Esercizi sulla trasformata di Fourier di distribuzioni raccolti dai temi d esame

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Esercizi sulla trasformata di Fourier di distribuzioni raccolti dai temi d esame"

Transcript

1 Esercizi sulla trasformata di Fourier di distribuzioni raccolti dai temi d esame Esercizio Sia T > 0 e f : R R la funzione reale T -periodica la cui restrizione all intervallo [0, T ] vale f(t) := t(t t) Calcolare le derivate prima e seconda di f nel senso delle distribuzioni. Calcolare la trasformata di Fourier di f e dedurre la trasformata di Fourier di f, confrontando il risultato con quello precedentemente ottenuto. Esercizio 2 Considerate le due funzioni reali f(t) := e t e g(t) := sin t, calcolare mediante la trasformata di Fourier il loro prodotto di convoluzione f g. Esercizio 3 Per ogni T > 0, si consideri la funzione T -periodica u T (0, T ) assume i valori che nell intervallo u T (x) := e x, x (0, T ), e se ne disegni il grafico nell intervallo ( T, 2T ).. Si calcoli la derivata di u T nel senso delle distribuzioni e di conseguenza la distribuzione f T -periodica che verifica u T + u T = f. () 2. A partire dalla () si calcoli la trasformata di Fourier di u T e si deduca da questa lo sviluppo in serie di Fourier di u T in seni e coseni. Si precisi in che senso tale sviluppo converge a u T. 3. Scegliere opportunamente il valore di T per calcolare la somma della serie k= + k 2. Esercizio 4 Determinare α > 0 in modo che la funzione u α (x) := e α x risolva l equazione differenziale su R u α u α = 2δ 0. Mostrare poi, con l aiuto della trasformata di Fourier, che non vi possono essere altre soluzioni dell equazione appartenenti ad S (R) e che l unica soluzione in S (R) della corrispondente equazione omogenea è la soluzione nulla. Posto infine f(x) := log x (,) (x) esprimere la soluzione v S (R) dell equazione v (x) v(x) = f(x), x R, come un opportuno integrale esteso all intervallo (0, ). 0-

2 Esercizio 5 Sia u ε, ε > 0, la funzione definita da se x appartiene ad un intervallo [n, n + ε] per qualche n Z u ε (x) = 0 altrimenti. Calcolare la trasformata di Fourier û ε di u ε. Calcolare poi il limite, per ε 0 +, di u ε e di û ε in S (R). Esercizio 6 Sia f n } n N la successione di funzioni reali definite da se x n, x f n (x) := 0 altrimenti. Calcolare il limite puntuale f(x) := lim f n(x) n + e precisare se la convergenza di f n ad f sussiste anche in L (R), L 2 (R), L (R) e in D (R). Posta poi ˆfn la trasformata di Fourier di f n, dire se esiste in L 2 (R) il limite di ˆfn per n +. Calcolare infine lim n + ˆf n L 2 (R). Esercizio 7 Per ε > 0 sia u ε la distribuzione u ε := ( ) δ(t + ε) δ(t ε) 2 e si consideri u () ε := u ε, u (2) ε = u ε u ε u (3) ε = u ε u ε u ε,..., u (n) ε := u ε... u }} ε. n volte. Calcolare l ampiezza del supporto di u (n) ε. 2. Calcolare la trasformata di Fourier di u (n) ε. 3. Calcolare il limite in S (R) (tenendo n fissato) u (n) ε lim ε 0 ε n. 4. Calcolare il limite in S (R) (tenendo ε fissato) lim n + u(n) ε 0-2

3 Esercizio 8 Sia f(t) := sign(t) ( π t ) + ; dopo aver disegnato il grafico di f, calcolarne le prime due derivate nel senso delle distribuzioni; calcolare la trasformata di Fourier di f; dedurre infine lo sviluppo in serie di Fourier della funzione 2π-periodica che coincide con f sull intervallo ( π, π) e discuterne la convergenza. Esercizio 9 Calcolare la trasformata di Fourier della funzione f(x) := cos x. Esercizio 0 Calcolare le derivate prima e seconda (nel senso delle distribuzioni!) della funzione f definita nell esercizio precedente. Esercizio Sia f : R R la funzione continua e lineare in ogni intervallo del tipo [n, n + ], n Z, tale che f(n) := ( ) n. Calcolare la trasformata di Fourier di f. Esercizio 2 Studiare a priori la trasformata di Fourier di u(t) = H(t)e t2. Calcolare poi la derivata di u in D (R) e scrivere un equazione differenziale lineare del primo ordine soddisfatta da u nel senso delle distribuzioni in R; Dedurre da questa la derivata û della trasformata di Fourier û di u. Esercizio 3 Sia u D(R) e si consideri la distribuzione Mostrare che vale la formula H (u) := u ( v.p. x). H (u) L 2 (R) = c u L 2 (R), e determinare la costante c. Mostrare che se u è reale pari allora H (u) è reale dispari. È possibile che anche H (u) sia a supporto compatto? Esercizio 4 Siano u (R) un segnale reale e v L 2 (R) un segnale a valori complessi, le cui trasformate di Fourier û, ˆv soddisfano ˆv(ξ) = 2H(ξ)û(ξ). Mostrare che la parte reale di v coincide con u ed esprimere la parte immaginaria di v come convoluzione di u con un opportuna distribuzione. Dedurre, applicando la formula di Plancharel, che l unico segnale reale di (R) il cui spettro ha supporto contenuto in [0, + ) è il segnale nullo. Esercizio 5 Calcolare la trasformata di Fourier û n della funzione u n (t) := cos nt, per n N. Calcolare poi il limite di û n in S (R) quando n

4 Esercizio 6 Indicando con p.f. ξ 2 la distribuzione p.f. ξ 2 := d dξ ( v.p. ), ξ si calcoli la trasformata di Fourier delle seguenti funzioni della variabile t R: 2t, H( t)(t /2), H(t)te 2πεt precisando per quali valori di ε C ha senso la domanda. Finalmente, posto f ε (ξ) := (ξ iε) 2, ε > 0, si utilizzi l ultimo risultato per calcolare il limite lim ε 0 f ε (ξ) in S (R). Esercizio 7 Sia f S T una distribuzione T -periodica e sia λ C un numero complesso assegnato. Si discuta l esistenza e l unicità di soluzioni u S T dell equazione d dt u λu = f calcolandone i coefficienti di Fourier in funzione di quelli di f. Applicare il risultato al caso f (t) = (cos t) 2, f 2 (t) = δ(t k), per λ = i. k Z (*) Facoltativo Discutere la regolarità delle soluzioni trovate. Esercizio 8 Per T > 0 si consideri il pettine di Dirac δ T di passo T δ T (t) := k Z δ(t kt ).. Calcolare il limite nel senso delle distribuzioni di D (R). lim δ T T + 2. (*) Facoltativo Verificare che tale limite sussiste anche in S (R). 3. Applicare il risultato dei punti. e 2. e la trasformata di Fourier per calcolare lim ε 0 ε δ ε in S (R). 0-4

5 4. Sia ora f S (R) un segnale a decrescenza rapida e sia f ε (t) := ε k Z f(kε)δ(t kε) il segnale ottenuto campionando f a passo ε > 0. Calcolare il limite lim ε 0 εf ε in S (R). 5. Finalmente, sia g ε (t) = k Z f(kε)e (t/ε k)2. Scrivere g ε come convoluzione di f ε con una opportuna funzione h ε ; supponendo di poter scambiare l operazione di limite con quella di convoluzione calcolare il limite lim ε 0 g ε in S (R). Esercizio 9 Sia α (0, ] e si indichi con z α la determinazione principale dell elevamento a potenza in campo complesso corrispondente alla scelta dell argomento di z in ( π, π). Posto f ε (t) :=, t R, ε 0, (t + iε) α calcolare la trasformata di Fourier di f ε. Discutere poi, in funzione del parametro α, l esistenza in L loc (R), L2 loc (R) e in S (R) del limite di f ε quando ε tende a 0 da destra e calcolare tale limite quando esiste. Cosa cambia nel limite da sinistra? Esercizio 20 Per n N sia u n la funzione reale definita in R da t 2 se t n, u n (t) := n 2 se t > n.. Calcolare u n, u n, u n nel senso delle distribuzioni. 2. Calcolare il limite in D (R) di u n, al tendere di n a Calcolare la trasformata di Fourier û n di u n. 4. Calcolare il limite in S (R) di û n, al tendere di n a +. Esercizio 2 Sia u il segnale reale 4π-periodico, la cui restrizione all intervallo ] 2π, 2π[ è data da u(t) := sin t.. Calcolare u e u nel senso delle distribuzioni. 0-5

6 2. Si calcoli lo sviluppo in serie di Fourier di u, precisando in quale senso esso converge a u. Esercizio 22 Si calcoli la trasformata di Fourier della distribuzione u := n Z nδ(t n). Si determinino poi le funzioni periodiche v regolari a tratti tali che d 2 v(ξ) = û(ξ) dξ2 e si deduca la trasformata di Fourier di nel senso delle distribuzioni v 0 := n 0 n δ(t n). Si giustifichi infine la convergenza in L 2 (R) della serie di funzioni e se ne calcoli la somma. n 0 e 2πint n, Esercizio 23 Calcolare la soluzione u S (R) dell equazione integrodifferenziale u πu + u e t2 =, t R. Esercizio 24 Sia u la funzione reale costante a tratti definita da 0 se t 0, u(t) := 2 n se t (n, n + ), n = 0,, 2, 3,.... Verificare se u appartiene a L (R), calcolare la derivata di u nel senso delle distribuzioni e dedurne la trasformata di Fourier û. Verificare che ξû(ξ) è periodica e calcolarne il periodo T. Calcolare infine gli integrali + û(ξ) 2 dξ, T 0 ξ 2 û(ξ) 2 dξ. Esercizio 25 Si dicuta, al variare del parametro α R, l esistenza del limite della successione di funzioni f k (t) := k α (0,2π/k) (t) sin kt. in L (R), L 2 (R) e in S (R). 0-6

7 Esercizio 26 Sia u il segnale reale che in ciascun intervallo [n, n + [, n Z, della retta vale 2t n se n t n + /2; u ε (t) := n + se n + /2 t n +.. Dopo aver disegnato il grafico di u, calcolare le derivate distribuzionali d d2 u, u, d3 u dt dt 2 dt 3 e riconoscere che si tratta di distribuzioni periodiche. d 2. Calcolare la traformata di Fourier di u e quella di u a meno di una costante dt arbitraria. 3. Determinare poi la costante studiando il segnale v(t) := u(t) t (facoltativo ma non difficile: si può passare direttamente al punto seguente, lasciando indeterminata la costante.) 4. Detto δ T il pettine di Dirac δ T := n Z δ(t nt ), T > 0, risolvere l equazione di convoluzione nell incognita v δ v = u. 5. Determinare infine per quali T > 0 lanaloga equazione ha soluzione. δ T v = u Esercizio 27 Studiare a priori la trasformata di Fourier della funzione u ω (t) := sign(t) sin(πωt), ω > 0, πt e calcolarla. Calcolare poi il limite in S (R) dei segnali lim sign(t)sin(πωt), lim ω + πt H(t)sin(πωt). ω + πt Esercizio 28 Calcolare la trasformata di Fourier dei segnali u k (t) := δ (t n/k), v := se t < /k, k t 2 + i, w k(t) := 0 se /k t /k, n Z se t > /k. Facoltativo: calcolare il limite di u k, û k, w k, ŵ k in S (R) per k

8 Esercizio 29 Sia u la funzione 2-periodica che sull intervallo ] 2, 2[ vale t se t ; u(t) := ( t ) 2 se < t 2. Calcolare u, u, gli sviluppi in serie di Fourier di u, u, u, discutendone la convergenza, e la trasformata di Fourier di t 2 u. Esercizio 30 Determinare la distribuzione v S (R) in modo che φ v = φ(t n) φ S (R). Trovare poi quali condizioni deve soddisfare la trasformata di Fourier F (φ) in modo che φ(t n). () Determinare infine una soluzione φ di () in L (R) e una soluzione (anche espressa mediante convoluzione) in S (R). Esercizio 3 Determinare in funzione del parametro α C le soluzioni u α dell equazione differenziale u α(t) + αu α (t) = δ(t + ), discutendone l unicità. S (R) Discutere per quali valori di α e per quali soluzioni u α, u α il prodotto di convoluzione v α := u α u α risulta ben definito, e mostrare che in tal caso v α soddisfa l equazione differenziale v α(t) α 2 v α (t) = δ(t + 2). Esercizio 32 Calcolare la trasformata di Fourier delle distribuzioni v.p. sin(t π/4) sin t, v.p. t t π/4 Esercizio 33 Per quali valori complessi di α C la funzione e παt2 è trasformabile secondo Fourier? Posto u(t) := e πit2, calcolare u (t) e scrivere un equazione differenziale del primo ordine soddisfatta da u. Determinare la trasformata di Fourier di u a meno di una costante moltiplicativa c. Sfruttando i legami tra trasformata e trasformata coniugata, mostrare che c =. Calcolare c. 0-8

9 Esercizio 34 Calcolare la trasformata di Fourier delle distribuzioni 2 n δ(t n), ( ) n δ(t n), rect(t 2n). Per N fissato, sia w := e 2πi/N. Calcolare la trasformata di Fourier di w n δ(t n). Esercizio 35 Calcolare le trasformate di Fourier di u(t) := sin 2 (t ), v(t) := (t 2 ) rect(t). Esercizio 36 Calcolare la trasformata di Fourier della funzione se t 2, u(t) := t se 2 t 2, se t > 2, discutendo in quale senso essa debba essere intesa. Esercizio 37 Calcolare, giustificando il procedimento, la trasformata di Fourier della distribuzione u(t) := cos(2nπ/3)e 2πint Mostrare poi che u è un segnale discreto della forma u(t) = u n δ(t n/t ) determinando il valore di T e dei coefficienti u n. Esercizio 38 Calcolare le trasformate di Fourier di u(t) := e iπ(t2 +t+), v(t) := v.p. sin πt iπ 2 t 2. Esercizio 39 Calcolare la trasformata di Fourier di u(t) := v.p. 0-9 cos πt iπ(t ).

10 Esercizio 40 Calcolare la derivata distribuzionale e lo sviluppo in serie di Fourier della funzione v(t) := log(e iπt ) dove log indica il ramo principale della funzione logaritmo in campo complesso. Esercizio 4 Determinare quali condizioni devono soddisfare û e α R perchè l equazione di convoluzione u sin(πt) = sin(απt) abbia una soluzione u L (R). Esercizio 42 Calcolare la trasformata di Fourier della funzione v(t) := sin(2πt) sin(4πt) sin(6πt). Esercizio 43 Calcolare la trasformata di Fourier della funzione u(t) := 2 eit. Esercizio 44 Determinare tutte le soluzioni u S (R) dell equazione rect(t) u = 0. Esercizio 45 Calcolare la trasformata di Fourier della funzione u(t) := 3 e 2πit. 0-0

Esercizi sulla convoluzione e la trasformata di Laplace di distribuzioni raccolti dai temi d esame

Esercizi sulla convoluzione e la trasformata di Laplace di distribuzioni raccolti dai temi d esame Esercizi sulla convoluzione e la trasformata di Laplace di distribuzioni raccolti dai temi d esame Esercizio 1 Sia U(p) la funzione, definita in un sottoinsieme di C, U(p) := log p2 + a 2 p 2, dove si

Dettagli

Facoltà di Scienze MM.FF.NN. Corso di Laurea in Matematica - A.A Prova scritta di Analisi Matematica II del

Facoltà di Scienze MM.FF.NN. Corso di Laurea in Matematica - A.A Prova scritta di Analisi Matematica II del Prova scritta di nalisi Matematica II del 12-06-2001. C1 1) Studiare la convergenza semplice, uniforme e totale della serie di funzioni seguente ( 1) [ n 2 ] n x 1 + n 2 x. n=0 2) Data la funzione (x 2

Dettagli

Analisi Matematica 3/Analisi 4 - SOLUZIONI (20/01/2016)

Analisi Matematica 3/Analisi 4 - SOLUZIONI (20/01/2016) Corso di Laurea in Matematica Docente: Claudia Anedda Analisi Matematica 3/Analisi 4 - SOLUZIONI (//6) ) i) Dopo averla classificata, risolvere l equazione differenziale tẋ x = t cos(t), t >. ii) Scrivere

Dettagli

Esercitazione sulle serie di Fourier

Esercitazione sulle serie di Fourier Esercitazione sulle serie di Fourier 3 novembre. Calcolo dei coefficienti di Fourier e di somme di serie speciali Esercizio. Si consideri il segnale u : R R, -periodico, definito nell intervallo, π, da

Dettagli

ESERCIZI DI ANALISI MATEMATICA II. sin(tv) v. f(v) dv = (1 + t) (e 1/t + 1)

ESERCIZI DI ANALISI MATEMATICA II. sin(tv) v. f(v) dv = (1 + t) (e 1/t + 1) ESERCIZI DI ANALISI MATEMATICA II Equazioni differenziali ED 1 Stabilire se l equazione integrale f(t) 1/2 0 sin(tv) v f(v) dv = (1 + t) (e 1/t + 1) ammette una soluzione nello spazio C([0, 1/2]). (Suggerimento:

Dettagli

NUMERI COMPLESSI. = 2 + 5i A3) Calcolare in forma trigonometrica le soluzioni complesse dell equazione iz 4 9 = 0

NUMERI COMPLESSI. = 2 + 5i A3) Calcolare in forma trigonometrica le soluzioni complesse dell equazione iz 4 9 = 0 NUMERI COMPLESSI A) Calcolare in forma cartesiana ( + i) 3 = A) ( + 5i) (3 + 4i) Calcolare in forma cartesiana = + 5i A3) Calcolare in forma trigonometrica le soluzioni complesse dell equazione iz 4 9

Dettagli

2) Scrivere la soluzione generale del seguente sistema di equazioni differenziali lineari del primo ordine. y 1 = 2y 1 5y 3 y 2

2) Scrivere la soluzione generale del seguente sistema di equazioni differenziali lineari del primo ordine. y 1 = 2y 1 5y 3 y 2 Corso di Laurea in Matematica Analisi Matematica 3/Analisi 4 - SOLUZIONI (8/6/5) Docente: Claudia Anedda ) Trovare il limite puntuale della successione di funzioni f k (t) = cos(kt), t R. Stabilire se

Dettagli

COMPLEMENTI DI ANALISI MATEMATICA DI BASE. Prova scritta del 26 gennaio 2005

COMPLEMENTI DI ANALISI MATEMATICA DI BASE. Prova scritta del 26 gennaio 2005 Prova scritta del 26 gennaio 2005 Esercizio 1. Posto B = x R 2 : x 2 2}, sia f n } una successione di funzioni (misurabili e) integrabili in B tali che f n f q.o. in B e, per ogni n N, f n (x) 2 x 3 per

Dettagli

Analisi Matematica 3, a.a Scritto del quinto appello, 11 settembre 2019 Testi 1

Analisi Matematica 3, a.a Scritto del quinto appello, 11 settembre 2019 Testi 1 Scritto del quinto appello, 11 settembre 019 Testi 1 1. a) Dato u L 1 R), sia vx) := u x); esprimere ˆv in termini di û. b) Caratterizzare le funzioni u L 1 R) tali che û è una funzione dispari a valori

Dettagli

9/11/2010 (I prova in itinere): solo test a risposta multipla

9/11/2010 (I prova in itinere): solo test a risposta multipla 9/11/2010 (I prova in itinere): solo test a risposta multipla 23/12/2010 (II prova in itinere, II parte) Esercizio 1. Posto Σ = {(x, y, z) R 3 x 2 + y 2 + z 2 = 4, z 1}, si chiede di calcolare il flusso

Dettagli

Analisi Matematica 3

Analisi Matematica 3 Testi delle prove d esame del corso di Analisi Matematica 3 presso la Facoltà di Ingegneria Bruno Rubino L Aquila, 2006 Indice 1 Curve 3 2 Superfici 4 3 Teorema di Gauss-Green e formula dell area 4 4 Campi

Dettagli

determinare una soluzione y(t) dell equazione completa e, quindi dedurne tutte le y(t) soluzioni dell equazione.

determinare una soluzione y(t) dell equazione completa e, quindi dedurne tutte le y(t) soluzioni dell equazione. ANALISI VETTORIALE Soluzione esercizi 4 febbraio 2011 10.1. Esercizio. Assegnata l equazione lineare omogenea di primo ordine y + a y = 0 determinare le soluzioni di tale equazione in corrispondenza ai

Dettagli

Compito di Analisi Matematica III. Compito A

Compito di Analisi Matematica III. Compito A c.d.l. Ingegneria elettronica e c.d.l. Ingegneria Informatica (M Z) 7 gennaio 2008. Determinare i residui nei punti singolari e nel punto all infinito della funzione z 2 sen z + 2. Determinare la trasformata

Dettagli

TEMI D ESAME DI ANALISI MATEMATICA 1. x 1 + x y

TEMI D ESAME DI ANALISI MATEMATICA 1. x 1 + x y TEMI D ESAME DI ANALISI MATEMATICA GRAZIANO CRASTA E LUIGI ORSINA, A.A. 203/4. SPAZI METRICI, TOPOLOGIA, COMPLETEZZA Esercizio.. Dimostrare che la funzione d(, y) := + y + y, y R, è una distanza su R.

Dettagli

Analisi Matematica 2. Michele Campiti. Prove scritte di. Ingegneria Industriale a.a

Analisi Matematica 2. Michele Campiti. Prove scritte di. Ingegneria Industriale a.a Michele Campiti Prove scritte di Analisi Matematica 2 Ingegneria Industriale a.a. 20 202 Grafico della funzione f(x, y) := sin(2x 2 y) cos(x 2y 2 ) in [ π/2, π/2] 2 Raccolta delle tracce di Analisi Matematica

Dettagli

ISTITUZIONI DI ANALISI SUPERIORE B Prova scritta del 17/3/2003

ISTITUZIONI DI ANALISI SUPERIORE B Prova scritta del 17/3/2003 ISTITUZIONI DI ANALISI SUPEIOE B Prova scritta del 7/3/3 Sia f : C la funzione così definita: { se t

Dettagli

Analisi I Ingegneria Chimica e Aerospaziale 1 o compitino

Analisi I Ingegneria Chimica e Aerospaziale 1 o compitino 1 o compitino 1 febbraio 215 1 Si consideri la funzione f : R R definita da { f) = 2 log se se = a) Si dimostri che f è continua e derivabile su tutto R b) Si dica se f ammette derivata seconda in ogni

Dettagli

COGNOME... NOME... Matricola... Corso Prof... Esame di ANALISI MATEMATICA II - 27 Gennaio cos x

COGNOME... NOME... Matricola... Corso Prof... Esame di ANALISI MATEMATICA II - 27 Gennaio cos x COGNOME... NOME... Matricola... Corso Prof.... Esame di ANALISI MATEMATICA II - 27 Gennaio 25 A ESERCIZIO. 4 punti) Verificare che la serie 7 2 cos x ) n è convergente per ogni x R, e calcolarne la somma.

Dettagli

Esame di Analisi Funzionale e Trasformate Seconda prova in itinere. 12 Luglio 2017 A.A. 2016/2017. Prof. M. Bramanti

Esame di Analisi Funzionale e Trasformate Seconda prova in itinere. 12 Luglio 2017 A.A. 2016/2017. Prof. M. Bramanti Esame di Analisi Funzionale e Trasformate Seconda prova in itinere. Luglio 07 A.A. 06/07. Prof. M. Bramanti Cognome: Nome N matr. o cod. persona: Dom Dom Dom 3 Es Es Es 3 Tot. Punti Domande di teoria rispondere

Dettagli

Analisi Reale e Complessa - a.a. 2008/2009

Analisi Reale e Complessa - a.a. 2008/2009 Terzo appello Esercizio Analisi Reale e Complessa - a.a. 8/9 Sia (a) Si provi che f L (R); f(x) eix x i. (b) Si calcoli con metodi di variabile complessa la trasformata di Fourier di f. (a) Si osservi

Dettagli

COMPLEMENTI DI ANALISI MATEMATICA II. Prova scritta del 20 gennaio 2014

COMPLEMENTI DI ANALISI MATEMATICA II. Prova scritta del 20 gennaio 2014 Prova scritta del 2 gennaio 214 Studiare la convergenza puntuale e uniforme della serie di potenze n=1 n x 2n 2n + e n. Valutare poi la misurabilità e l integrabilità secondo Lebesgue della funzione somma

Dettagli

Complementi di Analisi Matematica. Foglio di esercizi n.8 3/5/2019

Complementi di Analisi Matematica. Foglio di esercizi n.8 3/5/2019 Complementi di Analisi Matematica Foglio di esercizi n8 3/5/2019 Esercizi su successioni e serie di funzioni Esercizio 1 Definita g k (x) = e kx2, provare che g k : R R converge puntualmente alla funzione

Dettagli

Analisi Matematica II 6 aprile sin[π(x 2 + y 2 /5)] x 2 + y2

Analisi Matematica II 6 aprile sin[π(x 2 + y 2 /5)] x 2 + y2 Analisi Matematica II 6 aprile 07 Cognome: Nome: Matricola:. (0 punti) Si consideri la seguente corrispondenza tra R ed R f(x, y) = Determinare l insieme di definizione A R di f e sin[π(x + y /5)] x +

Dettagli

METODI MATEMATICI. SECONDA PROVA IN ITINERE del 27 gennaio 2003

METODI MATEMATICI. SECONDA PROVA IN ITINERE del 27 gennaio 2003 METODI MATEMATICI SECONDA PROVA IN ITINERE del 27 gennaio 23 COGNOME e NOME NUMERO di MATRICOLA ) Si consideri la funzione f : R R definita da (t + 3) 2 χ [ 3, ] + χ ],[ + (t 3) 2 χ [,3]. Studiare a priori

Dettagli

Esame di Analisi Funzionale e Trasformate Seconda prova in itinere. Giugno 2019 A.A. 2018/2019. Prof. M. Bramanti Tema A

Esame di Analisi Funzionale e Trasformate Seconda prova in itinere. Giugno 2019 A.A. 2018/2019. Prof. M. Bramanti Tema A Esame di Analisi Funzionale e Trasformate Seconda prova in itinere. Giugno 9 A.A. 8/9. Prof. M. Bramanti Tema A Cognome: Nome N matr. o cod. persona: Dom Dom Dom Es Es Es Tot. Punti Domande di teoria rispondere

Dettagli

ANALISI VETTORIALE COMPITO IN CLASSE DEL 8/11/2013

ANALISI VETTORIALE COMPITO IN CLASSE DEL 8/11/2013 ANALISI VETTORIALE COMPITO IN CLASSE DEL 8//3 Premessa (Cfr. gli Appunti di Analisi Vettoriale / del Prof. Troianiello) Nello studio degli integrali impropri il primo approccio all utilizzo del criterio

Dettagli

Esercizio III Calcolare la trasformata di Fourier della funzione. Esercizio IV Sviluppare la funzione. Tema d esame. Giugno 2004

Esercizio III Calcolare la trasformata di Fourier della funzione. Esercizio IV Sviluppare la funzione. Tema d esame. Giugno 2004 Tema d esame. Giugno 24 Esercizio I Calcolare il seguente integrale col metodo dei residui 2π dφ < a < () + a 2 2a cos φ Esercizio II Trovare la soluzione dell equazione di Laplace nella regione del piano

Dettagli

UNIVERSITÀ DEGLI STUDI DI PERUGIA Corso di Analisi Matematica III - 9 CFU C.d.S. Triennale in Matematica A.A. 2016/2017 I Esercitazione 12 Aprile 2017

UNIVERSITÀ DEGLI STUDI DI PERUGIA Corso di Analisi Matematica III - 9 CFU C.d.S. Triennale in Matematica A.A. 2016/2017 I Esercitazione 12 Aprile 2017 C.d.S. Triennale in Matematica A.A. 2016/2017 I Esercitazione 12 Aprile 2017 Esercizio 1. Data la successione di funzioni f n t = en1+t4 + e nt2 n 3 + e, t R, n1+t2 a determinare l insieme di convergenza

Dettagli

Teoria della misura Esercizi. 1. Teoremi di convergenza sotto il segno di integrale. n 1 + n 2 x 2. f n (x) =

Teoria della misura Esercizi. 1. Teoremi di convergenza sotto il segno di integrale. n 1 + n 2 x 2. f n (x) = Teoria della misura 215-215 Esercizi 1. Teoremi di convergenza sotto il segno di integrale Esercizio 1. Calcolare il Per ogni intero positivo n sia f n : R + R la funzione definita da n 1 + n 2 x 2. lim

Dettagli

Analisi Matematica 1 Foglio 1 Lunedì 3 ottobre. f(x) = log x 2 6x + 5.

Analisi Matematica 1 Foglio 1 Lunedì 3 ottobre. f(x) = log x 2 6x + 5. Analisi Matematica Foglio Lunedì 3 ottobre Esercizio. Trovare il dominio naturale della funzione f data da ( ) f(x) = log x 2 6x + 5. Esercizio 2. Dire quali tra le seguenti funzioni sono iniettive :.

Dettagli

Esame di Analisi Funzionale e Trasformate Primo appello. Luglio 2019 A.A. 2018/2019. Prof. M. Bramanti

Esame di Analisi Funzionale e Trasformate Primo appello. Luglio 2019 A.A. 2018/2019. Prof. M. Bramanti Esame di Analisi Funzionale e Trasformate Primo appello. Luglio 19 A.A. 18/19. Prof. M. Bramanti Cognome: Nome N matr. o cod. persona: Dom 1 Dom Dom 3 Es 1 Es Es 3 Tot. Punti Domande di teoria rispondere

Dettagli

ANALISI MATEMATICA 3. esercizi assegnati per la prova scritta del 31 gennaio 2011

ANALISI MATEMATICA 3. esercizi assegnati per la prova scritta del 31 gennaio 2011 esercizi assegnati per la prova scritta del 31 gennaio 2011 Esercizio 1. Per x > 0 e n N si ponga f n (x) = ln ( n 5 x ) a) Provare l integrabilità delle funzioni f n in (0, + ). 3 + n 4 x 2. b) Studiare

Dettagli

Tutorato di Complementi di Analisi Matematica e Statistica Parte di Analisi 6 e 10 aprile 2017

Tutorato di Complementi di Analisi Matematica e Statistica Parte di Analisi 6 e 10 aprile 2017 Tutorato di Complementi di Analisi Matematica e Statistica Parte di Analisi 6 e 10 aprile 2017 Esercizi: serie di potenze e serie di Taylor 1 Date le serie di potenze a.) n=2 ln(n) n 3 (x 5)n b.) n=2 ln(n)

Dettagli

Analisi Matematica 2 - A

Analisi Matematica 2 - A Analisi Matematica 2 - A Soluzione Appello scritto del 29 Gennaio 2013 Esercizio 1 (10 punti Si consideri il Problema di Cauchy { y = y + y(0 = 0, dove y è la funzione incognita ed è la sua variabile.

Dettagli

Matematica II - ING ELT Appello del 27/7/2009. Nome e cognome:... Recupero I parte Recupero II parte Scritto completo. { x log y. se y > 0 f(x, y) :=

Matematica II - ING ELT Appello del 27/7/2009. Nome e cognome:... Recupero I parte Recupero II parte Scritto completo. { x log y. se y > 0 f(x, y) := Matematica II - ING ELT Appello del 27/7/2009 Nome e cognome:...... Scegliere una delle opzioni sottostanti Matricola:... Recupero I parte Recupero II parte Scritto completo Esercizio 1 Si consideri la

Dettagli

Facoltà di Scienze MM.FF.NN. Corso di Laurea in Matematica - A.A Prova scritta di Analisi Matematica II del c.1.

Facoltà di Scienze MM.FF.NN. Corso di Laurea in Matematica - A.A Prova scritta di Analisi Matematica II del c.1. Prova scritta di Analisi Matematica II del 14-07-1999 - c.1 1) Sia (d n ) una successione di numeri reali tali che inf d n > 0. Studiare il carattere della serie + n=1 al variare del parametro reale positivo

Dettagli

ANALISI MATEMATICA I, Compito scritto del 5/07/2016 Corso di Laurea in Matematica. COGNOME e NOME... MATR T

ANALISI MATEMATICA I, Compito scritto del 5/07/2016 Corso di Laurea in Matematica. COGNOME e NOME... MATR T ANALISI MATEMATICA I, Compito scritto del 5/7/6 Corso di Laurea in Matematica COGNOME e NOME... MATR... 3 4 T Nelle risposte devono essere riportati anche i conti principali e le motivazioni principali.

Dettagli

Analisi Matematica I

Analisi Matematica I Versione: 4 novembre 7 Università di Pisa Corso di laurea in Ingegneria Gestionale Testi e soluzioni degli scritti d esame di Analisi Matematica I a.a. 6-7 Giovanni Alberti Giovanni Alberti Dipartimento

Dettagli

Corso di Laurea in Ingegneria Edile Prova scritta dell esame di Analisi Matematica I (M-Z).C

Corso di Laurea in Ingegneria Edile Prova scritta dell esame di Analisi Matematica I (M-Z).C Analisi Matematica I (M-Z).C1 08-0-1997 1) Data la funzione h(x) = x log(x + 1 + x + x + ) + log(1 + ) determinarne il dominio D. Provare poi che h(x) > 0 x D ]0, + [, h(x) = 0 x = 0. ) Utilizzando i risultati

Dettagli

Analisi Matematica 2 Ingegneria Gestionale Docenti: B. Rubino e R. Sampalmieri L Aquila, 21 marzo 2005

Analisi Matematica 2 Ingegneria Gestionale Docenti: B. Rubino e R. Sampalmieri L Aquila, 21 marzo 2005 Analisi Matematica 2 Ingegneria Gestionale Docenti: B. Rubino e R. Sampalmieri L Aquila, 21 marzo 2005 Prova orale il: Docente: Determinare, se esistono, il massimo ed il minimo assoluto della funzione

Dettagli

Facoltà di Scienze MM.FF.NN. Corso di Laurea in Matematica - A.A Prova scritta di Analisi Matematica I del c.

Facoltà di Scienze MM.FF.NN. Corso di Laurea in Matematica - A.A Prova scritta di Analisi Matematica I del c. Prova scritta di Analisi Matematica I del 22-5-2 - c. ) Provare che 3 3è irrazionale. 2) Provare che il grafico di f(x) =(x ) + 2 sin[(x ) ]:R \{} R ammette la retta di equazione x = come asintoto verticale.

Dettagli

6.3 Equazioni lineari del secondo ordine

6.3 Equazioni lineari del secondo ordine si supponga di conoscerne una soluzione ψ(x). Si verifichi che con la sostituzione y(x) = ψ(x) + 1, l equazione diventa lineare nell incognita v(x) v(x). Utilizzando questo metodo, si risolva l equazione

Dettagli

Compiti d Esame A.A. 2005/2006

Compiti d Esame A.A. 2005/2006 Compiti d Esame A.A. 25/26 UNIVERSITÀ DEGLI STUDI DI PERUGIA A.A. 25/26 I Esercitazione 21 Aprile 26 { y = xy ln(xy) si chiede di dimostrare che: y(1) = 1, (a) ammette un unica soluzione massimale y =

Dettagli

Esercizi di Complementi di Analisi Matematica II Pisa, 3 agosto 2012

Esercizi di Complementi di Analisi Matematica II Pisa, 3 agosto 2012 Scuola Superiore di Studi Universitari e di Perfezionamento S. Anna Esercizi di Complementi di Analisi Matematica II Pisa, 3 agosto 212 1. Dimostrare che esiste un unica funzione continua f : R R tale

Dettagli

y = x y(0) = 0.

y = x y(0) = 0. A.A. 2006/2007 I Esercitazione 19 aprile 2007 Esercizio 1. Dato il problema di Cauch = x 2 2 2 + 1 (0) = 0, dimostrare che: (a) ammette un unica soluzione massimale ; (b) tale soluzione è definita globalmente;

Dettagli

EQUAZIONI DIFFERENZIALI Esercizi con soluzione

EQUAZIONI DIFFERENZIALI Esercizi con soluzione EQUAZIONI DIFFERENZIALI Esercizi con soluzione 1. Calcolare l integrale generale delle seguenti equazioni differenziali lineari del primo ordine: (a) y 2y = 1 (b) y + y = e x (c) y 2y = x 2 + x (d) 3y

Dettagli

Matematica II prof. C.Mascia

Matematica II prof. C.Mascia Corso di laurea in CHIMICA INDUSTRIALE Sapienza, Università di Roma Matematica II prof CMascia alcuni esercizi, parte, 7 marzo 25 Indice Testi degli esercizi 2 Svolgimento degli esercizi 4 Testi degli

Dettagli

Compito di Analisi Matematica, Seconda parte, COGNOME: NOME: MATR.:

Compito di Analisi Matematica, Seconda parte, COGNOME: NOME: MATR.: Compito di Analisi Matematica, Seconda parte, gennaio 9 Tema X COGNOME: NOME: MATR.: Esercizio. ( Determinare al variare di β R la soluzione di y (x + y (x + y(x = e x + x tale che y( = β = y (. ( Al variare

Dettagli

Complementi di Analisi Matematica. Foglio di esercizi n.11 16/05/2017 (Aggiornamento del 22/5/2017)

Complementi di Analisi Matematica. Foglio di esercizi n.11 16/05/2017 (Aggiornamento del 22/5/2017) Complementi di Analisi Matematica Foglio di esercizi n11 16/05/2017 (Aggiornamento del 22/5/2017) Esercizi su serie di funzioni Esercizio 1 Definita g k (x) = e kx2, provare che g k : R R converge puntualmente

Dettagli

Prove d'esame a.a

Prove d'esame a.a Prove d'esame a.a. 010011 Andrea Corli 7 dicembre 011 Sono qui raccolti i testi delle prove d'esame assegnati nell'a.a. 01011, relativi al Corso di Complementi di Analisi Matematica, Laurea Magistrale

Dettagli

Ingegneria Elettronica Prova scritta di Analisi Matematica II del giorno ( 3) n x n n + 1

Ingegneria Elettronica Prova scritta di Analisi Matematica II del giorno ( 3) n x n n + 1 Prova scritta di Analisi Matematica II del giorno 31-01-2007 1) Studiare la serie di potenze ( 3) n x n n + 1 2) Determinare i punti di estremo relativo ed assoluto della funzione seguente f(x, y) = x

Dettagli

, α N, quando f è una delle seguenti

, α N, quando f è una delle seguenti . Determinare lim 0 + α f, α R, e lim 0 α f funzioni: f = ln 8 cos4+, f = ln f = sin sine., α N, quando f è una delle seguenti, f = ln ln, sin sin. Calcolare la derivata della funzione f definita da f

Dettagli

TEMI D ESAME DI ANALISI MATEMATICA I Corso di laurea in Fisica a.a.2001/02

TEMI D ESAME DI ANALISI MATEMATICA I Corso di laurea in Fisica a.a.2001/02 I seguenti quesiti ed il relativo svolgimento sono coperti dal diritto d autore, pertanto essi non possono essere sfruttati a fini commerciali o di pubblicazione editoriale senza autorizzazione esplicita

Dettagli

ANALISI MATEMATICA I MODULO, I e II MODULO, II MODULO CORSO DI LAUREA IN INFORMATICA

ANALISI MATEMATICA I MODULO, I e II MODULO, II MODULO CORSO DI LAUREA IN INFORMATICA ANALISI MATEMATICA I MODULO, I e II MODULO, II MODULO CORSO DI LAUREA IN INFORMATICA Prova scritta del 2 luglio 2004: soluzioni Data la funzione f() = 3 2 2 arctan + 0, si chiede di: a) calcolare il dominio

Dettagli

Esonero di Analisi Matematica II (A)

Esonero di Analisi Matematica II (A) Esonero di Analisi Matematica II (A) Ingegneria Edile, 8 aprile 3. Studiare la convergenza del seguente integrale improprio: + x log 3 x (x ) 3 dx.. Studiare la convergenza puntuale ed uniforme della seguente

Dettagli

UNIVERSITÀ DEGLI STUDI DI PERUGIA Facoltà di Scienze MM. FF. e NN.

UNIVERSITÀ DEGLI STUDI DI PERUGIA Facoltà di Scienze MM. FF. e NN. A.A. 213/214 2 Novembre 213 I esercitazione Esercizio 1. Dato il problema di Cauchy ( e y 2 2 1 ) arctan 3y 5 y = 2 sin (1) 2 x 2, 1 + x 2 y() = 1, (b) provare che la soluzione y di (3) è definita in tutto

Dettagli

METODI MATEMATICI PER L INGEGNERIA - A.A Primo appello del 9/6/2010. e 2ix dx = e ix 2 dx = t e it dt = [ it e it e it ] π/2

METODI MATEMATICI PER L INGEGNERIA - A.A Primo appello del 9/6/2010. e 2ix dx = e ix 2 dx = t e it dt = [ it e it e it ] π/2 METODI MATEMATICI PER L INGEGNERIA - A.A. 29- Primo appello del 9/6/2 Risolvere i seguenti esercizi, spiegando il procedimento usato. Calcolare la proiezione in L 2 π 2, π 2 di xt = t sul sottospazio generato

Dettagli

Esercizi. Misti iniziali. Più variabili. 1. Data la funzione. F (x) = x3 3 + x e t2 dt. se ne studino massimi, minimi, flessi, limiti a ±.

Esercizi. Misti iniziali. Più variabili. 1. Data la funzione. F (x) = x3 3 + x e t2 dt. se ne studino massimi, minimi, flessi, limiti a ±. Esercizi Misti iniziali. Data la funzione se ne studino massimi, minimi, flessi, iti a ±. 2. Provare che Più variabili F x) = 3. Calcolare, se esistono, i seguenti iti a) b) c) d) x,y),) x 2 + y 2 2 x,y),)

Dettagli

(4 5) n. n +7 n +2 (1 3 )n, 8 n 6 n, X 1. (n!) 2. ln n. (15) n 3 n3, 4 n!. n 2 (1 + 1 n )n,

(4 5) n. n +7 n +2 (1 3 )n, 8 n 6 n, X 1. (n!) 2. ln n. (15) n 3 n3, 4 n!. n 2 (1 + 1 n )n, CORSO di LAUREA IN INGEGNERIA BIOMEDICA, ELETTRICA ELETTRONICA, ENERGETICA ed INFORMATICA ESERCIZI DI ANALISI MATEMATICA B - FOGLIO ) Discutere il carattere della serie al variare di 2 R. (4 5) n 2) Determinare

Dettagli

Compito di Analisi Matematica 1 per Ingegneria Elettronica a delle Telecomunicazioni COGNOME: NOME: MATR.: 1. x n

Compito di Analisi Matematica 1 per Ingegneria Elettronica a delle Telecomunicazioni COGNOME: NOME: MATR.: 1. x n Compito di Analisi Matematica 1 per Ingegneria Elettronica a delle Telecomunicazioni 17 gennaio 2017 COGNOME: NOME: MATR.: Esercizio 1. Sia f : R R definita da f(x) = 1 4 x x + 1 2. a) Disegnare grafico

Dettagli

x = t y = t z = t 3 1 A = B = 1 2

x = t y = t z = t 3 1 A = B = 1 2 11/1/05 Teoria: Enunciare e discutere il teorema di Lagrange. Esercizio 1. Determinare l equazione cartesiana del piano passante per P 0 = (1,, 1) e contenente i vettori u = (,, ) e v = (1, 5, 4). Risposta

Dettagli

Matematica - Prova d esame (09/09/2004)

Matematica - Prova d esame (09/09/2004) Matematica - Prova d esame (9/9/) Università di Verona - Laurea in Biotecnologie AI - A.A. /. Disegnare sul piano di Gauss i numeri z = i, w = i e z iw. Scrivere la forma trigonometrica di w e calcolare

Dettagli

ANALISI C & Complementi di Analisi Matematica di Base. Prova scritta del 23 gennaio 2007

ANALISI C & Complementi di Analisi Matematica di Base. Prova scritta del 23 gennaio 2007 Prova scritta del 23 gennaio 2007 Esercizio 1. Sia f : R R una funzione misurabile e non negativa; si consideri la successione di funzioni f n (x) = max3f(x) 2n, 0}, x R, n N. Provare che se f è integrabile

Dettagli

Reti nel dominio delle frequenze. Lezione 10 2

Reti nel dominio delle frequenze. Lezione 10 2 Lezione 10 1 Reti nel dominio delle frequenze Lezione 10 2 Introduzione Lezione 10 3 Cosa c è nell Unità 3 In questa sezione si affronteranno Introduzione all Unità Trasformate di Laplace Reti nel dominio

Dettagli

COMPLEMENTI DI ANALISI MATEMATICA II. Prova scritta del 20 gennaio 2014

COMPLEMENTI DI ANALISI MATEMATICA II. Prova scritta del 20 gennaio 2014 Prova scritta del 20 gennaio 2014 Studiare la convergenza puntuale e uniforme della serie di potenze n x 2n 2n + e n. Valutare poi la misurabilità e l integrabilità secondo Lebesgue della funzione somma

Dettagli

Scritto d esame di Analisi Matematica

Scritto d esame di Analisi Matematica 116 Prove d Esame di Analisi Matematica Versione 2006 Pisa, 15 Gennaio 2000 x 0 sin x 4 x 4 (arctan x x) 4. 2. eterminare, al variare del parametro λ R, il numero di soluzioni dell equazione 2x 2 = λe

Dettagli

Esame di Analisi Funzionale e Trasformate Prima prova in itinere. Aprile 2018 A.A. 2017/2018. Prof. M. Bramanti Tema A

Esame di Analisi Funzionale e Trasformate Prima prova in itinere. Aprile 2018 A.A. 2017/2018. Prof. M. Bramanti Tema A Esame di Analisi Funzionale e Trasformate Prima prova in itinere. Aprile 018 A.A. 017/018. Prof. M. Bramanti Tema A Cognome: Nome N matr. o cod. persona: Dom 1 Dom Dom 3 Es 1 Es Es 3 Tot. Punti Domande

Dettagli

Equazioni differenziali

Equazioni differenziali Equazioni differenziali Hynek Kovarik Università di Brescia Analisi Matematica 2 Hynek Kovarik (Università di Brescia) Equazioni differenziali Analisi Matematica 2 1 / 42 Equazioni differenziali Un equazione

Dettagli

ANALISI MATEMATICA 4. Prova scritta del 24 gennaio 2013

ANALISI MATEMATICA 4. Prova scritta del 24 gennaio 2013 Prova scritta del 24 gennaio 2013 Esercizio 1. Sia Ω R 3 un insieme misurabile secondo Lebesgue e di misura finita. Sia {f n } n N una successione di funzioni f n : Ω R misurabili e tali che 1) f n (x)

Dettagli

Analisi Matematica III

Analisi Matematica III Università di Pisa - Corso di Laurea in Ingegneria Civile dell ambiente e territorio Analisi Matematica III Pisa, 1 giugno 4 (Cognome (Nome (Numero di matricola Esercizio 1 Si consideri la successione

Dettagli

ANALISI MATEMATICA 3 A.A ESERCIZI parte 1

ANALISI MATEMATICA 3 A.A ESERCIZI parte 1 ANALISI MATEMATICA 3 A.A. 2004-2005 ESERCIZI parte November 22, 2004 Funzioni Reali Positive ESERCIZIO. - Stabilire se le seguenti funzioni razionali sono RP oppure no. F (s) = s4 + 0s 2 + 3 s 3 2 (s)

Dettagli

(1) Per ciascuno dei seguenti spazi dire se è o meno uno spazio vettoriale (spiegare)

(1) Per ciascuno dei seguenti spazi dire se è o meno uno spazio vettoriale (spiegare) 1 Spazi vettoriali (1) Per ciascuno dei seguenti spazi dire se è o meno uno spazio vettoriale (spiegare) (a) R 5 (b) [0, ) (c) x R 2 : x 1 + 2x 2 = 0} (d) x R 2 : x 2 1 + 2x 2 = 0} (e) x R 2 : x 1 > x

Dettagli

Soluzione dei problemi assegnati

Soluzione dei problemi assegnati ANALISI MATEMATICA 3 Soluzione dei problemi assegnati anno accademico 2018/19 prof. Antonio Greco http://people.unica.it/antoniogreco Dipartimento di Matematica e Informatica Università di Cagliari 23-5-2019

Dettagli

Analisi Matematica I per Ingegneria Gestionale, a.a Scritto del quarto appello, 12 giugno 2017 Testi 1. n a + n 2a n 4 log(1 + 1/n 2 )

Analisi Matematica I per Ingegneria Gestionale, a.a Scritto del quarto appello, 12 giugno 2017 Testi 1. n a + n 2a n 4 log(1 + 1/n 2 ) Scritto del quarto appello, giugno 07 Testi Prima parte, gruppo. cartesiane: a) (, ); b) (0, ); c) (, 3). + sin(e ); b) lim log(); c) lim 0 + + sin(/ ). 3. Scrivere lo sviluppo di Talor di ordine 6 (in

Dettagli

Esercizi 2: Curve dello spazio Soluzioni

Esercizi 2: Curve dello spazio Soluzioni Esercizi 2: Curve dello spazio Soluzioni. Esercizio Si consideri la curva (elica circolare): a α(t) = a sin t, t R, bt dove a >. a) Calcolare curvatura e torsione di α nel generico punto t. b) Determinare

Dettagli

ANALISI MATEMATICA 4. Prova scritta del 24 gennaio 2013

ANALISI MATEMATICA 4. Prova scritta del 24 gennaio 2013 Prova scritta del 24 gennaio 2013 Esercizio 1. Sia Ω R 3 un insieme misurabile secondo Lebesgue e di misura finita. Sia {f n } n N una successione di funzioni f n : Ω R misurabili e tali che 1) f n (x)

Dettagli

PROVE SCRITTE DI ANALISI MATEMATICA II (V.O.), ANNO 2002

PROVE SCRITTE DI ANALISI MATEMATICA II (V.O.), ANNO 2002 PROVE SCRITTE DI ANALISI MATEMATICA II (V.O.), ANNO 22 Prova scritta del 1/1/22 Si esamini la serie di funzioni: 1 log x (e n + n), definita per x IR. Si determini l insieme S in cui tale serie converge,

Dettagli

Introduzione ai segnali determinati

Introduzione ai segnali determinati Teoria dei segnali Unità 1 Introduzione ai segnali determinati Introduzione ai segnali determinati Sviluppo in serie di Fourier Trasformata di Fourier 005 Politecnico di Torino 1 Introduzione ai segnali

Dettagli

Anno accademico

Anno accademico Scuola Normale Superiore Ammissione al 4 anno della Classe di Scienze Prova di Analisi per l ammissione alla Laurea Specialistica in Fisica applicata, Informatica, Matematica, Scienze fisiche, Tecnologie

Dettagli

Esame di Analisi Funzionale e Trasformate Terzo appello. 6 Settembre 2017 A.A. 2016/2017. Prof. M. Bramanti

Esame di Analisi Funzionale e Trasformate Terzo appello. 6 Settembre 2017 A.A. 2016/2017. Prof. M. Bramanti Esame di Analisi Funzionale e Trasformate Terzo appello. 6 Settembre 217 A.A. 216/217. Prof. M. Bramanti Cognome: Nome N matr. o cod. persona: Dom 1 Dom 2 Dom 3 Es 1 Es 2 Es 3 Tot. Punti Domande di teoria

Dettagli

Analisi I - IngBM COMPITO B 22 Febbraio 2014 MATRICOLA... VALUTAZIONE =...

Analisi I - IngBM COMPITO B 22 Febbraio 2014 MATRICOLA... VALUTAZIONE =... Analisi I - IngBM - 03-4 COMPITO B Febbraio 04 COGNOME... NOME... MATRICOLA... VALUTAZIONE... +... =.... Istruzioni. Il compito è composto di due parti. La prima parte deve essere svolta preliminarmente.

Dettagli

Esame di Analisi Funzionale e Trasformate Primo appello. 12 Luglio 2017 A.A. 2016/2017. Prof. M. Bramanti

Esame di Analisi Funzionale e Trasformate Primo appello. 12 Luglio 2017 A.A. 2016/2017. Prof. M. Bramanti Esame di Analisi Funzionale e Trasformate Primo appello. Luglio 07 A.A. 06/07. Prof. M. Bramanti Cognome: Nome N matr. o cod. persona: Dom Dom Dom 3 Es Es Es 3 Tot. Punti Domande di teoria rispondere a

Dettagli

Analisi Matematica 1

Analisi Matematica 1 Michele Campiti Prove scritte di Analisi Matematica Ingegneria Industriale aa 28 29 y f g x La funzione seno e la funzione esponenziale Raccolta delle tracce di Analisi Matematica per Ingegneria Industriale,

Dettagli

Temi d esame di Analisi Matematica 1

Temi d esame di Analisi Matematica 1 Temi d esame di Analisi Matematica 1 Area di Ingegneria dell Informazione - a cura di M. Bardi 31.1.95 f(x) = xe arctan 1 x (insieme di definizione, segno, iti ed asintoti, continuità e derivabilità, crescenza

Dettagli

Analisi Matematica I per Ingegneria Gestionale, a.a Scritto del secondo appello, 5 febbraio 2018 Testi 1

Analisi Matematica I per Ingegneria Gestionale, a.a Scritto del secondo appello, 5 febbraio 2018 Testi 1 Analisi Matematica I per Ingegneria Gestionale, a.a. 7-8 Scritto del secondo appello, 5 febbraio 8 Testi Prima parte, gruppo.. Trovare r > e α [ π, π] per cui vale l identità 3 sin 3 cos = r sin( + α)..

Dettagli

Scritto d esame di Analisi Matematica II

Scritto d esame di Analisi Matematica II Capitolo 2: Scritti d esame 145 Pisa, 1 Gennaio 2005 e gli insiemi f(x, y) = x 2 x 2 y + y, A = {(x, y) R 2 : x 2 + y 2 6, x 0, y 0}, B = {(x, y) R 2 : x 0, y 0}. (a) massimo e minimo di f(x, y) in A,

Dettagli

La trasformata di Laplace

La trasformata di Laplace La trasformata di Laplace (Metodi Matematici e Calcolo per Ingegneria) Enrico Bertolazzi DIMS Universitá di Trento anno accademico 2005/2006 La trasformata di Laplace 1 / 34 Outline 1 La trasformata di

Dettagli

Jean Baptiste Joseph Fourier ( ) La Trasformata di Fourier. Costruzione della trasformata di Fourier (1/4) Outline. cke i kπt.

Jean Baptiste Joseph Fourier ( ) La Trasformata di Fourier. Costruzione della trasformata di Fourier (1/4) Outline. cke i kπt. Jean Baptiste Joseph Fourier (1768 1830) La Trasformata di Fourier (Metodi Matematici e Calcolo per Ingegneria) Enrico Bertolazzi DIMS Università di Trento anno accademico 2007/2008 http://www-groups.dcs.st-and.ac.uk/

Dettagli

a. Si enunci e dimostri il teorema della media integrale per funzioni continue. (5 punti)

a. Si enunci e dimostri il teorema della media integrale per funzioni continue. (5 punti) COMPITO A a. Si enunci e dimostri il teorema della media integrale per funzioni continue. 5 punti b. Si scriva l equazione di un piano generico, specificando qual la direzione normale ad esso, e si scriva

Dettagli

Prova scritta di Analisi Matematica III

Prova scritta di Analisi Matematica III 18 luglio 2016 f n (x) = 1 n e (x n)2 (x R, n N ). 2. Si scriva la disuguaglianza di Bessel per la funzione f, periodica di periodo 2π, tale che 0 x [ π, 0) f (x) = 2 x x [0, π). 3. Si consideri l equazione

Dettagli

Analisi Matematica I per Ingegneria Gestionale, a.a Scritto del secondo appello, 1 febbraio 2017 Testi 1

Analisi Matematica I per Ingegneria Gestionale, a.a Scritto del secondo appello, 1 febbraio 2017 Testi 1 Analisi Matematica I per Ingegneria Gestionale, a.a. 206-7 Scritto del secondo appello, febbraio 207 Testi Prima parte, gruppo.. Trovare le [0, π] che risolvono la disequazione sin(2) 2. 2. Dire se esistono

Dettagli

Analisi Matematica 3 prof. Antonio Greco

Analisi Matematica 3 prof. Antonio Greco Analisi Matematica 3 prof. Antonio Greco Alcune domande da rivolgere agli studenti in sede d esame ( ) 18 giugno 2018 Equazioni differenziali 1. Spiegare che cosa si intende per equazione differenziale

Dettagli

ANALISI MATEMATICA II Sapienza Università di Roma - Laurea in Ingegneria Informatica Esame del 22 gennaio Soluzioni compito 1

ANALISI MATEMATICA II Sapienza Università di Roma - Laurea in Ingegneria Informatica Esame del 22 gennaio Soluzioni compito 1 ANALISI MATEMATICA II Sapienza Università di Roma - Laurea in Ingegneria Informatica Esame del gennaio 6 - Soluzioni compito E Determinare l insieme di definizione e di olomorfia della funzione ( ) f(z)

Dettagli

E, la successione di numeri {f n (x 0. n f n(x) (15.1)

E, la successione di numeri {f n (x 0. n f n(x) (15.1) Capitolo 15 15.1 Successioni e serie di funzioni Sia {f n } una successione di funzioni, tutte definite in un certo insieme E dello spazio R n ; si dice che essa è convergente nell insieme E se, comunque

Dettagli

Analisi Matematica A e B Soluzioni Prova scritta n. 3

Analisi Matematica A e B Soluzioni Prova scritta n. 3 Analisi Matematica A e B Soluzioni Prova scritta n. Corso di laurea in Fisica, 207-208 9 luglio 208. Si consideri per α =, 2, 5, 8 la seguente funzione funzione F α : R\{0} R F α () = sin t dt. t α 6 Dire

Dettagli

Esercizi sulle equazioni differenziali

Esercizi sulle equazioni differenziali Esercizi sulle equazioni differenziali Equazioni differenziali lineari del primo ordine. () u (t) = t [t + u(t)]; () u(t) sin t + u (t) = cos t u (t) sin t; (3) u(t) = + t u (t) + ; Risolvere i seguenti

Dettagli

Esame di Metodi Matematici per l Ingegneria Seconda prova in itinere. Gennaio 2018 A.A. 2017/2018. Prof. M. Bramanti Tema A

Esame di Metodi Matematici per l Ingegneria Seconda prova in itinere. Gennaio 2018 A.A. 2017/2018. Prof. M. Bramanti Tema A Esame di Metodi Matematici per l Ingegneria Seconda prova in itinere. Gennaio 18 A.A. 17/18. Prof. M. Bramanti Tema A Cognome: Nome N matr. o cod. persona: Dom 1 Dom Dom 3 Es 1 Es Es 3 Tot. Punti Domande

Dettagli

Analisi Matematica 2. Michele Campiti. Prove scritte di. Ingegneria Industriale a.a

Analisi Matematica 2. Michele Campiti. Prove scritte di. Ingegneria Industriale a.a Michele Campiti Prove scritte di Analisi Matematica 2 Ingegneria Industriale a.a. 2014 2015 Grafico della funzione f(x, y) := sin(2x 2 y) cos(x 2y 2 ) in [ π/2, π/2] 2 Raccolta delle tracce di Analisi

Dettagli