Equazione della circonferenza
|
|
|
- Casimiro Messina
- 9 anni fa
- Visualizzazioni
Transcript
1 Equazione della circonferenza Scrivi la circonferenza Γ di centro C(-,4) e raggio r=3. L equazione di Γ è: y 4 3 cioè y 4 9 sviluppiamo (ricordando che a b a ab b ): 4 4 y 8y 16 9 mettiamo tutto a primo membro e riordiniamo: y 4 8y cioè (essendo =11): y 4 8y 11 0 In pratica quando conosciamo il centro C(α,β) e il raggio r, l equazione è: y r Sviluppando e riordinando alla fine si arriva ad un equazione che ha la seguente forma: y a by c 0 dove a, b, c sono coefficienti numerici (nell esempio precedente a=4, b=-8, c=11). Intersezione con una particolare retta parallela all asse Esamina l intersezione tra la circonferenza di centro (,-1) e raggio 5 e la retta di equazione y= Prima dobbiamo scrivere l equazione della circonferenza: y 1 5 Sviluppando e riordinando otteniamo ^+y^-4+y-0=0 L equazione è stata scritta nel formato che richiede Geogebra (basta copiarla nella barra di inserimento per farla disegnare a Geogebra oppure online, anche con il cellulare, andando sul sito ).
2 Poi dobbiamo risolvere il seguente sistema: y 4 y 0 0 y Sostituendo y= nella prima equazione si ottiene: ^+^-4+ -0=0 cioè ^-4-1=0 che è un equazione di secondo grado. Risolviamola: si trova Δ=16-4(-1)=16+48=64; il Δ è positivo quindi l equazione ammette due soluzioni distinte; usando la formula risolutiva troviamo 1 =- e =6. Abbiamo trovato le due ascisse (cioè le ) dei punti di intersezione I 1 e I cioè dei due unici punti che appartengono sia alla circonferenza che alla retta. Siccome sia I 1 che I sono punti della retta y=, già conosciamo il valore delle loro ordinate (è ). Dunque le coordinate dei punti di intersezione sono rispettivamente (-,) e (6,). Verifichiamo con il grafico:
3 Non sempre i punti di intersezione hanno ascisse che sono numeri interi. Anzi, non accade quasi mai! Come possiamo vedere dal grafico precedente, nel nostro particolare esempio, solo con le rette y=4, y=3, y=, y=-1, y=-4, y=-5 e y=-6 possiamo avere punti di intersezione che abbiano coordinate intere. Se invece intersechiamo la circonferenza per esempio con la retta y=1 otteniamo punti che hanno le seguenti coordinate (dopo semplificazione): In genere se intersechiamo la circonferenza con una retta y=k dove k è un qualsiasi numero reale compreso tra -6 e 4, la risoluzione del sistema ci condurrà a un equazione di secondo grado che ha un delta positivo. Nei casi molto fortunati delta è non solo positivo ma addirittura un quadrato perfetto (per esempio nell intersezione con y= abbiamo trovato delta=64). In questi casi la radice quadrata sparisce e otteniamo dei valori di 1 e che sono razionali. Negli altri casi (quando delta NON è un quadrato perfetto) scriveremo 1 e lasciando la radice quadrata e calcolando il valore approssimato solo per verificare sul grafico. Come si vede dal grafico, se intersechiamo la circonferenza con la retta y=-6 (o con la retta y=4) i punti di intersezione si sovrappongono. In questi casi diremo che il punto di intersezione è doppio e che la retta è tangente. Che cosa accade invece se intersechiamo la circonferenza con una retta y=k quando k è un valore minore di -6 o maggiore di 4? Dal grafico capiamo che non esistono punti di intersezione. Infatti, se svolgiamo i passaggi per la risoluzione del sistema, alla fine sfociamo su un equazione di secondo grado avente delta negativo. Proviamo per esempio con y=5: y 4 y 0 0 y 5 Sostituendo si ottiene ^+5^ =0 cioè ^-4+15=0. Il delta è (-4)^-4 15=-44 che è negativo equazione impossibile!
4 Intersezione con una generica retta parallela all asse Esamina le intersezioni della circonferenza di centro (-,1) e raggio 3 con la retta y=k Dobbiamo risolvere il seguente sistema: y 1 3 y k Sostituendo, dopo qualche passaggio si giunge alla seguente equazione: ^+4+k^-k-4=0 L incognita è (la lettera k rappresenta un parametro: deve essere trattata come se fosse un numero assegnato di cui però non conosciamo il valore). I coefficienti dell equazione di secondo grado sono: a=1, b=4, c=k^-k-4 quindi il discriminante delta è: Δ=4^-4(k^-k-4)=16-4k^+8k+16=-4k^+8k+3 Adesso che sappiamo che Δ=-4k^+8k+3 possiamo rispondere a molte domande. Prima domanda: per quali valori di k la retta y=k è tangente alla circonferenza? La condizione di tangenza (come abbiamo visto nell esempio precedente) è Δ=0 Quindi per rispondere alla domanda dobbiamo risolvere l equazione 4k^+8k+3=0 (ora consideriamo k come incognita) Visto che in questo particolare caso si può, dividiamo per 4 (solo per avere a che fare con numeri più piccoli): -k^+k+8=0 Moltiplichiamo per (-1) (solo per non avere la noia di soluzioni che abbiano un denominatore negativo) k^-k-8=0 Δ * =4-4(-8)=36 quindi k 1 =- k =4 Possiamo quindi dare la risposta: la retta y=- e la retta y=4 sono tangenti alla circonferenza. Seconda domanda: per quali valori di k la retta y=k è esterna alla circonferenza? In base allo studio fatto per trovare k 1 =- k =4, possiamo affermare che se k<- o se k>4 la retta y=k è esterna alla circonferenza. Terza domanda: per quali valori di k la retta y=k è secante? Come prima: se -<k<4 allora la retta y=k interseca la circonferenza in due punti distinti.
5 ESERCIZI LIBERI Inventa tu una circonferenza (assegna liberamente il centro e il raggio) e risolvi il problema di determinare le rette y=k tangenti alla circonferenza che hai scelto. Verifica facendo il disegno a mano o con un programma.
MATEMATICA LA CIRCONFERENZA GSCATULLO
MATEMATICA LA CIRCONFERENZA GSCATULLO La Circonferenza La circonferenza e la sua equazione Introduzione e definizione La circonferenza è una conica, ovvero quella figura ottenuta tagliando un cono con
Circonferenza. Domande, problemi, esercizi. 1) Scrivi un equazione per la circonferenza del disegno
Circonferenza Domande, problemi, esercizi 1) Scrivi un equazione per la circonferenza del disegno 2) Scrivi un equazione per la circonferenza del disegno Circonferenza: esercizi e domande pagina 1 3) Scrivi
Mutue posizioni della parabola con gli assi cartesiani
Mutue posizioni della parabola con gli assi cartesiani L equazione di una parabola generica è data da: Consideriamo l equazione che definisce i punti di intersezione della parabola con l asse delle ascisse
C I R C O N F E R E N Z A...
C I R C O N F E R E N Z A... ESERCITAZIONI SVOLTE 3 Equazione della circonferenza di noto centro C e raggio r... 3 Equazione della circonferenza di centro C passante per un punto A... 3 Equazione della
Una circonferenza e una parabola sono disegnate nel piano cartesiano. La circonferenza ha centro nel punto
La parabola Esercizi Esercizio 368.395 Una circonferenza e una parabola sono disegnate nel piano cartesiano. La circonferenza ha centro nel punto 0 ;5 e raggio, e la parabola ha il suo vertice in 0 ;0.
Nel caso particolare in cui il vertice si trovi nell'origine, la parabola assume la forma: y ˆ ax 2.
LA PARABOLA Rivedi la teoria La parabola e la sua equazione La parabola eá il luogo dei punti del piano che hanno la stessa distanza da un punto fisso chiamato fuoco e da una retta fissa chiamata direttrice.
ax 1 + bx 2 + c = 0, r : 2x 1 3x 2 + 1 = 0.
. Rette in R ; circonferenze. In questo paragrafo studiamo le rette e le circonferenze in R. Ci sono due modi per descrivere una retta in R : mediante una equazione cartesiana oppure mediante una equazione
La prima è la parte positiva (al di sopra dell asse y) della circonferenza di equazione. e raggio r = 2 ; la seconda è una retta (vedi figura).
Macerata 3 febbraio 0 classe 3M COMPITO DI MATEMATICA SOLUZIONE QUESITO a) Rappresenta graficamente la curva descritta dalla seguente equazione: y y + + = 0 Per la presenza del valore assoluto dobbiamo
ax 2 +bx+c è anche il trinomio che compare al I membro nelle equazioni di
PARABOLA La parabola si ottiene intersecando un cono con un piano come nella figura sotto. L equazione della parabola è f(x) = ax 2 +bx+c ax 2 +bx+c è anche il trinomio che compare al I membro nelle equazioni
Esercizio 8: Siano dati l equazione della parabola e i due punti e.
Esercizio 8: Siano dati l equazione della parabola e i due punti e. tracciare dal punto A le tangenti r ed s alla parabola ottenendo i punti di contatto P e Q; tracciare dal punto B le tangenti t ed u
La retta nel piano cartesiano
La retta nel piano cartesiano Se proviamo a disporre, sul piano cartesiano, una retta vediamo che le sue possibili posizioni sono sei: a) Coincidente con l asse delle y; b) Coincidente con l asse delle
LA CIRCONFERENZA E LA SUA EQUAZIONE
LA CIRCONFERENZA E LA SUA EQUAZIONE LA CIRCONFERENZA COME LUOGO GEOMETRICO DEFINIZIONE Assegnato nel piano un punto C, detto centro, si chiama circonferenza la curva piana luogo geometrico dei punti equidistanti
Circonferenze del piano
Circonferenze del piano 1 novembre 1 Circonferenze del piano 1.1 Definizione Una circonferenza è il luogo dei punti equidistanti da un punto fisso, detto centro. La distanza di un qualunque punto della
Liceo Scientifico Michelangelo - Forte dei Marmi. Esercizi sulla circonferenza svolti - Classe Terza
Liceo Scientifico Michelangelo - Forte dei Marmi Esercizi sulla circonferenza svolti - Classe Terza Esercizio 0. Stabilire se le equazioni x + y x + 3y + e x + y x + 6y 3 rappresentano una circonferenza
La parabola terza parte Sintesi
La parabola terza parte Sintesi [ ] Qual è l equazione generale della parabola con l asse di simmetria orizzontale ( cioè parallelo all asse x )? Con quale trasformazione si ricava questa equazione da
Appunti sulla circonferenza
Liceo Falchi Montopoli in Val d Arno - Classe a I - Francesco Daddi - 1 dicembre 009 Appunti sulla circonferenza In queste pagine sono trattati gli argomenti riguardanti la circonferenza nel piano cartesiano
Appunti sulla circonferenza
1 Liceo Falchi Montopoli in Val d Arno - Classe 3 a I - Francesco Daddi - 16 aprile 010 Appunti sulla circonferenza In queste pagine sono trattati gli argomenti riguardanti la circonferenza nel piano cartesiano
La circonferenza nel piano cartesiano
La circonferenza nel piano cartesiano 1. Definizione ed equazione. Si chiama circonferenza C, di centro C( α, β ) e raggio r, l insieme di tutti e soli i punti del piano che hanno distanza r da C. L equazione
MATEMATICA LA PARABOLA GSCATULLO
MATEMATICA LA PARABOLA GSCATULLO La Parabola Introduzione e definizione Prima di affrontare la parabola e la sua analisi matematica, appare opportuno definirla nelle sue caratteristiche essenziali. Anzitutto
LA CIRCONFERENZA. Ricaviamola. Tutti i punti P che stanno sulla circonferenza hanno la proprietà comune che
LA CIRCONFERENZA La circonferenza è il luogo geometrico dei punti equidistanti da un punto C, detto centro. Si ottiene tagliando un cono con un piano perpendicolare al suo asse. La distanza fra ognuno
Lezione 6 Richiami di Geometria Analitica
1 Piano cartesiano Lezione 6 Richiami di Geometria Analitica Consideriamo nel piano due rette perpendicolari che si intersecano in un punto O Consideriamo ciascuna di queste rette come retta orientata
Esercizi di Anna Maria Gennai
ESERCIZI SVOLTI SULL IPERBOLE 1. Tracciare il grafico dell iperbole di equazione 2. Tracciare il grafico dell iperbole di equazione 4 y2 25 = 1 4 y2 25 = 1 3. Tracciare il grafico dell iperbole di equazione
Esercizi geometria analitica nel piano. Corso di Laurea in Informatica A.A. Docente: Andrea Loi. Correzione
Esercizi geometria analitica nel piano Corso di Laurea in Informatica A.A. Docente: Andrea Loi Correzione 1. Scrivere le equazioni parametriche delle rette r e s di equazioni cartesiane r : 2x y + = 0
Stabilire se il punto di coordinate (1,1) appartiene alla circonferenza centrata nell origine e di raggio 1.
Definizione di circonferenza e cerchio. Equazione della circonferenza centrata in O e di raggio R. Esercizi. La circonferenza e il cerchio Definizioni: dato un punto C nel piano cartesiano e dato un numero
La circonferenza nel piano cartesiano
6 La circonferenza nel piano cartesiano onsideriamo la circonferenza in figura in cui il centro è ; e il raggio 5 r : se indichiamo con P ; un punto della circonferenza avremo, per definizione, che la
Quaderno per il recupero del debito MATEMATICA ANNO SCOLASTICO 2016/2017 Prof.ssa Migliaccio Gabriella CLASSE III
Quaderno per il recupero del debito MATEMATICA ANNO SCOLASTICO 016/017 Prof.ssa Migliaccio Gabriella CLASSE III Gli esercizi vanno svolti e consegnati, anche su un quaderno, il giorno dell esame per il
Macerata 24 marzo 2015 classe 3M COMPITO DI RECUPERO ASSENTI. k <, mentre se. x = e. x = che sono le soluzioni dell equazione, 3 9
Macerata 4 marzo 015 classe M COMPITO DI RECUPERO ASSENTI Problema 1 y = k x + 5k x 4 + k E dato il fascio di parabole di equazione ( ) ( ). SI ha quindi la concavità rivolta k = si ha la parabola degenere
Compito in classe del 29/01/2013 LA CIRCONFERENZA per il Liceo Scientifico
www.matematicamente.it Compito sulla circonferenza 1 Compito in classe del 29/01/2013 LA CIRCONFERENZA per il Liceo Scientifico 1. Determina e rappresenta graficamente l equazione della circonferenza di
Calcolo letterale. 1. Quale delle seguenti affermazioni è vera?
Calcolo letterale 1. Quale delle seguenti affermazioni è vera? (a) m.c.m.(49a b 3 c, 4a 3 bc ) = 98a 3 b 3 c (b) m.c.m.(49a b 3 c, 4a 3 bc ) = 98a 3 b 3 c (XX) (c) m.c.m.(49a b 3 c, 4a 3 bc ) = 49a bc
x 2 + (x+4) 2 = 20 Alle equazioni di secondo grado si possono applicare i PRINCIPI di EQUIVALENZA utilizzati per le EQUAZIONI di PRIMO GRADO.
EQUAZIONI DI SECONDO GRADO Un'equazione del tipo x 2 + (x+4) 2 = 20 è un'equazione DI SECONDO GRADO IN UNA INCOGNITA. Alle equazioni di secondo grado si possono applicare i PRINCIPI di EQUIVALENZA utilizzati
Anno 3 Rette e circonferenze
Anno 3 Rette e circonferenze 1 Introduzione In questa lezione esamineremo le reciproche posizioni che possono sussistere tra retta e circonferenza o tra due circonferenze. Al termine della lezione sarai
x = x. Si ha quindi: Macerata 6 marzo 2015 classe 3M COMPITO DI MATEMATICA SOLUZIONE QUESITO 1 Considera il fascio di parabole di equazione: ( )
Macerata 6 marzo 0 classe M COMPITO DI MATEMATICA SOLUZIONE QUESITO Considera il fascio di parabole di equazione: a) Trova eventuali punti base. y = k x + x + P ( 0;) Le curve sostegno del fascio sono
La circonferenza e la sua equazione
La circonferenza e la sua equazione 1. I termini Ricordiamo che la circonferenza è una linea chiusa del piano costituita da tutti e soli i punti che hanno una data distanza da un punto fissato. In altri
ESERCITAZIONE 9 : FUNZIONI QUADRATICHE
ESERCITAZIONE 9 : FUNZIONI QUADRATICHE e-mail: [email protected] web: www.dm.unipi.it/ tommei Ricevimento: Martedi 16-18 Dipartimento di Matematica, piano terra, studio 126 4 Dicembre 2012 L espressione
C. Di Stefano, Dal problema al modello matematico Vol 1 Capitolo 4 Unità 2
Verifiche Con il simbolo CAS indichiamo quegli esercizi per i quali risulta opportuno utilizzare nei calcoli un software di tipo Computer Algebra System, come Derive o una calcolatrice simbolica. Vogliamo
1. conoscere le nozioni fondamentali della geometria analitica del piano e dello spazio
Terzo modulo: Geometria analitica Obiettivi 1 conoscere le nozioni fondamentali della geometria analitica del piano e dello spazio interpretare geometricamente equazioni e sistemi algebrici di primo e
Intersezione tra retta e parabola e tangenti
L equazione di una parabola è in generale: y = ax 2 + bx +c mentre quella di una retta y = mx + q Per trovare i punti di intersezione tra una retta e una parabola si parte dalla considerazione che i punti
Le coniche: circonferenza, parabola, ellisse e iperbole.
Le coniche: circonferenza, parabola, ellisse e iperbole. Teoria in sintesi Queste curve si chiamano coniche perché sono ottenute tramite l intersezione di una superficie conica con un piano. Si possono
Appunti ed esercizi sulle coniche
1 LA CIRCONFERENZA 1 Appunti ed esercizi sulle coniche Versione del 1 Marzo 011 1 La circonferenza Nel piano R, fissati un punto O = (a, b) e un numero r > 0, la circonferenza (o cerchio) C di centro O
Piano cartesiano e Retta
Piano cartesiano e Retta 1 Piano cartesiano e Retta 1. Richiami sul piano cartesiano 2. Richiami sulla distanza tra due punti 3. Richiami punto medio di un segmento 4. La Retta (funzione lineare) 5. L
Unità Didattica N 9 : La parabola
0 Matematica Liceo \ Unità Didattica N 9 La parabola Unità Didattica N 9 : La parabola ) La parabola ad asse verticale ) La parabola ad asse orizzontale 5) Intersezione di una parabola con una retta 6)
b 2 4c. Stabiliamo se le seguenti equazioni rappresentano delle circonferenze e, in caso affermativo, determiniamone centro e raggio.
LA CIRCONFERENZA Rivedi la teoria L'equazione della circonferenza e le sue caratteristiche La circonferenza eá il luogo dei punti del piano che hanno la stessa distanza da un punto fisso chiamato centro;
CORSI I.D.E.I. - LA PARABOLA CLASSI QUARTE Prof. E. Modica
ISTITUTO PROVINCIALE DI CULTURA E LINGUE NINNI CASSARÀ SEDE DI VIA FATTORI CORSI I.D.E.I. - LA PARABOLA CLASSI QUARTE Prof. E. Modica [email protected] DEFINIZIONI Definizione. Dicesi parabola il luogo
Complementi di algebra
Complementi di algebra Equazioni di grado superiore al secondo Come per le equazioni di grado, esistono formule risolutive anche per le equazioni di e grado ma non le studieremo perché sono troppo complesse,mentre
Ricordiamo. 1. Tra le equazioni delle seguenti rette individua e disegna quelle parallele all asse delle ascisse:
La retta Retta e le sue equazioni Equazioni di rette come luogo geometrico y = h h R equazione di una retta parallela all asse delle ascisse x = 0 equazione dell asse delle ordinate y = h h R equazione
UNITÀ DIDATTICA 5 LA RETTA
UNITÀ DIDATTICA 5 LA RETTA 5.1 - La retta Equazione generica della retta Dalle considerazioni emerse nel precedente capitolo abbiamo compreso come una funzione possa essere rappresentata da un insieme
Iperbole. L iperbole è il luogo dei punti per i quali la differenza delle distanze da due punti fissi detti fuochi rimane costante.
Iperbole L iperbole è il luogo dei punti per i quali la differenza delle distanze da due punti fissi detti fuochi rimane costante. Vedi figura: Figura 1 Iperbole equilatera. Se i fuochi si trovano sull
SFERA ) Stabilire la mutua posizione delle sfere seguenti: S 1 : x 2 + y 2 + z 2 4x + 2y + 4z = 0 e
SFERA 14.01.2009 10) Studiare la mutua posizione delle sfere: S 1 : x 2 + y 2 + z 2 + 10x 2y 18z + 82 = 0 e S 2 : x 2 + y 2 + z 2 + 2x + 2y 10z + 26 = 0 C 1 = ( 5, 1, 9) R 1 = 5 C 2 = ( 1, 1, 5) R 2 =
valore di a: verso l alto (ordinate crescenti) se a>0, verso il basso (ordinate decrescenti) se a<0;
La parabola è una particolare conica definita come è una curva aperta, nel senso che non può essere contenuta in alcuna superficie finita del piano; è simmetrica rispetto ad una retta, detta ASSE della
SOLUZIONE DEL PROBLEMA 1 CORSO DI ORDINAMENTO 2014
SOLUZIONE DEL PROBLEMA 1 CORSO DI ORDINAMENTO 214 1. Per determinare f() e f(k), applichiamo il teorema fondamentale del calcolo integrale, che si può applicare essendo f continua per ipotesi: g() = f(t)dt
Esercizi svolti sulla parabola
Liceo Classico Galilei Pisa - Classe a A - Prof. Francesco Daddi - 19 dicembre 011 Esercizi svolti sulla parabola Esercizio 1. Determinare l equazione della parabola avente fuoco in F(1, 1) e per direttrice
Svolgimento degli esercizi sulla circonferenza
Liceo Classico Galilei Pisa - Classe a A - Prof. Francesco Daddi - 1 ottobre 011 Svolgimento degli esercizi sulla circonferenza Esercizio 1. La circonferenza ha centro in C 4 ), 7, 7 ) e raggio + 7 57
Compito A
Compito A 1. Data l iperbole Γ di equazione y = (2x-1)/(3x+6), individua i punti A e B di intersezione della bisettrice del secondo e quarto quadrante con Γ (risolvi il problema sia graficamente che analiticamente).
Equazioni Polinomiali II Parabola
Equazioni Polinomiali II Parabola - 0 Equazioni Polinomiali del secondo grado (Polinomi II) Forma Canonica e considerazioni La forma canonica dell equazione polinomiale di grado secondo è la seguente:
ESERCIZI SUL DOMINIO DI UNA FUNZIONE A UNA VARIABILE REALE. Le FUNZIONI RAZIONALI INTERE (i polinomi) hanno come insieme di definizione R.
ESERCIZI SUL DOMINIO DI UNA FUNZIONE A UNA VARIABILE REALE PREMESSA Ai fini dello studio di una funzione la prima operazione da compiere è quella di determinare il suo dominio, ovvero l' insieme valori
1. Scrivi l equazione dell ellisse avente per fuochi i punti ( 2 7;3) e (2 7;3) e passante per il punto (2 6;4).
. Scrivi l equazione dell ellisse avente per fuochi i punti ( 7;3) e ( 7;3) e passante per il punto ( 6;). Determino il centro di simmetria dell ellisse, O, punto medio dei due fuochi, ovvero (0;3), perciò
GEOMETRIA ANALITICA ESERCIZI CON SOLUZIONI
utore: Enrico Manfucci - 0/0/0 GEOMETRI NLITIC ESERCIZI CON SOLUZIONI. Posizionare nel piano cartesiano e calcolare la distanza delle seguenti coppie di punti: a. (, ) e (, ) I due punti hanno la stessa
Ellisse. Come fa un giardiniere a creare un aiuola di forma ellittica?
Ellisse Come fa un giardiniere a creare un aiuola di forma ellittica? Pianta due chiodi, detti fuochi, nel terreno ad una certa distanza. Lega le estremità della corda, la cui lunghezza supera la distanza
a) Perché posso affermare che sono complanari? b) Determina l equazione del piano che li contiene
Esercizi svolti Esercizio 1. Dati i punti: A(1, 1, 0), B( 1, 1, 4), C(1, 1, 3), D(2, 2, 8) dello spazio R 3 a) Perché posso affermare che sono complanari? b) Determina l equazione del piano che li contiene
Equazioni e disequazioni algebriche. Soluzione. Si tratta del quadrato di un binomio. Si ha pertanto. (x m y n ) 2 = x 2m 2x m y n + y 2n
Si tratta del quadrato di un binomio. Si ha pertanto (x m y n ) 2 = x 2m 2x m y n + y 2n 4. La divisione (x 3 3x 2 + 5x 2) : (x 2) ha Q(x) = x 2 x + 3 e R = 4 Dalla divisione tra i polinomi risulta (x
Capitolo 2. Cenni di geometria analitica nel piano
Capitolo Cenni di geometria analitica nel piano 1 Il piano cartesiano Il piano cartesiano è una rappresentazione grafica del prodotto cartesiano R = R R La rappresentazione grafica è possibile se si crea
il discriminante uguale a zero; sviluppando i calcoli si ottiene che deve essere
Macerata maggio 0 classe M COMPITO DI MATEMATICA RECUPERO ASSENTI QUESITO Considera il fascio di curve di equazione: x y (.) = k + k 6 a) Trova per quali valori di k si hanno delle ellissi. Deve essere
Le coniche retta generatrice
Le coniche Consideriamo un cono retto a base circolare a due falde ed un piano. Le intersezioni possibili tra le due figure sono rappresentate dallo schema seguente Le figure che si possono ottenere sono
LA CIRCONFERENZA La circonferenza è il luogo geometrico dei punti equidistanti da un punto C, detto centro.
Geometria Analitica Le coniche Queste curve si chiamano coniche perché sono ottenute tramite l'intersezione di una superficie conica con un piano. Si possono definire tutte come luoghi geometrici e, di
LE EQUAZIONI DI SECONDO GRADO
LE EQUAZIONI DI SECONDO GRADO Definizione: un equazione è di secondo grado se, dopo aver applicato i principi di equivalenza, si può scrivere nella forma, detta normale: ax + bx + c 0!!!!!con!a 0 Le lettere
determinare le coordinate di P ricordando la relazione che permette di calcolare le coordinate del punto medio di un segmento si
PROBLEMA Determinare il punto simmetrico di P( ;) rispetto alla retta x y =0 Soluzione Il simmetrico di P rispetto ad una retta r è il punto P che appartiene alla retta passante per P, perpendicolare ad
GEOMETRIA ANALITICA. (*) ax+by+c=0 con a,b,c numeri reali che è detta equazione generale della retta.
EQUAZIONE DELLA RETTA Teoria in sintesi GEOMETRIA ANALITICA Dati due punti A e B nel piano, essi individuano (univocamente) una retta. La retta è rappresentata da un equazione di primo grado in due variabili:
Parabole (per studenti del biennio)
Parabole (per studenti del biennio) - - - 5 - - Equazione della parabola con vertice in O(0,0) : = a 5 - - - Equazione della parabola con vertice in V( 0,0) : = a 0 - - - 5 - Equazione della parabola con
LA PARABOLA. Parabola con asse di simmetria coincidente con l asse y e passante per l origine. Equazione canonica Vertice V ( 0,0) Fuoco
LA PARABOLA La parabola è il luogo geometrico dei punti del piano equidistanti da un punto fisso F detto fuoco e da una retta fissa detta direttrice. Parabola con asse di simmetria coincidente con l asse
2x e y = 2x - x. 2 Disegnare le due parabole e determinare i loro punti comuni.
PROBLEMA Sono date le parabole y = x 2 1 2 2x e y = 2x - x. 2 Disegnare le due parabole e determinare i loro punti comuni. Le parabole passano per l origine O e per il punto A(8/3,16/9) come si evince
B6. Sistemi di primo grado
B6. Sistemi di primo grado Nelle equazioni l obiettivo è determinare il valore dell incognita che verifica l equazione. Tale valore, se c è, è detto soluzione. In un sistema di equazioni l obiettivo è
Geometria BAER Canale A-K Esercizi 10
Geometria BAER 2016-2017 Canale A-K Esercizi Esercizio 1. Data la retta r : y = t z = 1 si trovi il punto A di r tale che l angolo di r con il vettore AO sia π/2, e il punto B di r tale che l angolo di
FUNZIONI REALI DI UNA VARIABILE REALE
FUNZIONI REALI DI UNA VARIABILE REALE Vogliamo ora limitare la nostra attenzione a quelle funzioni che hanno come insieme di partenza e di arrivo un sottoinsieme dei numeri reali, cioè A, B R. Es6. Funzione
Geometria analitica di base (seconda parte)
SAPERE Al termine di questo capitolo, avrai appreso: il concetto di luogo geometrico la definizione di funzione quadratica l interpretazione geometrica di un particolare sistema di equazioni di secondo
LE EQUAZIONI LINEARI LE IDENTITA ( )( ) 5. a Cosa hanno in comune le seguenti uguaglianze? Uguaglianza (1) a
LE EQUAZIONI LINEARI 1 LE IDENTITA a b = ( a + b)( a b) () 1 a = a + a ( ) ( a + b) = a + ab + b () 3 Cosa hanno in comune le seguenti uguaglianze? Uguaglianza (1) a b = ( a+ b)( a b) È sempre vera qualunque
quindi, applicando la legge di annullamento del prodotto, si ottiene l insieme delle soluzioni: x x da cui:
) Risolvi le seguenti equazioni e scrivi le soluzioni reali in ordine crescente, indicando se sono multiple e quante sono le eventuali soluzioni non reali: ( ) ( ) per risolvere questa equazione si applica
Sistemi di equazioni di secondo grado
1 Sistemi di equazioni di secondo grado Risoluzione algebrica Riprendiamo alcune nozioni che abbiamo già trattato in seconda, parlando dei sistemi di equazioni di primo grado: Una soluzione di un'equazione
Verifica del 8 febbraio 2018
Verifica del 8 febbraio 018 Esercizio 1 (15 punti) Risolvi le seguenti disequazioni: 1 x 1 a) x + 6x + 8 x 3 b) x + 1 + 1 c) d) Esercizio (0 punti) 3 x 8 x 4 x 3 ax 9 Considera la funzione f ( x) = x 3x
Corso di Geometria BIAR, BSIR Esercizi 10: soluzioni
Corso di Geometria 2010-11 BIAR, BSIR Esercizi 10: soluzioni 1 Geometria dello spazio Esercizio 1. Dato il punto P 0 = ( 1, 0, 1) e il piano π : x + y + z 2 = 0, determinare: a) Le equazioni parametriche
Esercizi sulle superfici - aprile 2009
Esercizi sulle superfici - aprile 009 Ingegneria meccanica 008/009 Esercizio 1. Scrivere l equazione della superficie ottenuta ruotando la retta s : x = y, y =z attorno alla retta r : x = y, x =3z. Soluzione:
Equazione cartesiana della parabola con asse di simmetria parallelo all'asse delle ordinate Siano F(x F; y
LEZIONI PARABOLA Definizione Si definisce parabola il luogo geometrico dei punti del piano equidistanti da un punto fisso,, detto fuoco, e da una retta fissa, d, detta direttrice. La definizione data mette
(x B x A, y B y A ) = (4, 2) ha modulo
GEOMETRIA PIANA 1. Esercizi Esercizio 1. Dati i punti A(0, 4), e B(4, ) trovarne la distanza e trovare poi i punti C allineati con A e con B che verificano: (1) AC = CB (punto medio del segmento AB); ()
Richiami sullo studio di funzione
Richiami sullo studio di funzione Per studiare una funzione y = f() e disegnarne un grafico approssimativo, possiamo procedere in ordine secondo i seguenti passi:. determinare il campo di esistenza (o
GEOMETRIA ANALITICA: LE CONICHE
DIPARTIMENTO DI INGEGNERIA CIVILE PRECORSO DI MATEMATICA ANNO ACCADEMICO 2013-2014 ESERCIZI DI GEOMETRIA ANALITICA: LE CONICHE Esercizio 1: Fissato su un piano un sistema di riferimento cartesiano ortogonale
Si dice parabola il luogo geometrico dei punti del piano, equidistanti da un punto fisso, detto fuoco, e da una retta fissa, detta direttrice.
LA PARABOLA Definizione: Si dice parabola il luogo geometrico dei punti del piano, equidistanti da un punto fisso, detto fuoco, e da una retta fissa, detta direttrice. Dimostrazione della parabola con
L equazione generica della funzione costante è y=k, il grafico è una retta parallela all asse x (asse delle ascisse). retta parallela all'asse x y
La funzione costante L equazione generica della funzione costante è =k, il grafico è una retta parallela all asse (asse delle ascisse). Esempio di esercizio, dall equazione al grafico: =- retta parallela
