitino di Analisi 1 e 2 A.A. 2014/2015

Correzione del quarto compitino di Analisi 1 e 2 A.A. 2014/2015 Correzione del quarto compitino di Analisi e A.A. 04/05 Luca Ghidelli, Giovanni Paolini, Leonardo Tolomeo 4 maggio 05 Esercizio Testo. Risolvere il seguente problema di Cauchy: y = 3x e 8y y( ) = 0. Prima

Dettagli

Equazioni Iperboliche

Equazioni Iperboliche Equazioni Iperboliche Le equazioni iperboliche rappresentano probabilmente la classe che descrive il più ampio numero di fenomeni in diversi campi della fisica fisica (fluidodinamica, acustica, elettromagnetismo

Dettagli

IV Scientifico - 24 Novembre 2014

IV Scientifico - 24 Novembre 2014 SOLUZIONI IV Scientifico - 24 Novembre 204 0 02 03 04 05 06 07 08 09 0 20 D C C C C E E E E C 202 E C C A C D E A A C 203 E A C E C C A C E C 204 D C B E A B A A A A 205 E E D C D B C C E A 206 D D B C

Dettagli

1) D0MINIO FUNZIONE. Determinare il dominio della funzione f (x) = 4 x 2 4x + 3 x 2 6x + 8 Deve essere. x 2 6x + 5 (x 1) (x 5)

1) D0MINIO FUNZIONE. Determinare il dominio della funzione f (x) = 4 x 2 4x + 3 x 2 6x + 8 Deve essere. x 2 6x + 5 (x 1) (x 5) ) DMINIO FUNZIONE Determinare il dominio della funzione f (x) = x x + x x + 8 x x + (x ) (x ) Deve essere = quindi x (, ] (, ] (, + ). x x + 8 (x ) (x ) Determinare il dominio della funzione f (x) = x

Dettagli

Corso di Laurea in Matematica Prova di Analisi in più variabili 2

Corso di Laurea in Matematica Prova di Analisi in più variabili 2 orso di Laurea in Matematica Prova di Analisi in più variabili 1 febbraio 15 1. Sia f : R una funzione π-periodica e tale che f L 1 π, π. Dimostrare la seguente formula fn = 1 [ft ft π ] 4π n e int dt

Dettagli

T.(a) T.(b) Es.1 Es.2 Es.3 Es.4 Totale. Cognome: Nome: Matricola:

T.(a) T.(b) Es.1 Es.2 Es.3 Es.4 Totale. Cognome: Nome: Matricola: T.(a) T.(b) Es.1 Es.2 Es.3 Es.4 Totale Analisi e Geometria 1 Primo Appello 4 Febbraio 2019 Docente: Numero di iscrizione: Cognome: Nome: Matricola: Istruzioni: Tutte le risposte devono essere motivate.

Dettagli

Equazioni differenziali Problema di Cauchy

Equazioni differenziali Problema di Cauchy Equazioni differenziali Problema di Cauch Primo esempio - Risolvere l equazione '( ) = g( ) con g( ) :[ a, b] R continua Teor. fondamentale del calcolo integrale ( ) = + g ( t )dt Primo esempio - Osserviamo

Dettagli

Il Metodo degli Elementi Finiti

Il Metodo degli Elementi Finiti A Learning Object produced for the EU IST GUARDIANS Project Il Metodo degli Elementi Finiti Applicazione al problema elettrostatico Raffaele ALBANESE April 2002 Residui pesati Equazione differenziale ellittica:

Dettagli

Equazioni differenziali

Equazioni differenziali Equazioni differenziali Antonino Polimeno Università degli Studi di Padova Equazioni differenziali - 1 Un equazione differenziale è un equazione la cui soluzione è costituita da una funzione incognita

Dettagli

ANALISI MATEMATICA L-C, B-S

ANALISI MATEMATICA L-C, B-S ANALISI MAEMAICA L-C, B-S 25-6 SERIE DI FOURIER MASSIMO CICOGNANI Per la pubblicazione in rete di queste dispense si deve ringraziare Marco Frison che le ha trascritte interamente in Latex 1 Lo spazio

Dettagli

Per determinare una soluzione particolare descriveremo un metodo che vale solo nel caso in cui la funzione f(x) abbia una forma particolare:

Per determinare una soluzione particolare descriveremo un metodo che vale solo nel caso in cui la funzione f(x) abbia una forma particolare: 42 Roberto Tauraso - Analisi 2 Ora imponiamo condizione richiesta: ( lim c e 4x + c 2 + c 3 e 2x cos(2x) + c 4 e 2x sin(2x) ) = 3. x + Il limite esiste se e solo c 3 = c 4 = perché le funzioni e 2x cos(2x)

Dettagli

Esercizi su estremi vincolati e assoluti

Esercizi su estremi vincolati e assoluti Esercizi su estremi vincolati e assoluti Esercizio 1. di sul quadrato Determinare i punti di minimo e di massimo (e i relativi valori di minimo e massimo) assoluto f(x, y) = x cos(πy) Q = [0, 1] [0, 1].

Dettagli

Analisi 4 - SOLUZIONI (compito del 29/09/2011)

Analisi 4 - SOLUZIONI (compito del 29/09/2011) Corso di laurea in Matematica Analisi 4 - SOLUZIONI compito del 9/09/0 Docente: Claudia Anedda Calcolare, tramite uno sviluppo in serie noto, la radice quinta di e la radice cubica di 9 Utilizzando la

Dettagli

Risoluzione del compito n. 5 (Luglio 2018/2)

Risoluzione del compito n. 5 (Luglio 2018/2) Risoluzione del compito n. 5 (Luglio 2018/2) PROBLEMA 1 Considerate il luogo di zeri S = {(x, y, z) R 3 : z 4+ x 2 + y 2 =0, 2x y + z =0}. a) Giustificando la risposta, dite se S è una curva liscia. b)

Dettagli

ẋ 1 = 2x 1 + (sen 2 (x 1 ) + 1)x 2 + 2u (1) y = x 1

ẋ 1 = 2x 1 + (sen 2 (x 1 ) + 1)x 2 + 2u (1) y = x 1 Alcuni esercizi risolti su: - calcolo dell equilibrio di un sistema lineare e valutazione delle proprietà di stabilità dell equilibrio attraverso linearizzazione - calcolo del movimento dello stato e dell

Dettagli

Funzioni implicite - Esercizi svolti

Funzioni implicite - Esercizi svolti Funzioni implicite - Esercizi svolti Esercizio. È data la funzione di due variabili F (x, y) = y(e y + x) log x. Verificare che esiste un intorno I in R del punto di ascissa x 0 = sul quale è definita

Dettagli

2) Scrivere la soluzione generale del seguente sistema di equazioni differenziali lineari del primo ordine. y 1 = 2y 1 5y 3 y 2

2) Scrivere la soluzione generale del seguente sistema di equazioni differenziali lineari del primo ordine. y 1 = 2y 1 5y 3 y 2 Corso di Laurea in Matematica Analisi Matematica 3/Analisi 4 - SOLUZIONI (8/6/5) Docente: Claudia Anedda ) Trovare il limite puntuale della successione di funzioni f k (t) = cos(kt), t R. Stabilire se

Dettagli

Ist. di Fisica Matematica mod. A Quarta esercitazione

Ist. di Fisica Matematica mod. A Quarta esercitazione Ist. di Fisica Matematica mod. A Quarta esercitazione Francesca Arici (farici@sissa.it Domenico Monaco (dmonaco@sissa.it 3 Novemre La numerazione seguita per gli Esercizi è quella delle note del corso.

Dettagli

Alcuni esercizi sulle equazioni di erenziali

Alcuni esercizi sulle equazioni di erenziali Alcuni esercizi sulle equazioni di erenziali Calcolo dell integrale generale Per ciascuna delle seguenti equazioni di erenziali calcolare l insieme di tutte le possibili soluzioni. SUGGERIMENTO: Ricordatevi

Dettagli

Esercizi di Complementi di Analisi Matematica II Pisa, 3 agosto 2012

Esercizi di Complementi di Analisi Matematica II Pisa, 3 agosto 2012 Scuola Superiore di Studi Universitari e di Perfezionamento S. Anna Esercizi di Complementi di Analisi Matematica II Pisa, 3 agosto 212 1. Dimostrare che esiste un unica funzione continua f : R R tale

Dettagli

Primi elementi di combinatoria Federico Lastaria, Analisi e Geometria 1

Primi elementi di combinatoria Federico Lastaria, Analisi e Geometria 1 Politecnico di Milano. Scuola di Ingegneria Industriale e dell Informazione Analisi e Geometria 1 Federico Lastaria Primi elementi di combinatoria 11 Ottobre 2016 Indice 1 Elementi di combinatoria 2 1.1

Dettagli

Raccolta degli Scritti d Esame di ANALISI MATEMATICA U.D. 3 assegnati nei Corsi di Laurea di Fisica, Fisica Applicata, Matematica

Raccolta degli Scritti d Esame di ANALISI MATEMATICA U.D. 3 assegnati nei Corsi di Laurea di Fisica, Fisica Applicata, Matematica DIPARTIMENTO DI MATEMATICA Università degli Studi di Trento Via Sommarive - Povo (TRENTO) Raccolta degli Scritti d Esame di ANALISI MATEMATICA U.D. 3 assegnati nei Corsi di Laurea di Fisica, Fisica Applicata,

Dettagli

5π/2. 3π/2. y = f(x) π π. -5π/2-2π -3π/2 -π -π/2 π/2 π 3π/2 2π 5π/2 3π 7π. -π/2

5π/2. 3π/2. y = f(x) π π. -5π/2-2π -3π/2 -π -π/2 π/2 π 3π/2 2π 5π/2 3π 7π. -π/2 Corso di Laurea in Matematica Analisi 4 - SOLUZIONI /9/8) Docente: Claudia Anedda ) Data la funzione yx) x + π, x, π) prolungarla su tutto R in modo tale che sia una funzione π-periodica pari, disegnare

Dettagli

La formula di Taylor per funzioni di più variabili

La formula di Taylor per funzioni di più variabili La formula di Taylor per funzioni di più variabili Il polinomio di Taylor Due variabili. Sia A R 2 un aperto, f : A R una funzione sufficientemente regolare, (x, y) un punto di A. Sia (h, k) un vettore

Dettagli

Esercizi 2: Curve dello spazio Soluzioni

Esercizi 2: Curve dello spazio Soluzioni Esercizi 2: Curve dello spazio Soluzioni. Esercizio Si consideri la curva (elica circolare): a α(t) = a sin t, t R, bt dove a >. a) Calcolare curvatura e torsione di α nel generico punto t. b) Determinare

Dettagli

Esonero di Analisi Matematica II (A)

Esonero di Analisi Matematica II (A) Esonero di Analisi Matematica II (A) Ingegneria Edile, 8 aprile 3. Studiare la convergenza del seguente integrale improprio: + x log 3 x (x ) 3 dx.. Studiare la convergenza puntuale ed uniforme della seguente

Dettagli

Dispense del corso di Metodi Numerici per le Equazioni Differenziali

Dispense del corso di Metodi Numerici per le Equazioni Differenziali Dispense del corso di Metodi Numerici per le Equazioni Differenziali Progetto numerico al calcolatore - Parte II Soluzione agli elementi finiti di un problema ellittico di convezione e diffusione Mario

Dettagli

DIARIO DELLE LEZIONI DEL CORSO DI FISICA MATEMATICA A.A. 2014/2015 CORSO DI LAUREA MAGISTRALE IN INGEGNERIA MECCANICA

DIARIO DELLE LEZIONI DEL CORSO DI FISICA MATEMATICA A.A. 2014/2015 CORSO DI LAUREA MAGISTRALE IN INGEGNERIA MECCANICA DIARIO DELLE LEZIONI DEL CORSO DI FISICA MATEMATICA A.A. 2014/2015 CORSO DI LAUREA MAGISTRALE IN INGEGNERIA MECCANICA DANIELE ANDREUCCI DIP. SCIENZE DI BASE E APPLICATE PER L INGEGNERIA UNIVERSITÀ LA SAPIENZA

Dettagli

METODI NUMERICI. Metodo delle differenze finite

METODI NUMERICI. Metodo delle differenze finite METOI NUMERICI Lo sviluppo dei moderni calcolatori ha consentito di mettere a disposizione della scienza e della tecnica formidabili strumenti che hanno permesso di risolvere numerosi problemi la cui soluzione

Dettagli

I teoremi della funzione inversa e della funzione implicita

I teoremi della funzione inversa e della funzione implicita I teoremi della funzione inversa e della funzione implicita Appunti per il corso di Analisi Matematica 4 G. Mauceri Indice 1 Il teorema della funzione inversa 1 Il teorema della funzione implicita 3 1

Dettagli