La divisione senza resto
|
|
|
- Liliana Martini
- 9 anni fa
- Visualizzazioni
Transcript
1 La divisione senza resto Una maestra ha 12 cioccolatini che distribuisce ai suoi alunni. Se ogni alunno riceve 3 cioccolatini, quanti sono gli alunni? Dividiamo i cioccolatini in gruppi di 3. Lo schema sottostante ci dice che otteniamo 4 gruppi. Questo ci consente di affermare che gli alunni sono 4. Scriviamo: 12: = dividendo 3 = divisore 4 = quoziente esatto Diciamo pure che 12: 3 4 perché La divisione è l operazione inversa della moltiplicazione. Infatti il quoziente è quel numero che moltiplicato per il divisore ci dà il dividendo. Otteniamo lo stesso risultato utilizzando il metodo delle sottrazioni ripetute. Applichiamo questo metodo al seguente problema. Procopio ha 25 da spendere in figurine dorate. Se ciascuna figurina costa 5,quante figurine dorate può comprare? 1
2 Procopio può comprare 5 figurine dorate. Possiamo utilizzare la linea dei numeri per calcolare il seguente quoziente esatto 24 : 6 Basta contare i salti effettuati che sono 4 e scrivere: 24:6 4 La sua conferma ci viene fornita dalla seguente uguaglianza , cioè: il dividendo è uguale al prodotto del quoziente per il divisore. Definizione: Dati due numeri a, b la divisione a: b è definita nell insieme N se e solo se: b 0 a è multiplo di b. : si chiama divisore, il numero q si chiama quoziente. a b q a b q. Il numero a si chiama dividendo, il numero b Quando il divisore è lo zero, la divisione è priva di significato. Quindi non è possibile dividere un numero a per un numero b 0. Se a non è multiplo di b, la divisione non è definita in N perché non esiste nessun numero naturale q che moltiplicato per b dia a. In questo caso si parla di divisione impropria o divisione con resto. In questo caso scriviamo: a b q r e diciamo che q è un quoziente approssimato o quoziente intero. La divisione è l operazione inversa della moltiplicazione 2
3 3
4 Problemi Elisabetta ha raccolto 24 margherite e le distribuisce in parti ugual in 4 vasetti. Quante margherite contiene ogni vasetto? Giovanni ha raccolto 36 fragole e le vuole mettere in cestini che contengono 9 fragole ciascuno. Quanti cestini gli serviranno? Giorgio riordina i suoi 24 pastelli mettendone 8 in ogni astuccio. Quanti astucci gli serviranno? In un pollaio ho contato 18 zampette. Quante sono le galline? La maestra ha 20 fogli e li distribuisce in parti uguali fra i suoi 5 alunni. Quanti fogli possiede ogni alunno? 4
5 Samuele sistema in parti uguali le sue 27 conchiglie in 3 scatole. Quante conchiglie contiene ogni scatola? Un giardiniere mette 32 rose in 4 aiuole. Trova il numero di rose disposte in ogni aiuola. Girolamo deve leggere 24 pagine in 4 giorni. Quante pagine dovrà leggere ogni giorno? La mamma vuole distribuire in parti uguali 24 ciliegie ai suoi 3 figli. Quante ciliegie spettano a ciascun figlio? Iacopo riordina i suoi 18 pastelli in 2 astucci. Quanti pastelli andranno in ogni astuccio? Beatrice ha 20 cioccolatini che vuole suddividere in 2 sacchetti. Quanti cioccolatini metterà in ogni sacchetto? In 7 giorni Andrea ha letto un piccolo libro di 56 pagine. Quante pagine ha letto al giorno se legge lo stesso numero di pagine al giorno? Agnese ha 30 matite colorate e ne vuole dare 6 a ciascuna delle sue amiche. Quante amiche potrà accontentare? Un pacco contiene 28 biscotti e Brunilde ne mangia a merenda sempre 4. Per quanti giorni può fare merenda con quel pacco? In un cestino ci sono 9 mele. Il cameriere deve metterne 3 per piatto. Di quanti piatti avrà bisogno? In un acquario ci sono 24 pesci. Ne vengono messi 6 per vaso. Quanti vasi occorrono? Martina vuole disegnare un albero con 20 pere. Vuole mettere 5 pere per ogni ramo. Quanti rami dovrà disegnare? Davide possiede una piccola collezione di 35 francobolli. Ne vuole mettere 5 per pagina. Di quante pagine avrà bisogno? Giovanni ha acquistato 27 brioches, confezionate in scatole da 9 brioches ciascuna. Quante scatole ha acquistato? 5
6 La divisione con resto Il pirata Barbanera ha 14dobloni d oro che vuole dividere in parti uguali al mozzo Bracciodolente, al suo secondo Testadibronzo ed al suo timoniere Barradritta. Quanti dobloni riceve ognuno dei 3 pirati? Quanti dobloni rimangono a Barbanera? Eseguiamo la divisione utilizzando il metodo delle sottrazioni ripetute resto 14=dividendo 3 =divisore 4 =quoziente intero 2 =resto resto quoziente Scriviamo: 14: 3 4 con r 2 resto Troviamo lo stesso risultato utilizzando il metodo degli insiemi equipotenti, cioè degli insiemi aventi lo stesso numero di dobloni. Divido i 14 dobloni in gruppi 3 dobloni come indicato in figura. Ottengo 4 gruppi ognuno dei quali contiene 3 dobloni. Rimangono 2 dobloni. 4 è il quoziente intero della divisione; 2 è il resto della divisione. Il quoziente intero di una divisione è il più grande numero naturale che moltiplicato per il divisore dà come risultato un numero più piccolo del dividendo. resto = dividen do - divisore quoziente intero Metodo pratico per eseguire la divisione con resto. Cerchiamo il numero più grande che moltiplicato per 3 ci dà come risultato un numero minore di 14, cioè vediamo quante volte possiamo sottrarre il numero 3 dal numero 14. Il numero richiesto è il 4 in quanto possiamo sottrarre 4 volte il numero 3 dal numero 14. 6
7 Lo schema convenzionale è il seguente: è il quoziente intero della divisione; 2 è il resto della divisione. Ogni pirata riceve 4 dobloni d oro. A Barbanera rimangono 2 dobloni. 7
8 Dizionarietto dei termini usati Abaco Antico dispositivo usato per effettuare calcoli. Consiste di un telaio con asticciole parallele. Le varie asticciole sono associate con le diverse posizioni delle unità, delle decine, delle centinaia e cosi di seguito. Nell abaco della figura le aste verticali, da destra verso sinistra, rappresentano le unità, le decine, le migliaia, le unità di migliaia, le decine di migliaia, le centinaia di migliaia. Addendo Uno dei numeri che si addizionano per determinare una somma. Quando una coppia di numeri viene associata alla propria somma mediante l operazione di addizione, ciascun numero della coppia viene detto Addendo della somma. Nella uguaglianza = 13, i numeri 6 e 7 sono gli addendi. Nella somma 6 13, uno degli addendi manca e viene chiamato addendo mancante. Addendo mancante In una uguaglianza del tipo 8 12, uno degli addendi non è dato, ovvero è mancante. Il simbolo, chiamato cornice, fornisce lo spazio nel quale collocare l addendo mancante. Determinare l addendo mancante in 8 12 corrisponde a sottrarre 8 dal 12. Infatti, poiché , L addendo mancante coincide con la differenza tra la somma e l addendo noto. Addendo noto In una uguaglianza del tipo 8 12 il numero 8 è l addendo noto o addendo dato. Addizione Ad ogni coppia di numeri naturali a e b l addizione associa il numero a b detto somma. Per esempio, alla coppia 13 e 6, l addizione associa il numero La somma a b può essere determinata nel modo seguente: se A e B sono insiemi disgiunti tali che n A a ed n B b, ne segue che a b n A B. 8
9 Addizione ripetuta Se m ed n sono numeri naturali m n n n n n n m m m m m m addendi n addendi Cos, per esempio Cifre Simboli fondamentali in un sistema di numerazione. Nel sistema decimale (indo-arabico) le cifre sono 0,1,2,3,4,5,6,7,8,9 Colonna Linea verticale di oggetti in uno schieramento. Lo schieramento disegnato ha 3 colonne. * * * * * * * * * Coppia ordinata Si tratta di due oggetti considerati insieme con la precisazione di stabilire qual è il primo e qual è il secondo oggetto. La coppia ordinata di numeri 4,7 è diversa dalla coppia ordinata 7,4. In una coppia ordinata il primo ed il secondo elemento(chiamati anche componenti della coppia) possono essere uguali come nella coppia 8,8. 9
Le quattro operazioni fondamentali
1. ADDIZIONE Le quattro operazioni fondamentali Def: Si dice ADDIZIONE l operazione con la quale si calcola la somma; i numeri da addizionare si dicono ADDENDI e il risultato si dice SOMMA o TOTALE. Proprietà:
Il Sistema di numerazione decimale
Il Sistema di numerazione decimale Il NUMERO è un oggetto astratto, rappresentato da un simbolo (o cifra) ed è usato per contare e misurare. I numeri usati per contare, 0,1,2,3,4,5,. sono detti NUMERI
Le quattro operazioni fondamentali
SINTESI Unità 3 Le quattro operazioni fondamentali Addizione Si dice somma di due numeri naturali il numero che si ottiene contando di seguito al primo tanti numeri consecutivi quante sono le unità del
Moltiplicazione. Divisione. Multipli e divisori
Addizione Sottrazione Potenze Moltiplicazione Divisione Multipli e divisori LE QUATTRO OPERAZIONI Una operazione aritmetica è quel procedimento che fa corrispondere ad una coppia ordinata di numeri (termini
Le quattro operazioni fondamentali
Le quattro operazioni fondamentali ADDIZIONE Def: Si dice ADDIZIONE l operazione con la quale si calcola la somma; i numeri da addizionare si dicono ADDENDI e il risultato si dice SOMMA o TOTALE. Proprietà:
Le quattro operazioni fondamentali
Le quattro operazioni fondamentali ADDIZIONE Def: Si dice ADDIZIONE l operazione con la quale si calcola la somma; i numeri da addizionare si dicono ADDENDI e il risultato si dice SOMMA o TOTALE. Proprietà:
SCOMPOSIZIONE IN FATTORI PRIMI:
SCOMPOSIZIONE IN FATTORI PRIMI: 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59 61 67 71 73 79 83 89 97 101 103 107 109 113 127 131 137 139 149 151 157 163 167 173 179 181 191 193 197 199 211 223 227 229
4 + 7 = 11. Possiamo quindi dire che:
Consideriamo due numeri naturali, per esempio 4 e 7. Contando successivamente, dopo le unità del primo, le unità del secondo si esegue l operazione aritmetica detta addizione, il cui simbolo è + ; 4 +
La tabella dell addizione Completa la tabella e poi rispondi alle domande.
La tabella dell addizione Completa la tabella e poi rispondi alle domande. CCCCCCCCCCCC + 0 4 5 6 7 8 9 0 0 4 5 6 7 8 9 0 A ogni coppia ordinata di numeri naturali corrisponde sempre un numero naturale?
Operatori di confronto:
Operatori di confronto: confrontano tra loro due numeri e come risultato danno come risposta o operatore si legge esempio risposta = uguale a diverso da > maggiore di < minore di maggiore o uguale a minore
1 (UNO) INDICA LA QUANTITÀ DI ELEMENTI DELL INSIEME UNITARIO B = (CLASSI CHE HANNO LA LIM) SOLO LA 4ª A HA LA LIM QUINDI L INSIEME È UNITARIO.
I NUMERI NATURALI DEFINIAMO NUMERI NATURALI I NUMERI A CUI CORRISPONDE UN INSIEME. 0 (ZERO) INDICA LA QUANTITÀ DI ELEMENTI DELL INSIEME VUOTO. A = (ALUNNI DI 4ª A CON I CAPELLI ROSSI) NESSUN ALUNNO HA
1 Multipli di un numero
Multipli di un numero DEFINIZIONE. I multipli di un numero sono costituiti dall insieme dei prodotti ottenuti moltiplicando quel numero per la successione dei numeri naturali. I multipli del numero 4 costituiscono
Operazioni in N Le quattro operazioni Definizioni e Proprietà
Operazioni in N Le quattro operazioni Definizioni e Proprietà Prof.Enrico Castello Concetto di Operazione NUMERO NUMERO OPERAZIONE RISULTATO PROCEDIMENTO CHE PERMETTE DI ASSOCIARE A DUE NUMERI, DATI IN
1.5 DIVISIONE TRA DUE POLINOMI
Matematica C Algebra. Le basi del calcolo letterale.5 Divisione tra due polinomi..5 DIVISIONE TRA DUE POLINOMI Introduzione Ricordiamo la divisione tra due numeri, per esempio 47:4. Si tratta di trovare
L insieme dei numeri naturali N Prof. Walter Pugliese
L insieme dei numeri naturali N Prof. Walter Pugliese Che cosa sono i numeri naturali I numeri naturali sono: 0,1,2,3,4,5,6,7,8,9,10, Sono chiamati così perché sono stati i primi numeri che abbiamo conosciuto,
Conoscenze. 1. L addizione è l operazione che associa a due numeri, detti, un... numero, detto, che si ottiene...
Conoscenze 1. L addizione è l operazione che associa a due numeri, detti, un... numero, detto, che si ottiene...... 2. La sottrazione è l operazione che associa a due numeri, detti rispettivamente... e..,
Parte Seconda. Prova di selezione culturale
Parte Seconda Prova di selezione culturale TEORIA DEGLI INSIEMI MATEMATICA ARITMETICA Insieme = gruppo di elementi di cui si può stabilire inequivocabilmente almeno una caratteristica in comune. Esempi:
1. INSIEME DEI NUMERI NATURALI
1. INSIEME DEI NUMERI NATURALI 1.1 CONCETTO DI NUMERO NATURALE: UGUAGLIANZA E DISUGUAGLIANZA Consideriamo l'insieme E, detto insieme Universo, costituito da tutti i possibili insiemi che si possono costruire
Unica Classe seconda ibiscusedizioni.it. Collega con una freccia ogni raggruppamento alla parola giusta. Terzina. Sestina. Settina. Unità.
178 RAGGRUPPIAMO PER Ottobre Novembre Collega con una freccia ogni raggruppamento alla parola giusta. Terzina Sestina Settina Unità Duina Quartina Ottina Ennina Cinquina Decina 376 Obiettivo: Raggruppare
LEZIONE 1. del 10 ottobre 2011
LEZIONE 1 del 10 ottobre 2011 CAPITOLO 1: Numeri naturali N e numeri interi Z I numeri naturali sono 0, 1, 2, 3, 4, 5, Questi hanno un ordine. Di ogni numero naturale, escluso lo 0, esistono il precedente
I diversi modi di contare
1 L insieme dei numeri naturali viene indicato col simbolo. Risulta pertanto: 0,1,,, 4,5,6,7,8,9,10,11,1, L insieme dei numeri naturali privato della zero viene indicato col simbolo: o 1,,, 4,5,6,7,8,9,10,11,1,
LEZIONE DI MATEMATICA SISTEMI DI NUMERAZIONE. (Prof. Daniele Baldissin)
LEZIONE DI MATEMATICA SISTEMI DI NUMERAZIONE (Prof. Daniele Baldissin) L'uomo usa normalmente il sistema di numerazione decimale, probabilmente perché ha dieci dita. Il sistema decimale è collegato direttamente
La divisione di numeri naturali: esercizi svolti
La divisione di numeri naturali: esercizi svolti Come abbiamo fatto per la sottrazione, ci chiediamo adesso se, effettuata una operazione di moltiplicazione, sia possibile definire (trovare) una operazione
Anno 1. Divisione fra polinomi
Anno 1 Divisione fra polinomi 1 Introduzione In questa lezione impareremo a eseguire la divisione fra polinomi. In questo modo completiamo il quadro delle 4 operazioni con i polinomi. Al termine di questa
Richiami di aritmetica (1)
Richiami di aritmetica (1) Operazioni fondamentali e loro proprietà Elevamento a potenza e proprietà potenze Espressioni aritmetiche Scomposizione: M.C.D. e m.c.m Materia: Matematica Autore: Mario De Leo
MAPPA 1 NUMERI. Strumenti e rappresentazioni grafiche
MAPPA 1 Strumenti e rappresentazioni grafiche Tabella a doppia entrata Una tabella a doppia entrata è formata da righe e colonne. Per convenzione, si legge in senso orario (nel verso indicato dalla freccia).
La divisione di numeri naturali: esercizi svolti
La divisione di numeri naturali: esercizi svolti Come abbiamo fatto per la sottrazione, ci chiediamo adesso se, effettuata una operazione di moltiplicazione, sia possibile definire (trovare) una operazione
10. 4 4 11. 2 : 12. Quale delle seguenti frazioni occorre
www.matematicamente.it Frazioni Frazioni Nome: Classe: Data:. Nella frazione A. è il denominatore, è il numeratore B. è il numeratore, è il denominatore C. Sia, sia sono detti numeratori D. Sia, sia sono
1.2 MONOMI E OPERAZIONI CON I MONOMI
Matematica C Algebra. Le basi del calcolo letterale. Monomi e operazioni con i monomi. MONOMI E OPERAZIONI CON I MONOMI... L insieme dei monomi D ora in poi quando scriveremo un espressione letterale in
4 0 = 4 2 = 4 4 = 4 6 = 0.
Elementi di Algebra e Logica 2008. Esercizi 4. Gruppi, anelli e campi. 1. Determinare la tabella additiva e la tabella moltiplicativa di Z 6. (a) Verificare dalla tabella moltiplicativa di Z 6 che esistono
DEFINIZIONE. L unità frazionaria 1n (con n 0) rappresenta una sola delle n parti uguali in cui è stato diviso l intero.
L unità frazionaria DEFINIZIONE. L unità frazionaria n con n 0 rappresenta una sola delle n parti uguali in cui è stato diviso l intero. Sono unità frazionarie: ognuna di esse indica che l intero è stato
La moltiplicazione e le tabelline. La moltiplicazione. e poi segniamo con un tondino i punti dove le rette si incontrano. Il numero di nodi.
La moltiplicazione Per indicare la moltiplicazione del numero 4 per il numero usiamo la seguente scrittura 4 che si legge: quattro per due. Per conoscere il risultato (detto prodotto) di questa moltiplicazione
I RADICALI QUADRATICI
I RADICALI QUADRATICI 1. Radici quadrate Definizione di radice quadrata: Si dice radice quadrata di un numero reale positivo o nullo a, e si indica con a, il numero reale positivo o nullo (se esiste) che,
1 Multipli e sottomultipli. Divisibilità
Multipli e sottomultipli. Divisibilità LA TEORIA Se la divisione fra due numeri naturali è propria (cioè il resto è uguale a 0) i due numeri si dicono divisibili. Per esempio, nella divisione 8 : diciamo
1.3.POLINOMI ED OPERAZIONI CON ESSI
1POLINOMI ED OPERAZIONI CON ESSI 11 Definizioni fondamentali Un polinomio è un espressione algebrica letterale che consiste in una somma algebrica di monomi Sono polinomi: 6a+ b; 5ab+ b ; 6x 5yx 1 ; 7ab
Insiemi numerici. Teoria in sintesi NUMERI NATURALI
Insiemi numerici Teoria in sintesi NUMERI NATURALI Una delle prime attività matematiche che viene esercitata è il contare gli elementi di un dato insieme. I numeri con cui si conta 0,,,. sono i numeri
Insiemi numerici. Alcune definizioni. La retta dei numeri
Insiemi numerici Q Z N 0 1 1 1 4 4 N = 0,1,,,4, = insieme dei numeri naturali Z = insieme dei numeri interi (formato dall unione dei numeri naturali e dei numeri interi negativi) Q = insieme dei numeri
COMPITI VACANZE ESTIVE 2017 MATEMATICA Scuola Media Montessori Cardano al Campo (VA)
COMPITI VACANZE ESTIVE 2017 MATEMATICA Scuola Media Montessori Cardano al Campo (VA) Nel presente documento sono elencati gli esercizi da svolgere nel corso delle vacanze estive 2017 da parte degli studenti
Esercizi di matematica scuola media inferiore Livello 1
Esercizi di matematica scuola media inferiore Livello Indice degli argomenti ARITMETICA NUMERI NATURALI E NUMERI DECIMALI LE OPERAZIONI FONDAMENTALI ADDIZIONE SOTTRAZIONE ESPRESSIONI ARITMETICHE CON ADDIZIONI
Monomi L insieme dei monomi
Monomi 10 10.1 L insieme dei monomi Definizione 10.1. Un espressione letterale in cui numeri e lettere sono legati dalla sola moltiplicazione si chiama monomio. Esempio 10.1. L espressione nelle due variabili
La tabella dell addizione Completa la tabella e poi rispondi alle domande.
La tabella dell addizione Completa la tabella e poi rispondi alle domande. CCCCCCCCCCCC + 0 4 5 6 7 8 9 0 0 4 5 6 7 8 9 0 A ogni coppia ordinata di numeri naturali corrisponde sempre un numero naturale?
Informatica (Sistemi di elaborazione delle informazioni)
Informatica (Sistemi di elaborazione delle informazioni) Corso di laurea in Scienze dell'educazione Lezione 6 Conversioni di base (parte 2) Mario Alviano Divisione intera Dividendo 2374 16 16 148 7 7 64
Polinomi Definizioni fondamentali
Polinomi. Definizioni fondamentali Definizione.. Un polinomio è un espressione algebrica letterale che consiste in una somma algebrica di monomi. Esempio.. Sono polinomi: 6a + b, 5a b + 3b, 6x 5y x, 7ab
Curricolo verticale MATEMATICA
Curricolo verticale MATEMATICA Scuola dell Infanzia L alunno è in grado di identificare e nominare i numeri naturali da 0 a 10 L alunno è in grado di comprendere le quantità L alunno è in grado di contare
LE OPERAZIONI CON I NUMERI
ARITMETICA PREREQUISITI l conoscere le caratteristiche del sistema di numerazione decimale CONOSCENZE 1. il concetto di somma 2. le proprietaá dell'addizione 3. il concetto di differenza 4. la proprietaá
Somma di due o più numeri naturali
Somma di due o più numeri naturali Somma di due o più numeri naturali Abbiamo visto in precedenza che ad ogni insieme finito A corrisponde un ben preciso numero naturale che possiamo indicare col seguente
L insieme dei numeri razionali Q Prof. Walter Pugliese
L insieme dei numeri razionali Q Prof. Walter Pugliese Concetto di frazione Abbiamo visto che la divisione non è un operazione interna né in N né in Z. L esigenza di renderla sempre possibile ci porterà
La proprietà associativa Applica la proprietà associativa, come nell esempio.
La proprietà associativa Applica la proprietà associativa, come nell esempio. es.: (3 + 47) + 0 = 3 + (47 + 0) = 3 + 47 + 0 = 80 (9 +) + 74 =...... +... +... = 58 + (5 + 79) =... +... +... =...... +...
METODI E TECNOLOGIE PER L INSEGNAMENTO DELLA MATEMATICA 4 LEZIONE
METODI E TECNOLOGIE PER L INSEGNAMENTO DELLA MATEMATICA 4 LEZIONE LE AZIONI DEL FARE MATEMATICA SIMBOLIZZARE Formalizzare significa dare espressione all insieme di conoscenze che possediamo attraverso
ESERCIZI IN PIÙ I NUMERI COMPLESSI
ESERCIZI IN PIÙ I NUMERI COMPLESSI L equazione x x 0 non ha soluzioni nell insieme dei numeri reali; infatti, applicando la formula ridotta, si ottiene x, 3. Interpretando come numero immaginario, cioè
Monomi e Polinomi. Monomio Si dice monomio un espressione letterale in cui figurano solo operazioni di moltiplicazione.
Monomi e Polinomi Monomio Si dice monomio un espressione letterale in cui figurano solo operazioni di moltiplicazione. ) Sono monomi: 5 a 3 b 2 z; 2 3 a2 c 9 ; +7; 8a b 3 a 2. Non sono monomi: a + 2; xyz
REGOLE PER IL CALCOLO MENTALE VELOCE
REGOLE PER IL CALCOLO MENTALE VELOCE AGGIUNGERE o TOGLIERE DECINE AGGIUNGERE o TOGLIERE CENTINAIA AGGIUNGERE o TOGLIERE MIGLIAIA Se devo aggiungere una, due, tre. decine ad un numero, aggiungo 1, 2, 3.
c) ogni numero ha infiniti multipli
Multipli e divisori Def: Si dice MULTIPLO di un numero naturale ogni numero che si ottiene moltiplicando tale numero per qualsiasi numero naturale. Es: è un multiplo di perché. Osservazioni: Es: b) ogni
1. (A1) Quali tra le seguenti uguaglianze sono vere? 2. (A1) Una sola delle seguenti affermazioni è vera. Quale?
M ============= (A) Aritmetica ===================== rappresentazione dei numeri algebra dei numeri proprietà delle operazioni. (A) Quali tra le seguenti uguaglianze sono vere? e. 2 + 2 2 2 + = 2 2 + =
L INSIEME Q + Conoscenze. a. Una frazione rappresenta il... della... tra... e... Esempio: 5 : 7 =... c. Si chiama numero... assoluto ogni classe di...
L INSIEME Q + Conoscenze. Completa le seguenti affermazioni a. Una frazione rappresenta il. della tra. e.. Esempio =.. b. L insieme N è.. rispetto all operazione di divisione, perché in esso la.. non è
PROPORZIONI 6 : 3 10 : 5 8 : 4 42 : 21...
LE PROPORZIONI I rapporti 6 : 3 10 : 5 8 : 4 42 : 21... sono tutti uguali, a due. Una serie di rapporti uguali costituiscono una catena di rapporti 6: 3 = 10 : 5 = 8 : 4 = 42 : 21 =... L'uguaglianza tra
Le operazioni fondamentali in R
La REGOLA DEI SEGNI: 1. ADDIZIONE Le operazioni fondamentali in R + per + dà + per dà + + per dà per + dà Esempi: (+5) + (+9) = + 5 + 9 = + 14 (+5) + ( 3) = + 5 3 = + 2 ( 5) + ( 9) = 5 9 = 14 ( 5) + (+3)
Le quattro operazioni
Le quattro operazioni L addizione Esegui le seguenti addizioni disponendo i numeri in colonna.. 25 þ 20 þ 543 ¼ 25þ 20þ 543¼ 869 307 þ 50 þ 22 ¼ 74 þ 209 þ 843 ¼ 2. 72 þ 8 þ 409 ¼ 79 þ 743 þ 394 ¼ 43 þ
per un altro; le più importanti sono quelle di seguito elencate.
2 Abilità di calcolo I quiz raccolti in questo capitolo sono finalizzati alla valutazione della rapidità e della precisione con cui esegui i calcoli matematici. Prima di cimentarti con i test proposti,
}Fattori. Alla moltiplicazione si può applicare la proprietà commutativa, associativa, dissociativa e distributiva.
MATEM A T i A C La moltiplicazione I termini della moltiplicazione 3,35 4,7 Moltiplicando 3,35 Moltiplicatore 4,7 2345 134000 Prodotto 15,745 100 10 :1000 335 47 2345 134000 15745 }Fattori Alla moltiplicazione
PREVISIONE DEL TIPO DI NUMERO DECIMALE GENERATO DA UNA FRAZIONE di Luciano Porta
PREVISIONE DEL TIPO DI NUMERO DECIMALE GENERATO DA UNA FRAZIONE di Luciano Porta Lo studio dei numeri decimali, se non si limita all utilizzo non ragionato di formule, ci può condurre molto lontano e ci
2/2/2019 Documento senza titolo - Documenti Google
2/2/2019 Documento senza titolo - Documenti Google https://docs.google.com/document/d/1iypd_1q_iyggxdhq7cn4wnodk_78ggd97hc0h3wqsjg/edit 1/4 2/2/2019 Documento senza titolo - Documenti Google https://docs.google.com/document/d/1iypd_1q_iyggxdhq7cn4wnodk_78ggd97hc0h3wqsjg/edit
DIREZIONE DIDATTICA STATALE A. D ANDRADE PAVONE CANAVESE SCUOLA PRIMARIA STATALE DI PROVE DI VERIFICA DI MATEMATICA II QUADRIMESTRE ALUNNO/A
DIREZIONE DIDATTICA STATALE A. D ANDRADE PAVONE CANAVESE SCUOLA PRIMARIA STATALE DI PROVE DI VERIFICA DI MATEMATICA CLASSE IV ANNO SCOLASTICO II QUADRIMESTRE ALUNNO/A 1 1. Scrivi in lettere i seguenti
OPERAZIONI CON LE FRAZIONI
OPERAZIONI CON LE FRAZIONI ADDIZIONE prima di eseguire l operazione si riducono le frazioni (se è possibile) ai minimi termini. Si riconoscono tre situazioni. Le frazioni hanno lo stesso denominatore si
24 : 3 = 8 con resto 0 26 : 4 = 6 con resto 2
Dati due numeri naturali a e b, diremo che a è divisibile per b se la divisione a : b è esatta, cioè con resto 0. In questo caso diremo anche che b è un divisore di a. 24 : 3 = 8 con resto 0 26 : 4 = 6
I PROBLEMI E LA LORO SOLUZIONE. Conoscenze
I PROBLEMI E LA LORO SOLUZIONE Conoscenze 1. Completa: a. un problema è una qualsiasi situazione in cui si conoscono alcuni elementi, i..., attraverso i quali se ne devono trovare altri, le... o..., b.
Le Frazioni. Esempio: il giorno è la settima parte della settimana, quindi
Le Frazioni si dice UNITA FRAZIONARIA il simbolo che rappresenta una delle parti uguali in cui è stata divisa una grandezza che si considera come unità o intero. Esempio: il giorno è la settima parte della
3.Polinomi ed operazioni con essi
MatematicaC Algebra1 1.Lebasidelcalcololetterale1.Polinomieoperazioniconessi....Polinomi ed operazioni con essi 1. Definizioni fondamentali Un polinomio è una somma algebrica di monomi, ciascuno dei quali
1 Le espressioni algebriche letterali
1 Le espressioni algebriche letterali DEFINIZIONE. Chiamiamo espressione algebrica letterale un insieme di numeri, rappresentati anche da lettere, legati uno all altro da segni di operazione. ESEMPI 2a
Soluzioni della verifica scritta 1 B Scientifico 24/01/2009
Soluzioni della verifica scritta 1 B Scientifico 4/01/009 Esercizio 1. Il polinomio x +x 4 5 xy + y non èordinatoné rispetto a x nè rispetto a y. E completo rispetto a y ma non rispetto a x. Nonè omogeneo.
Le tecniche di calcolo mentale rapido usano alcune proprietà delle operazioni. Le principali proprietà utilizzate sono: 3 + 2 = 2 + 3 3 2 = 2 3
Calcolo mentale rapido Proprietà delle operazioni Le tecniche di calcolo mentale rapido usano alcune proprietà delle operazioni. Le principali proprietà utilizzate sono: Proprietà commutativa dell addizione
FRAZIO I N O I LE F RAZIO I N O I I SON O O O DIV I IS I IO I N O I I IN I CUI
FRAZIONI LE FRAZIONI SONO DIVISIONI IN CUI IL RISULTATO E UN NUMERO CON LA VIRGOLA CHE VIENE CHIAMATO : RAZIONALE ASSOLUTO E INDICATO CON Q(a) NUMERO RAZIONALE ASSOLUTO 0,75 MA PERCHE 0,75? 0,75 PERCHE
Notazione posizionale. Codifica binaria. Rappresentazioni medianti basi diverse. Multipli del byte
Codifica binaria Rappresentazione di numeri Notazione di tipo posizionale (come la notazione decimale). Ogni numero è rappresentato da una sequenza di simboli Il valore del numero dipende non solo dalla
Scheda 1 Nome:... Cognome:... Classe: Sottrazione =...
Scheda 1 Nome:... Cognome:... Classe:... Operazioni inverse 1 Questa è una catena di operazioni. Completa il percorso al contrario. + 5 3 + 10 4 7 12 9 19 15............ 2 Esegui le sottrazioni e verifica
Richiami di aritmetica
Richiami di aritmetica I numeri naturali L insieme dei numeri naturali, che si indica con N, comprende tutti i numeri interi maggiori di zero. Operazioni fondamentali OPERAZIONE SIMBOLO RISULTATO TERMINI
Elementi di Algebra e di Matematica Discreta Numeri interi, divisibilità, numerazione in base n
Elementi di Algebra e di Matematica Discreta Numeri interi, divisibilità, numerazione in base n Cristina Turrini UNIMI - 2016/2017 Cristina Turrini (UNIMI - 2016/2017) Elementi di Algebra e di Matematica
Conversione di base. Conversione decimale binario. Si calcolano i resti delle divisioni per due
Conversione di base Dato N>0 intero convertirlo in base b dividiamo N per b, otteniamo un quoto Q 0 ed un resto R 0 dividiamo Q 0 per b, otteniamo un quoto Q 1 ed un resto R 1 ripetiamo finché Q n < b
Gli insiemi numerici RIPASSIAMO INSIEME OPERAZIONI FRA NUMERI RELATIVI INSIEME N INSIEME Z ELEVAMENTO A POTENZA
Gli insiemi numerici RIPASSIAMO INSIEME INSIEME N L insieme N (numeri naturali) è costituito dai numeri interi privi di segno: N {,,,,, } L insieme N presenta le seguenti caratteristiche: è un insieme
Fondamenti di Informatica - 1. Prof. B.Buttarazzi A.A. 2011/2012
Fondamenti di Informatica - 1 Prof. B.Buttarazzi A.A. 2011/2012 Sommario I sistemi di numerazione Il sistema binario Altri sistemi di numerazione Algoritmi di conversione Esercizi 07/03/2012 2 Sistemi
L INSIEME DEI NUMERI RELATIVI
L INSIEME DEI NUMERI RELATIVI Scegli il completamento corretto.. L insieme dei numeri reali R si indica con: a. R = Q I b. R = Q I c. R = Q Z I. L insieme Z: a. è costituito dallo zero e da tutti i numeri
ISTITUTO SCOLASTICO COMPRENSIVO MINEO
ISTITUTO SCOLASTICO COMPRENSIVO MINEO CURRICOLO DI MATEMATICA SCUOLA PRIMARIA classe SECONDA Dalle Indicazioni Nazionali 2012 INDICATORI A) NUMERI 1. Rappresentare graficamente quantità numeriche attribuendo
U.D. N 04 I polinomi
Unità Didattica N 0 I polinomi U.D. N 0 I polinomi 0) Monomi 0) Somma algebrica di monomi simili 0) Prodotto di due i più monomi 0) Quoziente di due monomi 05) Potenza di un monomio 06) Massimo comune
DIVISIBILITA, DIVISORI E MULTIPLI. Conoscenze
DIVISIBILITA, DIVISORI E MULTIPLI Conoscenze 1. Completa: a) Dati due numeri naturali a e b, con b diverso da zero, si dice che a è divisibile per b se la divisione a : b è esatta, cioè ha resto 0 b) In
PROGETTO ESPE.RI.A. Quaderno delle discipline STOR A, GEOGRAF A, SC ENZE, MATEMAT CA
PROGETTO ESPE.RI.A 3 Quaderno delle discipline STOR A, GEOGRAF A, SC ENZE, MATEMAT CA PROGETTO ESPE.RI.A 3 Quaderno delle discipline MATEMAT CA, SC ENZE, STOR A, GEOGRAF A LE TABELLINE DEL 2 E DEL 3 Se
DIVISIBILITA, DIVISORI E MULTIPLI. Conoscenze
DIVISIBILITA, DIVISORI E MULTIPLI Conoscenze 1. Completa: a) Dati due numeri naturali a e b, con b diverso da..., si dice che a è divisibile per b se... b) In N la divisione è possibile solo se... 2. Sostituisci
numeratore linea di frazione denominatore
numeratore denominatore linea di frazione A cura di Paola Arlandini, Stefania Ferrari, Deanna Mantovani Scuola Media A.Volta Bomporto a.s. 00/0 Questo articolo è stato scaricato da www.glottonaute.it INDICE
Prontuario degli argomenti di Algebra
Prontuario degli argomenti di Algebra NUMERI RELATIVI Un numero relativo è un numero preceduto da un segno + o - indicante la posizione rispetto ad un punto di riferimento a cui si associa il valore 0.
