Esercitazione del 6 Dicembre 2011

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Esercitazione del 6 Dicembre 2011"

Transcript

1 Facoltà di Ingegneria dell Università degli Studi di Firenze CdS in Ingegneria per l Ambiente, le Risorse ed il Territorio Complementi di Analisi Matematica A.A. 11/1 Esercitazione del 6 Dicembre 11 Attenzione: si chiede di rispondere al quesito 1. e di affrontare almeno due dei problemi successivi. Motivare sempre le risposte. Rendere chiare ed evidenti le soluzioni/risposte conclusive. 1. Scrivere la serie di Fourier della funzione f : R R, -periodica, dispari, tale che x x 1 f(x) = 1 x 1 x 1. Discutere la convergenza in media quadratica, puntuale, uniforme della serie a f.. Determinare la soluzione u = u(x, y) del problema ai valori iniziali u x + 1 u y = u u(x, ) = e x. Non si trascuri di stabilire il dominio 1 D R in cui essa è definita, disegnandolo se possibile. Preliminarmente, precisare l ordine ed il tipo dell equazione a derivate parziali. 3. Determinare le soluzioni u = u(x, t) a variabili separate dell equazione u t ku xx = (k costante), x (, 1), t >, che soddisfano la condizione al contorno u x (, t) = u x (1, t) =, t. Successivamente, risolvere il problema al contorno e ai valori iniziali corrispondente se u(x, ) = f(x), x [, 1], ove f è la funzione data nell esercizio 1.. L equazione di Klein-Gordon non lineare ψ tt ψ xx + ψ 3 =, x, t R (1) scaturisce nella teoria quantistica dei campi; la funzione incognita ψ(x, t) è una funzione di campo (scalare). 1 Insieme aperto e connesso. 1

2 (a) Ricavare, sulla falsariga di quanto fatto nel caso dell equazione della corda vibrante, un principio di conservazione dell energia per il sistema descritto da (1). (b) Quale equazione differenziale ordinaria (EDO) dovrà soddisfare ϕ affinché l equazione (1) ammetta soluzioni speciali (dette onde viaggianti ) della forma ψ(x, t) = ϕ(x θt)? Svolgimento 1. Poiché la funzione f data è continua nell intervallo chiuso e limitato [, 1], essa è in particolare limitata, e pertanto l estensione richiesta f su R è una funzione continua a tratti (oltre che -periodica e dispari per costruzione). Di fatto essendo f() = f(1) =, f risulta continua su tutto R. Dal fatto che f è una funzione dispari segue che la serie di Fourier ad essa associata è una serie di soli seni. Con il periodo T = la pulsazione ω = π/t = π, e la serie di Fourier è data da f(x) b n sin(nπx), n = 1,,..., () con b n = 1 1 / 1 Si ha dunque 1/ b n = x sin(nπx) dx + = 1 πn f(x) sin(nπx) dx = 1 1/ [ ] 1/ x cos(nπx) + 1 πn 1 } (1 x) sin(nπx) dx 1/ 1 1 cos(nπx) dx πn 1/ } = = 1 πn cos(πn ) + 1 [ (πn) sin(nπx) 1 (πn) [ sin(nπx) ] 1 1/ f(x) sin(nπx) dx, n = 1,,... = cos(nπx) dx 1 [ ] 1 (1 x) cos(nπx) πn 1/ ] 1/ Dunque b n = se n è pari, mentre per n dispari si ha b k+1 = π + 1 πn cos(πn ) } = (πn) sin(πn ), n = 1,,... ( 1) k (k + 1) k =, 1,,... ;

3 di conseguenza, la serie di Fourier associata a f è la seguente: f(x) π k= ( 1) k sin((k + 1)πx). (k + 1) Analisi della convergenza. La convergenza della serie di Fourier in () può essere discussa a priori, sulla base delle proprietà di regolarità della funzione f su R. Si osservi che la funzione f è -periodica e continua, che è sufficiente a garantire la convergenza in norma quadratica della serie di Fourier ad essa associata. Indicando con s n (x) la successione delle somme parziali corrispondente, si ha dunque lim n f(x) s n (x) dx =. D altra parte, esiste f (x) per ogni x 1/ + m, m Z, e f è continua in A = x : x 1/ + m, m Z}, mentre nei punti x m = 1/ + m esistono le derivate destra e sinistra (si ha infatti f (x m ) = ( 1) m, f +(x m ) = f (x m )). Pertanto f è regolare a tratti e si può concludere che la serie ad essa associata converge uniformemente quindi puntualmente a f su tutto R; in particolare essa converge uniformemente a f in [, 1]. Avendo comunque calcolato i coefficienti di Fourier, la convergenza uniforme della serie di Fourier segue parimenti dal fatto che b n = O(n ), n.. Si tratta di un problema ai valori iniziali per un equazione a derivate parziali del primo ordine semi-lineare. Si osservi che con a(x, y, z) = 1, b(x, y, z) = 1/ e c(x, y, z) = z si ha a, b, c C 1 (A), ove A = (x, y, z) R 3 : z > }. Introdotta la curva regolare Γ, di rappresentazione parametrica s (s,, e s ), s R, occorre risolvere il problema di Cauchy (sistema caratteristico) x t = 1 x(, s) = s y t = 1 y(, s) =, z t = z z(, s) = e s inizialmente con s R. Le tre equazioni sono disaccoppiate. Si ottiene immediatamente x(t, s) = t + s e y(t, s) = t/, con (t, s) R. Poiché z >, integrando la terza equazione si ottiene z = t + c(s) e tenendo conto della condizione z(, s) = e s si trova c(s) = e s/. Pertanto z = t + es/, che impone il vincolo t + es/ >. Riassumendo, si è ottenuto x(t, s) = t + s y(t, s) = 1 t (t, s) B z(t, s) = ( t + es/ ) 3

4 ove B = (t, s) : t > e s/ }. Si osservi ora che la trasformazione (t, s) (x(t, s), y(t, s)) è una trasformazione lineare di R in sé invertibile (globalmente); facilmente si ottiene t = y, s = x y. Pertanto, la soluzione del problema ai valori iniziali è la funzione composta z(t(x, y), s(x, y)), cioè con dominio u(x, y) = (y + e x/ y ), (x, y) D, (3) D = (x, y) : y + e x/ y > } (x, y) : y } (x, y) : y <, x > y + log(y ) }. La verifica del fatto che la funzione (3) risolve in senso classico il problema dell esercizio. è prevista ma qui lasciata al lettore. 3. Le eventuali soluzioni a variabili separate del problema u t ku xx = < x < 1, t > (a) u x (, t) = u x (1, t) = t > (b) sono funzioni u della forma u(x, t) = X(x)T (t), con X e T funzioni (entrambe non identicamente nulle) di classe C. Esse dovranno soddisfare X(x)T (t) kx (x)t (t) =, (x, t) (, 1) (, ), (5) assieme alla condizione X ()T (t) = X (1)T (t) = per ogni t (, ), che implica X () = X (1) =. Dividendo ambo i membri dell equazione (5) per X(x)T (t), si ottiene l identità T (t) kt (t) = X (x) x (, 1), t >, (6) X(x) che è possibile solo se ambo i membri sono costanti. Si perviene dunque al problema agli autovalori seguente: Esiste λ C tale che esiste X( ) soluzione del problema ai limiti X (x) + λx(x) = < x < 1 X () = X? (7) (1) = e all equazione differenziale ordinaria T λkt = nell incognita T = T (t). Il problema (7) è già stato discusso a lezione, e possiamo affermare che vi è una successione crescente di autovalori non negativi λ n = (nπ), n =, 1,,..., con autofunzioni corrispondenti X n (x) = cos(nπx), n =, 1,,... Di conseguenza T n (t) = C n e kπ n t, n =, 1,,..., con C n R, C n. In conclusione, le soluzioni a variabili separate (non banali) dell equazione (a) corredata delle condizioni al bordo (b) sono u n (x, t) = X n (x)t n (t) = C n e kπ n t cos(nπx), x (, 1), t >, (8)

5 con n =, 1,,... e C n. Al fine di risolvere il problema al contorno e ai valori iniziali u t ku xx = < x < 1, t > u x (, t) = u x (1, t) = t > u(x, ) = f(x) x 1 (9) con f come nell esercizio 1., si introduce la serie di funzioni u(x, t) = u n (x, t) = C + C n e kπ n t cos(nπx). n= Operando formalmente (cioé prescindendo dalle questioni di convergenza) si impone la condizione iniziale u(x, ) = f(x): f(x) = C + C n cos(nπx) x 1. (1) Si osservi che se la serie trigonometrica in (1) risulta convergente, essa converge ad una funzione periodica di periodo e pari. Questo suggerisce che si operi un estensione della funzione f(x) inizialmente su [ 1, ] per simmetria e poi su tutto R ad una funzione -periodica (pari). Dovrà dunque essere C = a /, C n = a n per n 1, ove a n sono i coefficienti di Fourier dell estensione prodotta, ovvero a n = 1 f(x) cos(nπx) dx, n =, 1,,... Facilmente si ottiene (il dettaglio del calcolo dei coefficienti a n è omesso): a = 1, a n = nπ [ cos( nπ ) 1 cos(nπ) ] = cos( nπ ) n pari n dispari, n 1, e la candidata soluzione è u(x, t) = a + a n e kπ n t cos(nπx) = 1 + [( 1) j 1]e kπ j t cos(jπx) j=1 = 1 e kπ (h+1) t cos((h + )πx). h=1 (11) 5

6 (La dimostrazione dell effettiva convergenza della serie a secondo membro di (11) ad una funzione u(x, t) che risolva in senso debole o classico il problema (9) è omessa.). (a) Si procede sulla falsariga di quanto fatto nel caso dell equazione della corda vibrante. Si utilizza il metodo dell energia: se ψ(x, t) è una soluzione di classe C dell equazione ψ tt ψ xx + ψ 3 =, con x, t R, moltiplicando ambo i membri dell equazione per ψ t si ottiene ( 1 ) t ψ t x (ψ xψ t ) + ψ x ψ tx + t( 1 ψ ) =, ovvero 1 (ψt t[ + ψx + ψ )] = x (ψ xψ t ). (1) Integrando (in x) su R ambo i membri dell identità (1), si trova R 1 (ψt t[ + ψx + ψ )] dx = = lim N + R x (ψ xψ t ) dx [ ψx (N, t)ψ t (N, t) ψ x ( N, t)ψ t ( N, t) ] =, in cui, assumendo ψ x per t fissato e x x, è lecito giustificare dapprima la convergenza degli integrali (impropri, a priori) e poi il fatto che il limite in (13) risulti nullo. (In effetti, è possibile provare che se i dati iniziali sono nulli fuori di un compatto, ovvero esiste R > tale che ψ(x, ) = ψ t (x, ) = per x R, per la soluzione corrispondente si ha ψ(x, t) = per x R + t, per ogni t. In altri termini, anche nel caso dell equazione non lineare (1) si ha velocità di propagazione finita, come nel caso lineare.) Utilizzando il Teorema di derivazione di integrali dipendenti da un parametro la (13) si riscrive come d [ 1 dt R (ψt + ψx + ψ )] dx =, che esprime appunto un principio di conservazione dell energia del sistema, se si interpreta la funzione 1 (ψt + ψx + ψ ) come densità di energia e dove [ 1 E(t) := (ψt + ψx + ψ )] dx R è l energia totale del sistema. (13) 6

7 Si osservi che rispetto al caso dell equazione lineare ψ tt ψ xx = l energia cinetica E k (t) del sistema è invariata, E k (t) := 1 ψt dx, mentre l energia potenziale cambia come è naturale in virtù della presenza della forza rappresentata dal termine non lineare F (x, t) = ψ 3 (x, t): E p (t) := 1 R R (ψx + ψ ) dx. (b) Imponendo che ψ(x, t) = ϕ(x θt) risolva l equazione di Klein-Gordon (1), si trova che ϕ C e (θ 1)ϕ + ϕ 3 =. Pertanto, (la velocità di propagazione) θ 1 e ϕ dovrà soddisfare l equazione differenziale ordinaria (EDO) ϕ + 1 θ 1 ϕ3 =. (1) Per una discussione dell EDO (1) si veda ad esempio il 5.7 del testo di Jeffery M. Cooper Introduction to Partial Differential Equations with MATLAB, Birkhäuser,

DIARIO DELLE LEZIONI DEL CORSO DI FISICA MATEMATICA A.A. 2012/2013 CORSO DI LAUREA MAGISTRALE IN INGEGNERIA MECCANICA

DIARIO DELLE LEZIONI DEL CORSO DI FISICA MATEMATICA A.A. 2012/2013 CORSO DI LAUREA MAGISTRALE IN INGEGNERIA MECCANICA DIARIO DELLE LEZIONI DEL CORSO DI FISICA MATEMATICA A.A. 2012/2013 CORSO DI LAUREA MAGISTRALE IN INGEGNERIA MECCANICA DANIELE ANDREUCCI DIP. SCIENZE DI BASE E APPLICATE PER L INGEGNERIA UNIVERSITÀ LA SAPIENZA

Dettagli

Esonero di Analisi Matematica II (A)

Esonero di Analisi Matematica II (A) Esonero di Analisi Matematica II (A) Ingegneria Edile, 8 aprile 3. Studiare la convergenza del seguente integrale improprio: + x log 3 x (x ) 3 dx.. Studiare la convergenza puntuale ed uniforme della seguente

Dettagli

5π/2. 3π/2. y = f(x) π π. -5π/2-2π -3π/2 -π -π/2 π/2 π 3π/2 2π 5π/2 3π 7π. -π/2

5π/2. 3π/2. y = f(x) π π. -5π/2-2π -3π/2 -π -π/2 π/2 π 3π/2 2π 5π/2 3π 7π. -π/2 Corso di Laurea in Matematica Analisi 4 - SOLUZIONI /9/8) Docente: Claudia Anedda ) Data la funzione yx) x + π, x, π) prolungarla su tutto R in modo tale che sia una funzione π-periodica pari, disegnare

Dettagli

Università degli Studi di Firenze Anno Accademico 2006/2007 Ingegneria per la Tutela dell Ambiente e del Territorio (Laurea Specialistica)

Università degli Studi di Firenze Anno Accademico 2006/2007 Ingegneria per la Tutela dell Ambiente e del Territorio (Laurea Specialistica) Università degli Studi di Firenze Anno Accademico 2006/2007 Ingegneria per la Tutela dell Ambiente e del Territorio (Laurea Specialistica) Corso Complementi di Analisi Matematica Docente del corso: Francesca

Dettagli

Analisi Matematica 2. Michele Campiti. Prove scritte di. Ingegneria Industriale a.a

Analisi Matematica 2. Michele Campiti. Prove scritte di. Ingegneria Industriale a.a Michele Campiti Prove scritte di Analisi Matematica 2 Ingegneria Industriale a.a. 20 202 Grafico della funzione f(x, y) := sin(2x 2 y) cos(x 2y 2 ) in [ π/2, π/2] 2 Raccolta delle tracce di Analisi Matematica

Dettagli

Analisi Matematica 3/Analisi 4 - SOLUZIONI (20/01/2016)

Analisi Matematica 3/Analisi 4 - SOLUZIONI (20/01/2016) Corso di Laurea in Matematica Docente: Claudia Anedda Analisi Matematica 3/Analisi 4 - SOLUZIONI (//6) ) i) Dopo averla classificata, risolvere l equazione differenziale tẋ x = t cos(t), t >. ii) Scrivere

Dettagli

Compiti d Esame A.A. 2005/2006

Compiti d Esame A.A. 2005/2006 Compiti d Esame A.A. 25/26 UNIVERSITÀ DEGLI STUDI DI PERUGIA A.A. 25/26 I Esercitazione 21 Aprile 26 { y = xy ln(xy) si chiede di dimostrare che: y(1) = 1, (a) ammette un unica soluzione massimale y =

Dettagli

DIARIO DELLE LEZIONI DEL CORSO DI FISICA MATEMATICA CORSO DI LAUREA MAGISTRALE IN INGEGNERIA MECCANICA

DIARIO DELLE LEZIONI DEL CORSO DI FISICA MATEMATICA CORSO DI LAUREA MAGISTRALE IN INGEGNERIA MECCANICA DIARIO DELLE LEZIONI DEL CORSO DI FISICA MATEMATICA CORSO DI LAUREA MAGISTRALE IN INGEGNERIA MECCANICA DANIELE ANDREUCCI DIP. SCIENZE DI BASE E APPLICATE PER L INGEGNERIA UNIVERSITÀ LA SAPIENZA VIA A.SCARPA

Dettagli

ANALISI MATEMATICA L-C, B-S

ANALISI MATEMATICA L-C, B-S ANALISI MAEMAICA L-C, B-S 25-6 SERIE DI FOURIER MASSIMO CICOGNANI Per la pubblicazione in rete di queste dispense si deve ringraziare Marco Frison che le ha trascritte interamente in Latex 1 Lo spazio

Dettagli

UNIVERSITÀ DEGLI STUDI DI PERUGIA Corso di Analisi Matematica III - 9 CFU C.d.S. Triennale in Matematica A.A. 2016/2017 I Esercitazione 12 Aprile 2017

UNIVERSITÀ DEGLI STUDI DI PERUGIA Corso di Analisi Matematica III - 9 CFU C.d.S. Triennale in Matematica A.A. 2016/2017 I Esercitazione 12 Aprile 2017 C.d.S. Triennale in Matematica A.A. 2016/2017 I Esercitazione 12 Aprile 2017 Esercizio 1. Data la successione di funzioni f n t = en1+t4 + e nt2 n 3 + e, t R, n1+t2 a determinare l insieme di convergenza

Dettagli

1 Introduzione all operatore di Laplace.

1 Introduzione all operatore di Laplace. CORSO DI ANALISI IN PIÙ VARIABILI II CORSO DI LAUREA IN MATEMATICA L OPERATORE DI LAPLACE 1 Introduzione all operatore di Laplace. Diamo un esempio di un problema di fisica matematica la cui equazione

Dettagli

ANALISI MATEMATICA I, Compito scritto del 5/07/2016 Corso di Laurea in Matematica. COGNOME e NOME... MATR T

ANALISI MATEMATICA I, Compito scritto del 5/07/2016 Corso di Laurea in Matematica. COGNOME e NOME... MATR T ANALISI MATEMATICA I, Compito scritto del 5/7/6 Corso di Laurea in Matematica COGNOME e NOME... MATR... 3 4 T Nelle risposte devono essere riportati anche i conti principali e le motivazioni principali.

Dettagli

Ingegneria Elettronica Prova scritta di Analisi Matematica II del giorno ( 3) n x n n + 1

Ingegneria Elettronica Prova scritta di Analisi Matematica II del giorno ( 3) n x n n + 1 Prova scritta di Analisi Matematica II del giorno 31-01-2007 1) Studiare la serie di potenze ( 3) n x n n + 1 2) Determinare i punti di estremo relativo ed assoluto della funzione seguente f(x, y) = x

Dettagli

Esercizi sulla soluzione dell equazione delle onde con il metodo della serie di Fourier

Esercizi sulla soluzione dell equazione delle onde con il metodo della serie di Fourier Esercizi sulla soluzione dell equazione delle onde con il metodo della serie di Fourier Corso di Fisica Matematica 2, a.a. 2013-2014 Dipartimento di Matematica, Università di Milano 13 Novembre 2013 1

Dettagli

Serie trigonometriche e di Fourier Ci occuperemo di serie le cui ridotte N-esime sono polinomi trigonometrici di grado (o ordine) N:

Serie trigonometriche e di Fourier Ci occuperemo di serie le cui ridotte N-esime sono polinomi trigonometrici di grado (o ordine) N: Serie trigonometriche e di Fourier Ci occuperemo di serie le cui ridotte N-esime sono polinomi trigonometrici di grado (o ordine) N: S N (x) = N n=0 (a n cos (nx) + b n sin (nx)), a n, b n R (periodiche

Dettagli

Politecnico di Milano Ingegneria Industriale Analisi e Geometria 2 Secondo compito in itinere 30 Giugno 2016

Politecnico di Milano Ingegneria Industriale Analisi e Geometria 2 Secondo compito in itinere 30 Giugno 2016 Politecnico di Milano Ingegneria Industriale Analisi e Geometria Secondo compito in itinere Giugno 6 Cognome: Nome: Matricola: Es.: 9 punti Es.: 9 punti Es.: 6 punti Es.4: 9 punti Totale. Si consideri

Dettagli

Serie di Fourier - Esercizi svolti

Serie di Fourier - Esercizi svolti Serie di Fourier - Esercizi svolti Esercizio 1 È data la funzione f con domf) = R, periodica di periodo, tale che onda quadra) 1 se < x < fx) = se x = e x = 1 se < x < 1) 1 Calcolare i coefficienti di

Dettagli

Metodo di separazione di variabili e applicazione delle serie di Fourier alle soluzioni di alcune EDP

Metodo di separazione di variabili e applicazione delle serie di Fourier alle soluzioni di alcune EDP Metodo di separazione di variabili e applicazione delle serie di Fourier alle soluzioni di alcune EDP Docente:Alessandra Cutrì Equazione delle onde unidimensionale non omogenea u tt (x, t = a 2 u xx (x,

Dettagli

Analisi Matematica II 6 aprile sin[π(x 2 + y 2 /5)] x 2 + y2

Analisi Matematica II 6 aprile sin[π(x 2 + y 2 /5)] x 2 + y2 Analisi Matematica II 6 aprile 07 Cognome: Nome: Matricola:. (0 punti) Si consideri la seguente corrispondenza tra R ed R f(x, y) = Determinare l insieme di definizione A R di f e sin[π(x + y /5)] x +

Dettagli

Es. 1 Es. 2 Es. 3 Es. 4 Totale Teoria

Es. 1 Es. 2 Es. 3 Es. 4 Totale Teoria Es. Es. Es. 3 Es. 4 Totale Teoria Analisi e Geometria Docente: Politecnico di Milano Ingegneria Industriale 5 Settembre Compito A Cognome: Nome: Matricola: Punteggi degli esercizi: Es.: 6 punti; Es.: punti;

Dettagli

E, la successione di numeri {f n (x 0. n f n(x) (15.1)

E, la successione di numeri {f n (x 0. n f n(x) (15.1) Capitolo 15 15.1 Successioni e serie di funzioni Sia {f n } una successione di funzioni, tutte definite in un certo insieme E dello spazio R n ; si dice che essa è convergente nell insieme E se, comunque

Dettagli

DIARIO DELLE LEZIONI DEL CORSO DI FISICA MATEMATICA A.A. 2013/2014 CORSO DI LAUREA MAGISTRALE IN INGEGNERIA MECCANICA

DIARIO DELLE LEZIONI DEL CORSO DI FISICA MATEMATICA A.A. 2013/2014 CORSO DI LAUREA MAGISTRALE IN INGEGNERIA MECCANICA DIARIO DELLE LEZIONI DEL CORSO DI FISICA MATEMATICA A.A. 2013/2014 CORSO DI LAUREA MAGISTRALE IN INGEGNERIA MECCANICA DANIELE ANDREUCCI DIP. SCIENZE DI BASE E APPLICATE PER L INGEGNERIA UNIVERSITÀ LA SAPIENZA

Dettagli

ANALISI MATEMATICA II PROVA DI TEORIA (23/6/2009)

ANALISI MATEMATICA II PROVA DI TEORIA (23/6/2009) ANALISI MATEMATICA II PROVA DI TEORIA (23/6/2009) 1. Sia S = { } (x, y, z) : x 2 + y 2 = 4, 0 z 3 + x. Scrivere le equazioni parametriche di una superficie regolare che abbia S come sostegno. 2. Enunciare

Dettagli

UNIVERSITÀ DEGLI STUDI. Registro dell insegnamento

UNIVERSITÀ DEGLI STUDI. Registro dell insegnamento UNIVERSITÀ DEGLI STUDI Registro dell insegnamento Anno Accademico 2008/2009 Facoltà Ingegneria Insegnamento Complementi di Analisi Matematica Settore MAT/05 Corsi di Laurea Ingegneria per la Tutela dell

Dettagli

1 x 2 y 2 dxdy D. 3 (1 ρ2 ) 3/2 = 1 3. = π 12.

1 x 2 y 2 dxdy D. 3 (1 ρ2 ) 3/2 = 1 3. = π 12. INGEGNERIA CIVILE - AMBIENTE E TERRITORIO ANALISI MATEMATICA II SOLUZIONI DELLA PROVA SCRITTA DEL 19-6-15 ESERCIZIO 1 Calcolare 1 x y dxdy D dove D è il dominio piano delimitato dalla curva x + y = x e

Dettagli

Cognome: Nome: Matricola: a. Si enunci e dimostri il teorema della media integrale per funzioni continue. (5 punti)

Cognome: Nome: Matricola: a. Si enunci e dimostri il teorema della media integrale per funzioni continue. (5 punti) Analisi e Geometria Seconda Prova 3 gennaio 207 Docente: Politecnico di Milano Scuola di Ingegneria Industriale e dell Informazione Cognome: Nome: Matricola: a. Si enunci e dimostri il teorema della media

Dettagli

Prova scritta di Analisi Matematica III

Prova scritta di Analisi Matematica III 18 luglio 2016 f n (x) = 1 n e (x n)2 (x R, n N ). 2. Si scriva la disuguaglianza di Bessel per la funzione f, periodica di periodo 2π, tale che 0 x [ π, 0) f (x) = 2 x x [0, π). 3. Si consideri l equazione

Dettagli

Equazioni differenziali del primo ordine: casi particolari e teorema di esistenza per il problema di Cauchy

Equazioni differenziali del primo ordine: casi particolari e teorema di esistenza per il problema di Cauchy Equazioni differenziali del primo ordine: casi particolari e teorema di esistenza per il problema di Cauchy 10 maggio 2010 Supponiamo che f(x, y) sia una funzione continua definita in un rettangolo del

Dettagli

PROVE SCRITTE DI ANALISI MATEMATICA II (V.O.), ANNO 2002

PROVE SCRITTE DI ANALISI MATEMATICA II (V.O.), ANNO 2002 PROVE SCRITTE DI ANALISI MATEMATICA II (V.O.), ANNO 22 Prova scritta del 1/1/22 Si esamini la serie di funzioni: 1 log x (e n + n), definita per x IR. Si determini l insieme S in cui tale serie converge,

Dettagli

Istituzioni di Matematica II 5 Luglio 2010

Istituzioni di Matematica II 5 Luglio 2010 Istituzioni di Matematica II 5 Luglio 010 1. Classificare, al variare del parametro α R, la forma quadratica (1 + α )x + 4xy + αy.. i) Si determinino tutti i punti critici della seguente funzione f(x,

Dettagli

TEMI D ESAME DI ANALISI MATEMATICA I Corso di laurea (quadriennale) in Fisica a.a. 2002/03

TEMI D ESAME DI ANALISI MATEMATICA I Corso di laurea (quadriennale) in Fisica a.a. 2002/03 I seguenti quesiti ed il relativo svolgimento sono coperti dal diritto d autore, pertanto essi non possono essere sfruttati a fini commerciali o di pubblicazione editoriale senza autorizzazione esplicita

Dettagli

ANALISI C & Complementi di Analisi Matematica di Base. Prova scritta del 23 gennaio 2007

ANALISI C & Complementi di Analisi Matematica di Base. Prova scritta del 23 gennaio 2007 Prova scritta del 23 gennaio 2007 Esercizio 1. Sia f : R R una funzione misurabile e non negativa; si consideri la successione di funzioni f n (x) = max3f(x) 2n, 0}, x R, n N. Provare che se f è integrabile

Dettagli

Calcolo Scientifico e Matematica Applicata Primo Parziale,

Calcolo Scientifico e Matematica Applicata Primo Parziale, Calcolo Scientifico e Matematica Applicata Primo Parziale, 19.11.2018 Risolvere gli esercizi 2,, 4 oppure, in alternativa, gli esercizi 1, 2,, 5. Valutazione degli esercizi: 1 4, 2 14, 8, 4 8, 5 4. 1.

Dettagli

Politecnico di Milano Ingegneria Industriale Analisi e Geometria 1 Seconda prova in itinere 31 gennaio 2011

Politecnico di Milano Ingegneria Industriale Analisi e Geometria 1 Seconda prova in itinere 31 gennaio 2011 Politecnico di Milano Ingegneria Industriale Analisi e Geometria Seconda prova in itinere 3 gennaio Cognome: Nome: Matricola: Compito A Es. : 8 punti Es. : 8 punti Es. 3: 8 punti Es. 4: 8 punti Es. 5:

Dettagli

Modulo di Matematica

Modulo di Matematica Università degli Studi di Udine Anno Accademico /3 Corso di Laurea in Biotecnologie Modulo di Matematica Esame del 9//3 N.B.: scrivere nome, cognome e numero di matricola su ogni foglio consegnato. Tempo

Dettagli

Esame di Fisica Matematica III, a.a (8/2/2011)

Esame di Fisica Matematica III, a.a (8/2/2011) Esame di Fisica Matematica III, a.a. 010-011 (8//011) Tempo a disposizione: TRE ORE. Non e consentito l uso di appunti o calcolatrici. Svolgere tutti gli esercizi. Esercizio 1. Determinare la piu generale

Dettagli

Analisi Matematica 3

Analisi Matematica 3 Testi delle prove d esame del corso di Analisi Matematica 3 presso la Facoltà di Ingegneria Bruno Rubino L Aquila, 2006 Indice 1 Curve 3 2 Superfici 4 3 Teorema di Gauss-Green e formula dell area 4 4 Campi

Dettagli

Analisi Matematica II - INGEGNERIA Gestionale - B 20 luglio 2017 Cognome: Nome: Matricola:

Analisi Matematica II - INGEGNERIA Gestionale - B 20 luglio 2017 Cognome: Nome: Matricola: Analisi Matematica II - INGEGNERIA Gestionale - B luglio 7 Cognome: Nome: Matricola: IMPORTANTE: Giustificare tutte le affermazioni e riportare i calcoli essenziali Esercizio [8 punti] Data la matrice

Dettagli

COMPLEMENTI DI ANALISI MATEMATICA DI BASE. Prova scritta del 26 gennaio 2005

COMPLEMENTI DI ANALISI MATEMATICA DI BASE. Prova scritta del 26 gennaio 2005 Prova scritta del 26 gennaio 2005 Esercizio 1. Posto B = x R 2 : x 2 2}, sia f n } una successione di funzioni (misurabili e) integrabili in B tali che f n f q.o. in B e, per ogni n N, f n (x) 2 x 3 per

Dettagli

Modulo di Matematica

Modulo di Matematica Università degli Studi di Udine Anno Accademico 05/06 Corso di Laurea in Biotecnologie Modulo di Matematica Esame del 0/0/06 N.B.: scrivere nome, cognome e numero di matricola su ogni foglio consegnato.

Dettagli

Analisi Matematica I

Analisi Matematica I Università degli Studi di Genova Facoltà di Ingegneria - Polo di Savona via Cadorna 7-7 Savona Tel. +39 9 264555 - Fax +39 9 264558 Analisi Matematica I Testi d esame e Prove parziali Analisi Matematica

Dettagli

ANALISI MATEMATICA II 6 luglio 2010 Versione A

ANALISI MATEMATICA II 6 luglio 2010 Versione A ANALISI MATEMATICA II 6 luglio 2 Versione A Nome Cognome: Matricola Codice corso Docente: Corso di Laurea: Analisi II 75 cr. Analisi D Analisi II V.O. Analisi C es. 23 es. 245 es 24 es. es. 3 pinti b c

Dettagli

Analisi Matematica III modulo Soluzioni della prova scritta preliminare n. 2

Analisi Matematica III modulo Soluzioni della prova scritta preliminare n. 2 Analisi Matematica III modulo Soluzioni della prova scritta preliminare n. Corso di laurea in Matematica, a.a. 003-004 17 dicembre 003 1. Si consideri la funzione f : R R definita da f(x, y) = x 4 y arctan

Dettagli

Esercizi sulla trasformata di Fourier di distribuzioni raccolti dai temi d esame

Esercizi sulla trasformata di Fourier di distribuzioni raccolti dai temi d esame Esercizi sulla trasformata di Fourier di distribuzioni raccolti dai temi d esame Esercizio Sia T > 0 e f : R R la funzione reale T -periodica la cui restrizione all intervallo [0, T ] vale f(t) := t(t

Dettagli

Analisi Vettoriale A.A Soluzioni del foglio 5. y = y 2, dy y 2 = x

Analisi Vettoriale A.A Soluzioni del foglio 5. y = y 2, dy y 2 = x Analisi Vettoriale A.A. 2006-2007 - Soluzioni del foglio 5 5. Esercizio Assegnato il problema di Cauchy y = y 2, y(0) = k determinare per ogni k la soluzione y(x), determinare il suo insieme di esistenza,

Dettagli

y = x y(0) = 0.

y = x y(0) = 0. A.A. 2006/2007 I Esercitazione 19 aprile 2007 Esercizio 1. Dato il problema di Cauch = x 2 2 2 + 1 (0) = 0, dimostrare che: (a) ammette un unica soluzione massimale ; (b) tale soluzione è definita globalmente;

Dettagli

Analisi Reale e Complessa - a.a. 2008/2009

Analisi Reale e Complessa - a.a. 2008/2009 Terzo appello Esercizio Analisi Reale e Complessa - a.a. 8/9 Sia (a) Si provi che f L (R); f(x) eix x i. (b) Si calcoli con metodi di variabile complessa la trasformata di Fourier di f. (a) Si osservi

Dettagli

Limitiamoci dapprima a considerare una funzione f di periodo 2π. Cercheremo di approssimarla con polinomi trigonometrici di ordine n della forma

Limitiamoci dapprima a considerare una funzione f di periodo 2π. Cercheremo di approssimarla con polinomi trigonometrici di ordine n della forma Serie di Fourier L idea che sta alla base degli sviluppi in serie di Fourier è quella di approssimare, in qualche senso, le funzioni (integrabili periodiche per mezzo di funzioni più regolari e/o più facilmente

Dettagli

Problemi. Problemi [101] [102] 4) Trovare tutte le soluzioni classiche dell equazione differenziale

Problemi. Problemi [101] [102] 4) Trovare tutte le soluzioni classiche dell equazione differenziale [101] [102] Soluzioni classiche Problema di Cauchy 1) Trovare tutte le soluzioni classiche dell equazione differenziale y (x) = 0 aventi per dominio l insieme R dei numeri reali. 2) Trovare almeno una

Dettagli

TEMI D ESAME DI ANALISI MATEMATICA I

TEMI D ESAME DI ANALISI MATEMATICA I TEMI D ESAME DI ANALISI MATEMATICA I Corso di laurea quadriennale) in Fisica a.a. 003/04 Prova scritta del 3 aprile 003 ] Siano a, c parametri reali. Studiare l esistenza e, in caso affermativo, calcolare

Dettagli

Compito di Analisi Matematica 1 per Ingegneria Elettronica a delle Telecomunicazioni COGNOME: NOME: MATR.: 1. x n

Compito di Analisi Matematica 1 per Ingegneria Elettronica a delle Telecomunicazioni COGNOME: NOME: MATR.: 1. x n Compito di Analisi Matematica 1 per Ingegneria Elettronica a delle Telecomunicazioni 17 gennaio 2017 COGNOME: NOME: MATR.: Esercizio 1. Sia f : R R definita da f(x) = 1 4 x x + 1 2. a) Disegnare grafico

Dettagli

Analisi in più variabili II, Anno Accademico , Matematica. Alberti, Tortorelli. III foglio di esercizi dal 23 ottobre al 6 novembre 2012

Analisi in più variabili II, Anno Accademico , Matematica. Alberti, Tortorelli. III foglio di esercizi dal 23 ottobre al 6 novembre 2012 Analisi in più variabili II, Anno Accademico 0-03, Matematica Alberti, Tortorelli III foglio di esercizi dal 3 ottobre al 6 novembre 0 Testi da cui si è preso spunto: H.Dym H.P.Mc Kean Fourier series and

Dettagli

Serie di Fourier Richiami di teoria. Funzioni periodiche. Ci poniamo il problema dello sviluppo in serie di Fourier per funzioni f 1 : R R

Serie di Fourier Richiami di teoria. Funzioni periodiche. Ci poniamo il problema dello sviluppo in serie di Fourier per funzioni f 1 : R R Serie di Fourier Richiami di teoria Funzioni periodiche Ci poniamo il problema dello sviluppo in serie di Fourier per funzioni f 1 : R R 2π-periodiche. Esempio 1. Consideriamo il prolungamento 2π-periodico

Dettagli

Serie di Fourier. Hynek Kovarik. Analisi Matematica 2. Università di Brescia

Serie di Fourier. Hynek Kovarik. Analisi Matematica 2. Università di Brescia Serie di Fourier Hynek Kovarik Università di Brescia Analisi Matematica 2 Hynek Kovarik (Università di Brescia) Serie di Fourier Analisi Matematica 2 1 / 37 Polinomi trigonometrici Definizione Si dice

Dettagli

1) D0MINIO FUNZIONE. Determinare il dominio della funzione f (x) = 4 x 2 4x + 3 x 2 6x + 8 Deve essere. x 2 6x + 5 (x 1) (x 5)

1) D0MINIO FUNZIONE. Determinare il dominio della funzione f (x) = 4 x 2 4x + 3 x 2 6x + 8 Deve essere. x 2 6x + 5 (x 1) (x 5) ) DMINIO FUNZIONE Determinare il dominio della funzione f (x) = x x + x x + 8 x x + (x ) (x ) Deve essere = quindi x (, ] (, ] (, + ). x x + 8 (x ) (x ) Determinare il dominio della funzione f (x) = x

Dettagli

COMPLEMENTI DI ANALISI MATEMATICA II. Prova scritta del 20 gennaio 2014

COMPLEMENTI DI ANALISI MATEMATICA II. Prova scritta del 20 gennaio 2014 Prova scritta del 2 gennaio 214 Studiare la convergenza puntuale e uniforme della serie di potenze n=1 n x 2n 2n + e n. Valutare poi la misurabilità e l integrabilità secondo Lebesgue della funzione somma

Dettagli

Quarto appello di Analisi Matematica 2 Ingegneria Elettronica. Politecnico di Milano Es. Punti A.A. 2016/2017. Prof. M. Bramanti.

Quarto appello di Analisi Matematica 2 Ingegneria Elettronica. Politecnico di Milano Es. Punti A.A. 2016/2017. Prof. M. Bramanti. Quarto appello di Analisi Matematica Ingegneria Elettronica. Politecnico di Milano Es. Punti A.A. 6/. Prof. M. Bramanti Tema n 6 Tot. Cognome e nome in stampatello codice persona o n di matricola n d ordine

Dettagli

Es. 1 Es. 2 Es. 3 Es. 4 Totale Teoria. Domande di teoria.

Es. 1 Es. 2 Es. 3 Es. 4 Totale Teoria. Domande di teoria. Es. 1 Es. 2 Es. 3 Es. 4 Totale Teoria Analisi Matematica II Seconda prova in itinere 3 Luglio 2014 Compito A Docente: Politecnico di Milano Ingegneria Biomedica Cognome: Nome: Matricola: Punteggi degli

Dettagli

dove A = arctan ( y y(1) = 1.

dove A = arctan ( y y(1) = 1. A.A. 27/28 I Esercitazione 5 maggio 28 Esercizio. Data la successione di problemi di Cauchy y n = x 2n+ arctan y n (P n ) y n () =, (a) dimostrare che per ogni n N (P n ) ammette un unica soluzione massimale

Dettagli

ANALISI MATEMATICA 3. esercizi assegnati per la prova scritta del 31 gennaio 2011

ANALISI MATEMATICA 3. esercizi assegnati per la prova scritta del 31 gennaio 2011 esercizi assegnati per la prova scritta del 31 gennaio 2011 Esercizio 1. Per x > 0 e n N si ponga f n (x) = ln ( n 5 x ) a) Provare l integrabilità delle funzioni f n in (0, + ). 3 + n 4 x 2. b) Studiare

Dettagli

DIARIO DELLE LEZIONI DEL CORSO DI FISICA MATEMATICA A.A. 2011/2012 CORSO DI LAUREA MAGISTRALE IN INGEGNERIA MECCANICA

DIARIO DELLE LEZIONI DEL CORSO DI FISICA MATEMATICA A.A. 2011/2012 CORSO DI LAUREA MAGISTRALE IN INGEGNERIA MECCANICA DIARIO DELLE LEZIONI DEL CORSO DI FISICA MATEMATICA A.A. 2011/2012 CORSO DI LAUREA MAGISTRALE IN INGEGNERIA MECCANICA DANIELE ANDREUCCI DIP. SCIENZE DI BASE E APPLICATE PER L INGEGNERIA UNIVERSITÀ LA SAPIENZA

Dettagli

Es. 1 Es. 2 Es. 3 Es. 4 Totale Teoria

Es. 1 Es. 2 Es. 3 Es. 4 Totale Teoria Es. 1 Es. Es. 3 Es. 4 Totale Teoria Analisi e Geometria 1 Docente: Politecnico di Milano Ingegneria Industriale 1 Luglio 010 Compito A Cognome: Nome: Matricola: Punteggi degli esercizi: Es.1: 6 punti;

Dettagli

Alcuni complementi di teoria dell integrazione.

Alcuni complementi di teoria dell integrazione. Alcuni complementi di teoria dell integrazione. In ciò che segue si suppone di avere uno spazio di misura (,, µ) 1 Sia f una funzione misurabile su un insieme di misura positiva tale che f 0. Se fdµ =

Dettagli

Corso di Analisi Matematica 1 - professore Alberto Valli

Corso di Analisi Matematica 1 - professore Alberto Valli Università di Trento - Corso di Laurea in Ingegneria Civile e Ingegneria per l Ambiente e il Territorio - 8/9 Corso di Analisi Matematica - professore Alberto Valli foglio di esercizi - dicembre 8 Integrali

Dettagli

Soluzione dei problemi assegnati

Soluzione dei problemi assegnati ANALISI MATEMATICA 3 Soluzione dei problemi assegnati anno accademico 2018/19 prof. Antonio Greco http://people.unica.it/antoniogreco Dipartimento di Matematica e Informatica Università di Cagliari 23-5-2019

Dettagli

Soluzione della prova scritta di Analisi Matematica II del 15 Aprile 2009 (Ingegneria Edile e Architettura)

Soluzione della prova scritta di Analisi Matematica II del 15 Aprile 2009 (Ingegneria Edile e Architettura) Soluzione della prova scritta di Analisi Matematica II del 5 Aprile 009 Ingegneria Edile e Architettura x. Calcolare J = ds essendo γ la curva ottenuta intersecando γ + y il cilindro di equazione x + y

Dettagli

Secondo appello di Analisi Matematica 2 Ingegneria Elettronica. Politecnico di Milano Es. Punti A.A. 2017/2018. Prof. M. Bramanti. Tema n 1.

Secondo appello di Analisi Matematica 2 Ingegneria Elettronica. Politecnico di Milano Es. Punti A.A. 2017/2018. Prof. M. Bramanti. Tema n 1. Secondo appello di Analisi Matematica Ingegneria Elettronica. Politecnico di Milano Es. Punti A.A. 17/18. Prof. M. Bramanti 1 Tema n 1 5 6 7 Tot. Cognome e nome in stampatello) codice persona o n di matricola)

Dettagli

Ingegneria Tessile, Biella Analisi II

Ingegneria Tessile, Biella Analisi II Ingegneria Tessile, Biella Analisi II Esercizi svolti In questo file sono contenute le soluzioni degli esercizi sui campi vettoriali (cf foglio 5 di esercizi) Attenzione: in alcuni esercizi il calcolo

Dettagli

COMPLEMENTI DI ANALISI MATEMATICA II. Prova scritta del 20 gennaio 2014

COMPLEMENTI DI ANALISI MATEMATICA II. Prova scritta del 20 gennaio 2014 Prova scritta del 20 gennaio 2014 Studiare la convergenza puntuale e uniforme della serie di potenze n x 2n 2n + e n. Valutare poi la misurabilità e l integrabilità secondo Lebesgue della funzione somma

Dettagli

Ingegneria civile - ambientale - edile

Ingegneria civile - ambientale - edile Ingegneria civile - ambientale - edile Analisi - Prove scritte dal 7 Prova scritta del 9 giugno 7 Esercizio Determinare i numeri complessi z che risolvono l equazione Esercizio (i) Posto a n = n i z z

Dettagli

Es. 1: 6 punti Es. 2: 12 punti Es. 3: 6 punti Es. 4: 6 punti Es. 5: 3 punti Totale. sin x arctan x lim. 4 x 2. f(x) = x 2

Es. 1: 6 punti Es. 2: 12 punti Es. 3: 6 punti Es. 4: 6 punti Es. 5: 3 punti Totale. sin x arctan x lim. 4 x 2. f(x) = x 2 Politecnico di Milano Ingegneria Industriale Analisi e Geometria 1 Terzo appello, 1 Luglio 010 Cognome: Nome: Matricola: Compito A Es. 1: 6 punti Es. : 1 punti Es. 3: 6 punti Es. 4: 6 punti Es. 5: 3 punti

Dettagli

Fondamenti di Analisi Matematica 2 - a.a. 2016/2017 Primo appello

Fondamenti di Analisi Matematica 2 - a.a. 2016/2017 Primo appello Fondamenti di Analisi Matematica 2 - a.a. 216/217 Primo appello Esercizi senza svolgimento - Tema 1 Ω = { x, y, z) R 3 : 4x 2 + y 2 + z 2 1, z }. x = ρ/2) sen ϕ cos ϑ, 1. y = ρ sen ϕ sen ϑ, ρ [, 1], ϕ

Dettagli

Esercizi di riepilogo 2 ( Verifica di analisi funzionale e serie di Fourier)

Esercizi di riepilogo 2 ( Verifica di analisi funzionale e serie di Fourier) Esercizi di riepilogo 2 ( Verifica di analisi funzionale e serie di Fourier) Spazi Vettoriali e Funzionali 1. Determinare quali sei seguenti insiemi è uno spazio vettoriale rispetto alle usuali operazioni

Dettagli

Modelli e Metodi Matematici della Fisica. S1/AC

Modelli e Metodi Matematici della Fisica. S1/AC Modelli e Metodi Matematici della Fisica. S1/AC Cesi A.A. 9 1 Nome Cognome 6 CFU (AA 9-1) 8 CFU 4 CFU (solo analisi complessa) 4 + 6 CFU altro: problema voto 1 4 6 7 8 9 Test totale coeff. voto in trentesimi

Dettagli

Scritto Generale del Corso di Analisi Matematica Calcolare la soluzione generale dell equazione differenziale. y (7) + y (6) + y + y = 0.

Scritto Generale del Corso di Analisi Matematica Calcolare la soluzione generale dell equazione differenziale. y (7) + y (6) + y + y = 0. del Corso di Analisi Matematica 4 1 y (7) + y (6) + y + y = 0.. Discutere la convergenza puntuale e uniforme della serie di Fourier della funzione f(x) = x ( T < x T ) di periodo T. In particolare, calcolare

Dettagli

FM210 / MA - Prima prova pre-esonero ( )

FM210 / MA - Prima prova pre-esonero ( ) FM10 / MA - Prima prova pre-esonero (4-4-018) 1. Una particella di massa m si muove in una dimensione sotto l effetto di una forza posizionale, come descritto dalla seguente equazione: mẍ = A x xx 0 3x

Dettagli

Esame di Fisica Matematica III, a.a (27/9/2011)

Esame di Fisica Matematica III, a.a (27/9/2011) Esame di Fisica Matematica III, a.a. 010-011 (7/9/011) Tempo a disposizione: DUE ORE. Non e consentito l uso di appunti o calcolatrici. Svolgere tutti gli esercizi. Esercizio 1. Si determini, attraverso

Dettagli

Esercizi di Complementi di Analisi Matematica II Pisa, 3 agosto 2012

Esercizi di Complementi di Analisi Matematica II Pisa, 3 agosto 2012 Scuola Superiore di Studi Universitari e di Perfezionamento S. Anna Esercizi di Complementi di Analisi Matematica II Pisa, 3 agosto 212 1. Dimostrare che esiste un unica funzione continua f : R R tale

Dettagli

Modulo di Matematica, Corsi di Laurea in VIT e STAL - Raccolta degli Esami A.A

Modulo di Matematica, Corsi di Laurea in VIT e STAL - Raccolta degli Esami A.A Modulo di Matematica, Corsi di Laurea in VIT e STL - Raccolta degli Esami.. - Facoltà di graria Corsi di Laurea in VIT e STL Modulo di Matematica Esame del //.. / Scritto Teoria Esercizi Voto Istruzioni:

Dettagli

f n (x) 3 1. x Essendo g(x) = 3 1

f n (x) 3 1. x Essendo g(x) = 3 1 Secondo esonero di Analisi eale 6//9 a.a. 8-9 ) Studiare la convergenza in L p ((, )), p +, della successione di funzioni cos(nx) e nx f n (x) = 3. x Si vede facilmente che la successione f n converge

Dettagli

Lezione 22: Sistemi a più gradi di libertà: sistemi continui (2)

Lezione 22: Sistemi a più gradi di libertà: sistemi continui (2) Lezione : Sistemi a più gradi di libertà: sistemi continui () Federico Cluni 19 maggio 015 Esempi Si determinano le costanti di integrazione A, B, C e D per alcune condizioni di vincolo tipiche. Trave

Dettagli

Analisi Matematica 1 Ingegneria Informatica Gruppo 4, canale 6

Analisi Matematica 1 Ingegneria Informatica Gruppo 4, canale 6 Analisi Matematica Ingegneria Informatica Gruppo 4, canale 6 Argomenti 5 ottobre 07 I simboli i, j, k, m, n indicano sempre numeri naturali variabili. I simboli p, q, r, s, t,..., x, y, z indicano numeri

Dettagli

Analisi di Fourier e alcune equazioni della fisica matematica 1

Analisi di Fourier e alcune equazioni della fisica matematica 1 Analisi di Fourier e alcune equazioni della fisica matematica 1 QUARTA LEZIONE Risoluzione di equzioni differenziali lineari mediante le serie di potenze. Le funzioni di Bessel. 1 prof. Claudio Saccon,

Dettagli

Esercizi di Fisica Matematica 3, anno , parte di meccanica hamiltoniana e quantistica

Esercizi di Fisica Matematica 3, anno , parte di meccanica hamiltoniana e quantistica Esercizi di Fisica Matematica 3, anno 014-015, parte di meccanica hamiltoniana e quantistica Dario Bambusi 09.06.015 Abstract Gli esercizi dei compiti saranno varianti dei seguenti esercizi. Nei compiti

Dettagli

Esempi di domande tipo per l esame di Metodi Matematici per l Ingegneria A.A. 2014/2015 (seconda parte)

Esempi di domande tipo per l esame di Metodi Matematici per l Ingegneria A.A. 2014/2015 (seconda parte) Esempi di domande tipo per l esame di Metodi Matematici per l Ingegneria A.A. 2014/2015 (seconda parte) June 1, 2015 1 Domande aperte 1.1 Equazione della corda vibrante e delle onde in dimensione superiore

Dettagli

Recupero 1 compitino di Analisi Matematica 2 Ingegneria Elettronica. Politecnico di Milano. A.A. 2017/2018. Prof. M. Bramanti.

Recupero 1 compitino di Analisi Matematica 2 Ingegneria Elettronica. Politecnico di Milano. A.A. 2017/2018. Prof. M. Bramanti. Recupero compitino di Analisi Matematica Ingegneria Elettronica. Politecnico di Milano Es. Punti A.A. 7/8. Prof. M. Bramanti Tema n 3 4 5 6 Tot. Cognome e nome in stampatello codice persona o n di matricola

Dettagli

ANALISI DI FOURIER. 2πk. è periodica di periodo T. Più precisamente, essendo. T x + 2π = cos. s(x) = s x + T ) T +α. f(x) dx

ANALISI DI FOURIER. 2πk. è periodica di periodo T. Più precisamente, essendo. T x + 2π = cos. s(x) = s x + T ) T +α. f(x) dx ANALISI DI FOURIER Sia >. Una funzione f, definita per x R, si dice periodica di periodo, se f(x + = f(x, x R. ( Se una funzione è periodica di periodo, essa è anche periodica di periodo, 3,..., k,....

Dettagli

Corso di Laurea in Ingegneria Civile ed Ambientale Prova Scritta di Analisi Matematica 2 del 29 settembre 2012

Corso di Laurea in Ingegneria Civile ed Ambientale Prova Scritta di Analisi Matematica 2 del 29 settembre 2012 Corso di Laurea in Ingegneria Civile ed Ambientale Prova Scritta di Analisi Matematica del 9 settembre A) Data la funzione f(x, y) = { xy x se (x, y) (, ) se (x, y) = (, ), i) stabilire se risulta continua

Dettagli

Dom. 1 Dom 2 Es. 1 Es. 2 Es. 3 Es. 4 Totale. Cognome: Nome: Matricola:

Dom. 1 Dom 2 Es. 1 Es. 2 Es. 3 Es. 4 Totale. Cognome: Nome: Matricola: Dom. Dom 2 Es. Es. 2 Es. 3 Es. Totale Analisi e Geometria Secondo appello 0 luglio 207 Docente: Gianni Arioli Numero Alfabetico: Cognome: Nome: Matricola: Prima parte a. Enunciare e dimostrare la formula

Dettagli

Prove scritte dell esame di Analisi Matematica II a.a. 2015/2016

Prove scritte dell esame di Analisi Matematica II a.a. 2015/2016 Prove scritte dell esame di Analisi Matematica II a.a. 5/6 C.d.L. in Ingegneria Informatica ed Elettronica - Università degli Studi di Perugia Prova scritta del 6 giugno 6. Determinare massimi e minimi

Dettagli

1) D0MINIO. x x 4x + 3 Determinare il dominio della funzione f (x) = x Deve essere

1) D0MINIO. x x 4x + 3 Determinare il dominio della funzione f (x) = x Deve essere ) DMINIO + 3 Determinare il dominio della funzione f ) + 3 Deve essere Ovviamente, inoltre: se > + 3 ) 3) quindi < o 3 se < + 3, + 3 quindi 7 Determinare il dominio della funzione f ) + 5 Deve essere +

Dettagli

Terzo appello di Analisi Matematica 2 Ingegneria Elettronica. Politecnico di Milano Es. Punti A.A. 2016/2017. Prof. M. Bramanti.

Terzo appello di Analisi Matematica 2 Ingegneria Elettronica. Politecnico di Milano Es. Punti A.A. 2016/2017. Prof. M. Bramanti. Terzo appello di Analisi Matematica Ingegneria Elettronica. Politecnico di Milano Es. Punti A.A. 6/7. Prof. M. Bramanti Tema n 5 6 7 Tot. Cognome e nome in stampatello codice persona o n di matricola n

Dettagli

Matematica - Prova d esame (25/06/2004)

Matematica - Prova d esame (25/06/2004) Matematica - Prova d esame (/6/4) Università di Verona - Laurea in Biotecnologie AI - A.A. /4. (a) Disegnare sul piano di Gauss i numeri z = i e w = i, e scriverne la forma trigonometrica. Calcolare z

Dettagli

Istituzioni di Matematiche, Integrali fratti. corso di laurea in Scienze geologiche. Mauro Costantini

Istituzioni di Matematiche, Integrali fratti. corso di laurea in Scienze geologiche. Mauro Costantini Istituzioni di Matematiche, Integrali fratti corso di laurea in Scienze geologiche. Mauro Costantini tipo: Il nostro obiettivo è studiare gli integrali (indefiniti e definiti delle funzioni razionali,

Dettagli

SOLUZIONE PROBLEMA 1. Punto 1 Osserviamo anzitutto che la funzione

SOLUZIONE PROBLEMA 1. Punto 1 Osserviamo anzitutto che la funzione SOLUZIONE PROBLEMA 1 Punto 1 Osserviamo anzitutto che la funzione g(x) = (ax b)e,-,. è continua e derivabile in R in quanto composizione di funzioni continue e derivabili. Per discutere la presenza di

Dettagli

Corso di Laurea in Ingegneria Gestionale - Sede di Fermo Anno Accademico 2009/2010 Matematica 2 Esercizi d esame

Corso di Laurea in Ingegneria Gestionale - Sede di Fermo Anno Accademico 2009/2010 Matematica 2 Esercizi d esame Corso di Laurea in Ingegneria Gestionale - ede di Fermo Anno Accademico 2009/2010 Matematica 2 Esercizi d esame Nome... N. Matricola... Fermo, gg/mm/aaaa 1. tabilire l ordine di ciascuna delle seguenti

Dettagli

2. Fra tutti i rettangoli inscritti in una circonferenza, determinare quello di area massima.

2. Fra tutti i rettangoli inscritti in una circonferenza, determinare quello di area massima. 2. Fra tutti i rettangoli inscritti in una circonferenza, determinare quello di area massima. 3. Fra tutti i cilindri a base rotonda inscritti in una sfera, determinare quello di volume massimo. 4. Dimostrare

Dettagli

PROBLEMI DI FISICA MODERNA E MECCANICA QUANTISTICA. FISICA MODERNA anno accademico

PROBLEMI DI FISICA MODERNA E MECCANICA QUANTISTICA. FISICA MODERNA anno accademico PROBLEMI DI FISICA MODERNA E MECCANICA QUANTISTICA FISICA MODERNA anno accademico 2011-2012 Si consideri un sistema che può trovarsi in uno di tre stati esclusivi 1, 2, 3, e si supponga che esso si trovi

Dettagli

Corso di Laurea in Ingegneria Informatica Prova di Analisi Matematica 1

Corso di Laurea in Ingegneria Informatica Prova di Analisi Matematica 1 Corso di Laurea in Ingegneria Informatica Prova di Analisi Matematica 1 30 Gennaio 2018 Scrivere subito nome e cognome e matricola sul foglio risposte e preparare il libretto sul banco per il controllo.

Dettagli

Secondo appello di Analisi Matematica 2 Ingegneria Elettronica. Politecnico di Milano A.A. 2018/2019. Prof. M. Bramanti

Secondo appello di Analisi Matematica 2 Ingegneria Elettronica. Politecnico di Milano A.A. 2018/2019. Prof. M. Bramanti Secondo appello di Analisi Matematica Ingegneria Elettronica. Politecnico di Milano A.A. 8/9. Prof. M. Bramanti Es. 6 7 Tot. Punti Cognome e nome in stampatello codice persona o n di matricola n d ordine

Dettagli