SCOMPOSIZIONE IN FATTORI PRIMI:

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "SCOMPOSIZIONE IN FATTORI PRIMI:"

Transcript

1 SCOMPOSIZIONE IN FATTORI PRIMI:

2 Prendiamo due numeri : 8 e 13. Sappiamo che un numero è DIVISIBILE per un altro se eseguendo la DIVISIONE del primo per il secondo, il RESTO è ZERO. Ora il numero 8 è divisibile per: Esaminiamo il numero 13. Esso è divisibile solamente per: 1, 2, 4, 8. 1, 13. Quindi, 8 ammette come divisori 1, se stesso e altri divisori (2, 4). Mentre 13 ammette come divisori solamente 1 e se stesso. I numeri come il 13 si chiamano NUMERI PRIMI ASSOLUTI o più semplicemente NUMERI PRIMI. Possiamo affermare che un NUMERO PRIMO è un numero DIVISIBILE solamente per 1 e per SE STESSO. Si chiamano COMPOSTI, invece, i numeri che hanno, oltre all'uno e a se stessi, ALTRI DIVISORI. Quindi: NUMERO DIVISORI 8 1, 2, 4, 8 NUMERO COMPOSTO 13 1, 13 NUMERO PRIMO Facciamo degli altri esempi: NUMERO DIVISORI 11 1, 11 NUMERO PRIMO 105 1, 3, 5, 7, 21, 35, 105 NUMERO COMPOSTO 28 1, 2, 4, 7, 14, 28 NUMERO COMPOSTO 7 1, 7 NUMERO PRIMO Il numero 1 non viene considerato nè un numero primo (in quanto ammette un solo divisore, se stesso), nè un numero composto. I NUMERI PARI, ad eccezione del numero 2, sono sempre dei NUMERI COMPOSTI perché ammettono come divisori, sempre, oltre a se stessi e all'unità anche il 2. NUMERO DIVISORI 4 1, 2, 4 6 1, 2, 3, 6 8 1, 2, 4, , 2, 5, , 2, 3, 4, 6, 12

3 Quindi i NUMERI PRIMI sono sicuramente NUMERI DISPARI. Non è vero, invece, il contrario: cioè inumeri DISPARI non è detto che siano NUMERI PRIMI, quindi possono essere sia NUMERI PRIMI che NUMERI COMPOSTI. NUMERO DIVISORI 3 1, 3 NUMERO PRIMO 5 1, 5 NUMERO PRIMO 7 1, 7 NUMERO PRIMO 9 1, 3, 9 NUMERO COMPOSTO 11 1, 11 NUMERO PRIMO 13 1, 13 NUMERO PRIMO 15 1, 3, 5, 15 NUMERO COMPOSTO Quindi, ricapitolando: 1 non è nè NUMERO PRIMO nè NUMERO COMPOSTO NUMERI PARI (eccetto il 2) sono sempre NUMERI COMPOSTI NUMERI DISPARI possono essere NUMERI PRIMI o NUMERI COMPOSTI I NUMERI PRIMI sono in numero ILLIMITATO infatti, se prendiamo un numero primo ne possiamo trovare sempre uno maggiore. Come sappiamo un NUMERO si dice COMPOSTO quando ha qualche altro divisore oltre all'unita' e a SE STESSO. Sappiamo anche che i NUMERI PARI sono senz'altro dei NUMERI COMPOSTI, mentre i numeri dispari possono essere sia composti che primi. Scegliamo, quindi, un numero pari, ad esempio: 30. Esso è senz'altro un numero composto e ammette, come divisore, il 2. Dividiamo allora per 2 e avremo: 30 : 2 = 15. Di conseguenza possiamo scrivere: 15 x 2 = 30. Anche 15 è un numero composto. Esso ha come più piccolo divisore il numero 3. Quindi possiamo scrivere: 15 : 3 = 5. E di conseguenza possiamo dire che: 3 x 5 = 15. Quindi attraverso una serie di sostituzioni possiamo dire che: 30 = 2 x 15 = 2 x 3 x 5. Ricapitolando: 30 = 2 x 3 x 5. Come possiamo notare abbiamo scritto il numero 30 come il prodotto di più numeri e questi numeri (2, 3, 5) sono tutti NUMERI PRIMI. Questa operazione prende il nome di SCOMPOSIZIONE di un NUMERO in FATTORI PRIMI.

4 Quindi noi abbiamo scomposto 30 in fattori primi. Prendiamo un altro NUMERO COMPOSTO, ad esempio: 105. Il numero 105 non è divisibile per 2, trattandosi di un numero dispari. E' divisibile per tre dato che la somma delle sue cifre è 6, cioè un numero divisibile per 3. Quindi possiamo scrivere: 105 : 3 = 35. Ovvero: 105 = 3 x 35. Il numero 35 è ancora un numero composto che, poiché termina con la cifra 5, è divisibile per 5. Quindi: 35 : 5 = 7. Ovvero: 35 = 5 x 7. Quindi possiamo dire che: 105 = 3 x 5 x 7. Possiamo allora affermare che ogni NUMERO COMPOSTO è uguale al PRODOTTO di più NUMERI PRIMI. Vediamo come si effettua, in pratica, la SCOMPOSIZIONE di un NUMERO in FATTORI PRIMI. Prendiamo il numero 60 e proviamo a scomporlo in fattori primi. Per fare questo dobbiamo tracciare una LINEA VERTICALE. A sinistra di questa linea scriviamo il numero da scomporre, nel nostro caso60. Ora cerchiamo il PIU' PICCOLO NUMERO PRIMO per cui esso è divisibile. Essendo il numero da scomporre 60, cioè un numero pari, esso è senz'altro divisibile per 2. Scriviamo questo fattore primo alla destra della linea verticale. Così:

5 Ora dividiamo 60 per 2 e scriviamo il risultato della divisione (cioè il quoto) sotto il numero 60. Così: Cerchiamo ora il PIU' PICCOLO NUMERO PRIMO per cui è divisibile 30: anche in questo caso ci troviamo di fronte ad un numero pari che sarà, quindi, divisibile per 2. Scriviamo il 2 a destra del numero 30. Ora dividiamo 30 per 2 e scriviamo il risultato della divisione sotto il numero 30. Così: 15 è un numero dispari, quindi non è certamente divisibile per 2. Esso invece è divisibile per 3, dato che la somma delle sue cifre (1+5) dà come risultato 6 che è un numero divisibile per 3. Scriviamo il 3 a destra del numero 15. Ora dividiamo 15 per 3 e scriviamo il risultato della divisione sotto il numero 15.

6 Il numero 5 è un numero primo, divisibile solo per se stesso e per l'unità. Dividiamo allora il numero 5 per se stesso. Il risultato della divisione è 1. La nostra scomposizione del numero 60 in fattori primi è terminata. Il NUMERO DA SCOMPORRE (nel nostro caso 60) può essere scritto come il PRODOTTO di tutti i FATTORI PRIMI scritti a sinistra della linea verticale. Così: Ma sappiamo che Per cui sostituendo, avremo: 60 = 2 2 x 3 x = 2 x 2 x 3 x 5. 2 x 2 = 2 2. Più in generale possiamo dire che per SCOMPORRE un numero in FATTORI PRIMI, lo si DIVIDE per il PIU' PICCOLO NUMERO PRIMO SUO DIVISORE, poi si DIVIDE il QUOTO ottenuto per il PIU' PICCOLO NUMERO PRIMO SUO DIVISORE, e così via fino ad ottenere come quoto 1. Il numero dato è uguale al PRODOTTO di TUTTI I NUMERI PRIMI usati come DIVISORI.

7 Vediamo qualche altro esempio. Scomponiamo il numero 325. Avremo: Quindi possiamo scrivere: 325 = 5 x 5 x 13. Ovvero: 325 = 5 2 x 13. Ora scomponiamo il numero 168. Avremo: Quindi possiamo scrivere: 168 = 2 x 2 x 2 x 3 x 7. Ovvero: 168 = 2 3 x 3 x 7. Quando scriviamo un numero come prodotto di più numeri primi si parla di FATTORIZZAZIONE in NUMERI PRIMI. In alcuni casi è possibile abbreviare la scomposizione in fattori primi.

8 Vedremo, di seguito, come è possibile abbreviare, in alcuni casi, la SCOMPOSIZIONE di un numero in FATTORI PRIMI. Le regole che vedremo di seguito si fondano sui criteri di divisibilità di un numero. 1 REGOLA. Sappiamo che un numero è DIVISIBILE per10, 100, 1.000, ecc.. se esso TERMINA rispettivamente con 1, 2, 3,... ZERI Termina con uno zero DIVISIBILE PER Termina con due zeri DIVISIBILE PER Termina con tre zeri DIVISIBILE PER Termina con quattro zeri DIVISIBILE PER Poiché sappiamo che: 10 = 2 x 5; 100 = 2 2 x 5 2 ; = 2 3 x 5 3 ; ecc.. quando ci troviamo di fronte ad un numero divisibile per 10, 100, 1.000, ecc.., il PRIMO DIVISORE del numero sarà rispettivamente: 2 x 5; 2 2 x 5 2 ; 2 3 x 5 3. Per cui scriveremo: = 2 x 5 x 3 3 x 5. ovvero: = 2 x 5 2 x 3 3. Oppure Per cui scriveremo: = 2 3 x 5 2 x REGOLA. Sappiamo che un numero è DIVISIBILE per 4 se le sue ULTIME DUE CIFRE A DESTRA formano un NUMERO DIVISIBILE per 4 o sono ENTRAMBI ZERO.

9 216 Ultime due cifre a destra divisibile per DIVISIBILE PER Ultime due cifre DIVISIBILE PER 4 Poiché sappiamo che: 4 = 2 2 quando ci troviamo di fronte ad un numero divisibile per 4, possiamo considerare come suo divisore 2 2. Per cui scriveremo: 216 = 2 3 x 3 3. Oppure: Per cui scriveremo: = 2 4 x 5 2 x 3. 3 REGOLA. Sappiamo che un numero è DIVISIBILE per 9se la SOMMA delle SUE CIFRE è DIVISIBILE per 9. Numero Somma delle cifre = divisibile per DIVISIBILE PER 9 Poiché sappiamo che: 9 = 3 2 quando ci troviamo di fronte ad un numero divisibile per 9, possiamo considerare come suo divisore 3 2. Per cui scriveremo: = 2 5 x 3 4 x 5 2.

10 CRITERI DI DIVISIBILITÀ Un numero è DIVISIBILE per un altro se eseguendo la DIVISIONEdel primo per il secondo, il RESTO è ZERO. Cioè: In questo caso possiamo dire che a è DIVISIBILE per b. 25 : 5 = 5 con resto 0 25 è DIVISIBILE per 5 18 : 3 = 6 con resto 0 18 è DIVISIBILE per 3 70 : 4 = 17 con resto 2 70 NON è DIVISIBILE per 4 Per sapere se un numero è divisibile per un altro non è sempre necessario eseguire la divisione. Infatti, esistono delle REGOLE che ci permettono di stabilire facilmente se un NUMERO E' DIVISIBILE per UN ALTRO. Queste regole prendono il nome di CRITERI DI DIVISIBILITA'. Vediamo, di seguito, quali sono questi criteri. 1. CRITERIO DI DIVISIBILITA' PER 2. Un numero è DIVISIBILE per 2 se la sua ULTIMA CIFRA A DESTRA è 2 o una CIFRA PARI. 42 Ultima cifra a destra è 2 DIVISIBILE PER Ultima cifra a destra è 2 DIVISIBILE PER Ultima cifra a destra è 2 DIVISIBILE PER Ultima cifra a destra è pari DIVISIBILE PER Ultima cifra a destra è pari.lo zero è una cifra pari DIVISIBILE PER 2 93 Ultima cifra a destra è dispari NON DIVISIBILE PER 2

11 2. CRITERIO DI DIVISIBILITA' PER 3. Un numero è DIVISIBILE per 3 se la SOMMA delle SUE CIFRE è DIVISIBILE per 3. Numero Somma delle cifre = 9 9 divisibile per 3 27 DIVISIBILE PER = divisibile per DIVISIBILE PER = divisibile per DIVISIBILE PER = non divisibile per NON DIVISIBILE PER 3 3. CRITERIO DI DIVISIBILITA' PER 4. Un numero è DIVISIBILE per 4 se le sue ULTIME DUE CIFRE A DESTRA formano un NUMERO DIVISIBILE per 4 o sono ENTRAMBI ZERO. 212 Ultime due cifre a destra divisibile per DIVISIBILE PER Ultime due cifre a destra divisibile per DIVISIBILE PER Ultime due cifre a destra divisibile per DIVISIBILE PER Ultime due cifre a destra 00 DIVISIBILE PER Ultime due cifre a destra non divisibile per NON DIVISIBILE PER 4 4. CRITERIO DI DIVISIBILITA' PER 5. Un numero è DIVISIBILE per 5 se l'ultima CIFRA A DESTRA è 5 o ZERO. 35 Ultima cifra a destra è 5 DIVISIBILE PER Ultima cifra a destra è 5 DIVISIBILE PER Ultima cifra a destra è 5 DIVISIBILE PER Ultima cifra a destra è zero DIVISIBILE PER 5 88 Ultima cifra a destra non è 5 nè 0 NON DIVISIBILE PER 5

12 5. CRITERIO DI DIVISIBILITA' PER 6. Un numero è DIVISIBILE per 6 se è DIVISIBILE CONTEMPORANEAMENTE per 2 e per Ultima cifra a destra è pari. DIVISIBILE PER = 9. DIVISIBILE PER Ultima cifra a destra è pari. DIVISIBILE PER = 18. DIVISIBILE PER Ultima cifra a destra è pari. DIVISIBILE PER = 3. DIVISIBILE PER 3 88 Ultima cifra a destra è pari. DIVISIBILE PER 2 DIVISIBILE PER 6 DIVISIBILE PER 6 DIVISIBILE PER 6 NON DIVISIBILE PER = 16. NON DIVISIBILE PER 3 6. CRITERIO DI DIVISIBILITA' PER 9. Un numero è DIVISIBILE per 9 se la SOMMA delle SUE CIFRE è DIVISIBILE per 9. Numero Somma delle cifre = divisibile per DIVISIBILE PER = divisibile per DIVISIBILE PER = non divisibile per NON DIVISIBILE PER 9 7. CRITERIO DI DIVISIBILITA' PER 10, 100, 1.000, ecc... Un numero è DIVISIBILE per 10, 100, 1.000, ecc.. se esso TERMINA rispettivamente con 1, 2, 3,... ZERI Termina con uno zero DIVISIBILE PER Termina con uno zero DIVISIBILE PER Termina con due zeri DIVISIBILE PER Termina con due zeri DIVISIBILE PER Termina con tre zeri DIVISIBILE PER Termina con quattro zeri DIVISIBILE PER

13 8. CRITERIO DI DIVISIBILITA' PER 11. Un numero è DIVISIBILE per 11 se la DIFFERENZA tra la SOMMA delle CIFRE di posto DISPARI e la SOMMA delle SUE CIFRE di posto PARI è uguale a ZERO, o 11 o MULTIPLO di 11. Numero Cifre di posto dispari Cifre di posto pari Somma cifre di posto dispari (a) Somma cifre di posto pari (b) 385 3, = = ,1,2 7, = = = , = = ,9,7,9 2,1, = = = 22 (a) - (b) DIVISIBILE PER 11 DIVISIBILE PER 11 DIVISIBILE PER 11 DIVISIBILE PER 11

1 Multipli di un numero

1 Multipli di un numero Multipli di un numero DEFINIZIONE. I multipli di un numero sono costituiti dall insieme dei prodotti ottenuti moltiplicando quel numero per la successione dei numeri naturali. I multipli del numero 4 costituiscono

Dettagli

24 : 3 = 8 con resto 0 26 : 4 = 6 con resto 2

24 : 3 = 8 con resto 0 26 : 4 = 6 con resto 2 Dati due numeri naturali a e b, diremo che a è divisibile per b se la divisione a : b è esatta, cioè con resto 0. In questo caso diremo anche che b è un divisore di a. 24 : 3 = 8 con resto 0 26 : 4 = 6

Dettagli

1 Multipli e sottomultipli. Divisibilità

1 Multipli e sottomultipli. Divisibilità Multipli e sottomultipli. Divisibilità LA TEORIA Se la divisione fra due numeri naturali è propria (cioè il resto è uguale a 0) i due numeri si dicono divisibili. Per esempio, nella divisione 8 : diciamo

Dettagli

Si dice multiplo di un numero a diverso da zero, ogni numero naturale che si ottiene moltiplicando a per ciascun elemento di N.

Si dice multiplo di un numero a diverso da zero, ogni numero naturale che si ottiene moltiplicando a per ciascun elemento di N. MULTIPLI E DIVISORI Si dice multiplo di un numero a diverso da zero, ogni numero naturale che si ottiene moltiplicando a per ciascun elemento di N. Poiché N = 0,1,2,3...7...95,..104.. Zero è multiplo di

Dettagli

DIVISIBILITA, DIVISORI E MULTIPLI. Conoscenze

DIVISIBILITA, DIVISORI E MULTIPLI. Conoscenze DIVISIBILITA, DIVISORI E MULTIPLI Conoscenze 1. Completa: a) Dati due numeri naturali a e b, con b diverso da zero, si dice che a è divisibile per b se la divisione a : b è esatta, cioè ha resto 0 b) In

Dettagli

Divisibilità: definizioni e criteri

Divisibilità: definizioni e criteri cbnd Antonio Guermani Scheda n 1 Nome Data Divisibilità: definizioni e criteri Il numero 69 7 è divisibile per 3 se al posto Ha un solo divisore Tra i multipli di 58 i due più grandi nessun numero naturale

Dettagli

DIVISIBILITA, DIVISORI E MULTIPLI. Conoscenze

DIVISIBILITA, DIVISORI E MULTIPLI. Conoscenze DIVISIBILITA, DIVISORI E MULTIPLI Conoscenze 1. Completa: a) Dati due numeri naturali a e b, con b diverso da..., si dice che a è divisibile per b se... b) In N la divisione è possibile solo se... 2. Sostituisci

Dettagli

c) ogni numero ha infiniti multipli

c) ogni numero ha infiniti multipli Multipli e divisori Def: Si dice MULTIPLO di un numero naturale ogni numero che si ottiene moltiplicando tale numero per qualsiasi numero naturale. Es: è un multiplo di perché. Osservazioni: Es: b) ogni

Dettagli

DIVISORI E MULTIPLI DI UN NUMERO

DIVISORI E MULTIPLI DI UN NUMERO DIVISORI E MULTIPLI DI UN NUMERO CONSIDERIAMO LA DIVISIONE 15 : 5 SICCOME IL RESTO E ZERO DICIAMO: 15 E DIVISIBILE PER (cioè lo possiamo dividere per ) E DIVISORE DI 15 (cioe divide 15) MA PROPRIO PER

Dettagli

Hai imparato che la divisione non è un operazione interna nell insieme dei numeri naturali, per esempio possiamo avere:

Hai imparato che la divisione non è un operazione interna nell insieme dei numeri naturali, per esempio possiamo avere: DIVISORI E LA DIVISIBILITA Hai imparato che la divisione non è un operazione interna nell insieme dei numeri naturali, per esempio possiamo avere: 36: 3 = 12 divisione eseguibile in N 27: 2 divisione non

Dettagli

Divisibilità per 5 Un numero è divisibile per 5 se termina con 0 o con 5. Esempi: 380, 125, 465 sono divisibili per non è divisibile per 5

Divisibilità per 5 Un numero è divisibile per 5 se termina con 0 o con 5. Esempi: 380, 125, 465 sono divisibili per non è divisibile per 5 Multipli e divisori Def: Si dice multiplo di un numero naturale ogni numero che si ottiene moltiplicando tale numero per qualsiasi numero naturale. 14 è un multiplo di 7 perché 7 2 = 14. Si dice che 14

Dettagli

INSIEME N. L'insieme dei numeri naturali (N) è l'insieme dei numeri interi e positivi.

INSIEME N. L'insieme dei numeri naturali (N) è l'insieme dei numeri interi e positivi. INSIEME N L'insieme dei numeri naturali (N) è l'insieme dei numeri interi e positivi. N = {0;1;2;3... Su tale insieme sono definite le 4 operazioni di base: l'addizione (o somma), la sottrazione, la moltiplicazione

Dettagli

x 2 + (x+4) 2 = 20 Alle equazioni di secondo grado si possono applicare i PRINCIPI di EQUIVALENZA utilizzati per le EQUAZIONI di PRIMO GRADO.

x 2 + (x+4) 2 = 20 Alle equazioni di secondo grado si possono applicare i PRINCIPI di EQUIVALENZA utilizzati per le EQUAZIONI di PRIMO GRADO. EQUAZIONI DI SECONDO GRADO Un'equazione del tipo x 2 + (x+4) 2 = 20 è un'equazione DI SECONDO GRADO IN UNA INCOGNITA. Alle equazioni di secondo grado si possono applicare i PRINCIPI di EQUIVALENZA utilizzati

Dettagli

Informatica (Sistemi di elaborazione delle informazioni)

Informatica (Sistemi di elaborazione delle informazioni) Informatica (Sistemi di elaborazione delle informazioni) Corso di laurea in Scienze dell'educazione Lezione 6 Conversioni di base (parte 2) Mario Alviano Divisione intera Dividendo 2374 16 16 148 7 7 64

Dettagli

Ancora sui criteri di divisibilità di Marco Bono

Ancora sui criteri di divisibilità di Marco Bono Ancora sui criteri di divisibilità di Talvolta può essere utile conoscere i divisori di un numero senza effettuare le divisioni, anche se la diffusione delle calcolatrici elettroniche, sotto varie forme,

Dettagli

Le quattro operazioni fondamentali

Le quattro operazioni fondamentali 1. ADDIZIONE Le quattro operazioni fondamentali Def: Si dice ADDIZIONE l operazione con la quale si calcola la somma; i numeri da addizionare si dicono ADDENDI e il risultato si dice SOMMA o TOTALE. Proprietà:

Dettagli

LEZIONE 1. del 10 ottobre 2011

LEZIONE 1. del 10 ottobre 2011 LEZIONE 1 del 10 ottobre 2011 CAPITOLO 1: Numeri naturali N e numeri interi Z I numeri naturali sono 0, 1, 2, 3, 4, 5, Questi hanno un ordine. Di ogni numero naturale, escluso lo 0, esistono il precedente

Dettagli

per un altro; le più importanti sono quelle di seguito elencate.

per un altro; le più importanti sono quelle di seguito elencate. 2 Abilità di calcolo I quiz raccolti in questo capitolo sono finalizzati alla valutazione della rapidità e della precisione con cui esegui i calcoli matematici. Prima di cimentarti con i test proposti,

Dettagli

Elementi di Algebra e di Matematica Discreta Numeri interi, divisibilità, numerazione in base n

Elementi di Algebra e di Matematica Discreta Numeri interi, divisibilità, numerazione in base n Elementi di Algebra e di Matematica Discreta Numeri interi, divisibilità, numerazione in base n Cristina Turrini UNIMI - 2016/2017 Cristina Turrini (UNIMI - 2016/2017) Elementi di Algebra e di Matematica

Dettagli

Argomenti della lezione. Criteri di divisibilità fattorizzazione m.c.m. e M.C.D. frazioni ed espressioni

Argomenti della lezione. Criteri di divisibilità fattorizzazione m.c.m. e M.C.D. frazioni ed espressioni Argomenti della lezione Criteri di divisibilità fattorizzazione m.c.m. e M.C.D. frazioni ed espressioni Quale cifra deve assumere la lettera c affinché i numeri 821c e 82c1 siano divisibili per 2? Un numero

Dettagli

La divisione di numeri naturali: esercizi svolti

La divisione di numeri naturali: esercizi svolti La divisione di numeri naturali: esercizi svolti Come abbiamo fatto per la sottrazione, ci chiediamo adesso se, effettuata una operazione di moltiplicazione, sia possibile definire (trovare) una operazione

Dettagli

m = a k n k + + a 1 n + a 0 Tale scrittura si chiama rappresentazione del numero m in base n e si indica

m = a k n k + + a 1 n + a 0 Tale scrittura si chiama rappresentazione del numero m in base n e si indica G. Pareschi COMPLEMENTI ED ESEMPI SUI NUMERI INTERI. 1. Divisione con resto di numeri interi 1.1. Divisione con resto. Per evitare fraintendimenti nel caso in cui il numero a del Teorema 0.4 sia negativo,

Dettagli

MAPPA MULTIPLI E DIVISORI

MAPPA MULTIPLI E DIVISORI MAPPA MULTIPLI E DIVISORI 1 MULTIPLI E DIVISORI divisibilità definizione di multiplo criteri di divisibilità definizione di divisore numeri primi e numeri composti scomposizione in fattori primi calcolo

Dettagli

METODI E TECNOLOGIE PER L INSEGNAMENTO DELLA MATEMATICA. Lezione n 4 2016

METODI E TECNOLOGIE PER L INSEGNAMENTO DELLA MATEMATICA. Lezione n 4 2016 METODI E TECNOLOGIE PER L INSEGNAMENTO DELLA MATEMATICA Lezione n 4 2016 GLI INSIEMI NUMERICI N Numeri naturali Z : Numeri interi Q : Numeri razionali R : Numeri reali Q A meno di isomorfismi!!! R 5 π

Dettagli

Criteri di divisibilità

Criteri di divisibilità Criteri di divisibilità Criterio di divisibilità per 9. Supponiamo, ad esempio, di voler dividere 2365 palline a 9 persone. Sappiamo che per stabilire se un numero è divisibile per 9 occorre sommare tutte

Dettagli

Monomi e Polinomi. Monomio Si dice monomio un espressione letterale in cui figurano solo operazioni di moltiplicazione.

Monomi e Polinomi. Monomio Si dice monomio un espressione letterale in cui figurano solo operazioni di moltiplicazione. Monomi e Polinomi Monomio Si dice monomio un espressione letterale in cui figurano solo operazioni di moltiplicazione. ) Sono monomi: 5 a 3 b 2 z; 2 3 a2 c 9 ; +7; 8a b 3 a 2. Non sono monomi: a + 2; xyz

Dettagli

Moltiplicazione. Divisione. Multipli e divisori

Moltiplicazione. Divisione. Multipli e divisori Addizione Sottrazione Potenze Moltiplicazione Divisione Multipli e divisori LE QUATTRO OPERAZIONI Una operazione aritmetica è quel procedimento che fa corrispondere ad una coppia ordinata di numeri (termini

Dettagli

PROPORZIONI 6 : 3 10 : 5 8 : 4 42 : 21...

PROPORZIONI 6 : 3 10 : 5 8 : 4 42 : 21... LE PROPORZIONI I rapporti 6 : 3 10 : 5 8 : 4 42 : 21... sono tutti uguali, a due. Una serie di rapporti uguali costituiscono una catena di rapporti 6: 3 = 10 : 5 = 8 : 4 = 42 : 21 =... L'uguaglianza tra

Dettagli

L insieme dei numeri naturali e le quattro operazioni aritmetiche

L insieme dei numeri naturali e le quattro operazioni aritmetiche n L insieme dei numeri naturali e le quattro operazioni aritmetiche [p. 23] n Le potenze [p. 27] n Espressioni [p. 30] n Divisibilità, numeri primi, MCD e mcm [p. 34] L insieme dei numeri naturali e le

Dettagli

Appunti di Teoria dei numeri e algebra modulare

Appunti di Teoria dei numeri e algebra modulare Appunti di Teoria dei numeri e algebra modulare 29 novembre 2013 0.1 Equazioni di II grado Le soluzioni dell equazione ax 2 + bx + c = 0 con b 2 4ac 0 sono Tra le soluzioni valgono le relazioni x 1,2 =

Dettagli

Insiemistica. Capitolo 1. Prerequisiti. Obiettivi. Gli insiemi numerici di base Divisibilità e fattorizzazione nei numeri interi

Insiemistica. Capitolo 1. Prerequisiti. Obiettivi. Gli insiemi numerici di base Divisibilità e fattorizzazione nei numeri interi Capitolo 1 Insiemistica Prerequisiti Gli insiemi numerici di base Divisibilità e fattorizzazione nei numeri interi Obiettivi Sapere utilizzare opportunamente le diverse rappresentazioni insiemistiche Sapere

Dettagli

Liceo scientifico Pascal Manerbio Esercizi di matematica per le vacanze estive

Liceo scientifico Pascal Manerbio Esercizi di matematica per le vacanze estive Di alcuni esercizi non verranno riportati i risultati perché renderebbero inutile lo svolgimento degli stessi. Gli esercizi seguenti risulteranno utili se i calcoli saranno eseguiti mentalmente applicando

Dettagli

La scomposizione in fattori primi

La scomposizione in fattori primi La scomposizione in fattori primi In matematica la fattorizzazione è la riduzione in fattori: fattorizzare un numero n significa trovare un insieme di numeri {a0, a1, a2, a3 } tali che il loro prodotto

Dettagli

TEORIA DEI NUMERI. Progetto Giochi matematici. Mail:

TEORIA DEI NUMERI. Progetto Giochi matematici. Mail: TEORIA DEI NUMERI Progetto Giochi matematici Referente: prof. Antonio Fanelli Mail: fanelli.xy@gmail.com TEORIA DEI NUMERI Parte della Matematica che studia i numeri naturali ed interi e le relative proprietà.

Dettagli

4 0 = 4 2 = 4 4 = 4 6 = 0.

4 0 = 4 2 = 4 4 = 4 6 = 0. Elementi di Algebra e Logica 2008. Esercizi 4. Gruppi, anelli e campi. 1. Determinare la tabella additiva e la tabella moltiplicativa di Z 6. (a) Verificare dalla tabella moltiplicativa di Z 6 che esistono

Dettagli

La divisione di numeri naturali: esercizi svolti

La divisione di numeri naturali: esercizi svolti La divisione di numeri naturali: esercizi svolti Come abbiamo fatto per la sottrazione, ci chiediamo adesso se, effettuata una operazione di moltiplicazione, sia possibile definire (trovare) una operazione

Dettagli

Le quattro operazioni fondamentali

Le quattro operazioni fondamentali SINTESI Unità 3 Le quattro operazioni fondamentali Addizione Si dice somma di due numeri naturali il numero che si ottiene contando di seguito al primo tanti numeri consecutivi quante sono le unità del

Dettagli

Multipli Divisori. { } =.

Multipli Divisori. { } =. Multipli Divisori. 1) I multipli di un numero. ( Teoria 31 31; Esercizi 117 120) M n = es. M 7 = = Definisci per elencazione i seguenti insiemi: M 4 = ; M 6 = ; = Alcune situazioni particolari: a) Definisci

Dettagli

1.5 DIVISIONE TRA DUE POLINOMI

1.5 DIVISIONE TRA DUE POLINOMI Matematica C Algebra. Le basi del calcolo letterale.5 Divisione tra due polinomi..5 DIVISIONE TRA DUE POLINOMI Introduzione Ricordiamo la divisione tra due numeri, per esempio 47:4. Si tratta di trovare

Dettagli

Soluzioni della verifica scritta 1 B Scientifico 24/01/2009

Soluzioni della verifica scritta 1 B Scientifico 24/01/2009 Soluzioni della verifica scritta 1 B Scientifico 4/01/009 Esercizio 1. Il polinomio x +x 4 5 xy + y non èordinatoné rispetto a x nè rispetto a y. E completo rispetto a y ma non rispetto a x. Nonè omogeneo.

Dettagli

LEZIONE N 3 METODI E TECNOLOGIE PER L INSEGNAMENTO DELLA MATEMATICA

LEZIONE N 3 METODI E TECNOLOGIE PER L INSEGNAMENTO DELLA MATEMATICA LEZIONE N 3 METODI E TECNOLOGIE PER L INSEGNAMENTO DELLA MATEMATICA GLI INSIEMI NUMERICI N Numeri naturali Z : Numeri interi Q : Numeri razionali R : Numeri reali Q A meno di isomorfismi!!! R 5 π 2 3 11

Dettagli

Scomposizione in fattori di un polinomio. Prof. Walter Pugliese

Scomposizione in fattori di un polinomio. Prof. Walter Pugliese Scomposizione in fattori di un polinomio Prof. Walter Pugliese La scomposizione in fattori dei polinomi Scomporre in fattori un polinomio significa scriverlo sotto forma di prodotto di polinomi di grado

Dettagli

Preparazione Olimpiadi della Matematica

Preparazione Olimpiadi della Matematica Preparazione Olimpiadi della Matematica Marco Vita Liceo Scientifico G. Galilei Ancona 18 novembre 2015 ( Liceo Scientifico G. Galilei Ancona) Preparazione Olimpiadi della Matematica 18 novembre 2015 1

Dettagli

1. La funzione f(x) deve avere uno zero in corrispondenza di x=3

1. La funzione f(x) deve avere uno zero in corrispondenza di x=3 PROBLEMA 1: Il porta scarpe da viaggio Un artigiano vuole realizzare contenitori da viaggio per scarpe e ipotizza contenitori con una base piana e un'altezza variabile sagomata che si adatti alla forma

Dettagli

Parte Seconda. Prova di selezione culturale

Parte Seconda. Prova di selezione culturale Parte Seconda Prova di selezione culturale TEORIA DEGLI INSIEMI MATEMATICA ARITMETICA Insieme = gruppo di elementi di cui si può stabilire inequivocabilmente almeno una caratteristica in comune. Esempi:

Dettagli

= < < < < < Matematica 1

= < < < < < Matematica  1 NUMERI NATURALI N I numeri naturali sono: 0,1,2,3,4,5,6,7,8,9,10,11,12,13,... L insieme dei numeri naturali è indicato con la lettera. Si ha cioè: N= 0,1,2,3,4,5,6,7,.... L insieme dei naturali privato

Dettagli

Scomposizione in fattori

Scomposizione in fattori Corso di Laurea: Biologia Tutor: Marta Floris, Max Artizzu PRECORSI DI MATEMATICA 1 Introduzione Scomposizione in fattori La scomposizione in fattori dei polinomi assume un importanza speciale quando si

Dettagli

Insiemi numerici. Alcune definizioni. La retta dei numeri

Insiemi numerici. Alcune definizioni. La retta dei numeri Insiemi numerici Q Z N 0 1 1 1 4 4 N = 0,1,,,4, = insieme dei numeri naturali Z = insieme dei numeri interi (formato dall unione dei numeri naturali e dei numeri interi negativi) Q = insieme dei numeri

Dettagli

La divisione senza resto

La divisione senza resto La divisione senza resto Una maestra ha 12 cioccolatini che distribuisce ai suoi alunni. Se ogni alunno riceve 3 cioccolatini, quanti sono gli alunni? Dividiamo i cioccolatini in gruppi di 3. Lo schema

Dettagli

Le equazioni lineari

Le equazioni lineari Perchè bisogna saper risolvere delle equazioni? Perché le equazioni servono a risolvere dei problemi! Le equazioni lineari Un problema è una proposizione che richiede di determinare i valori di alcune

Dettagli

Soluzioni verifica scritta 1A Scientifico 20/01/2009

Soluzioni verifica scritta 1A Scientifico 20/01/2009 Soluzioni verifica scritta 1A Scientifico 0/01/009 Esercizio 1 68 = 3 + ; = 11 + 0 MCD68 ; ) = ultimo resto 0) 68 68 mcm68 ; ) = = =68 11 = 68 10 + 1) = 680 + 68 = 748 MCD68; ) Esercizio Possiamo considerare

Dettagli

35 è congruo a 11 modulo 12

35 è congruo a 11 modulo 12 ARITMETICA MODULARE Scegliamo un numero m che chiameremo MODULO Identifichiamo ogni altro numero con il suo resto nella divisione per m Tutti i numeri col medesimo resto si trovano insieme nella classe

Dettagli

1 L estrazione di radice

1 L estrazione di radice 1 L estrazione di radice Consideriamo la potenza 3 2 = 9 di cui conosciamo: Esponente 3 2 = 9 Valore della potenza Base L operazione di radice quadrata consiste nel chiedersi qual è quel numero x che elevato

Dettagli

Esercizi svolti di aritmetica

Esercizi svolti di aritmetica 1 Liceo Carducci Volterra - Classi 1A, 1B Scientifico - Francesco Daddi - 15 gennaio 29 Esercizi svolti di aritmetica Esercizio 1. Dimostrare che il quadrato di un numero intero che finisce per 25 finisce

Dettagli

Istituzioni di Matematiche (V): Seconda Prova Parziale, 13 Gennaio 2015 (versione 1)

Istituzioni di Matematiche (V): Seconda Prova Parziale, 13 Gennaio 2015 (versione 1) Istituzioni di Matematiche (V): Seconda Prova Parziale, 13 Gennaio 015 (versione 1) Nome e Cognome: Numero di matricola: Esercizio 1 Esercizio Esercizio 3 Esercizio 4 Esercizio 5 Totale 4 6 6 8 6 Tutte

Dettagli

ESERCITAZIONE N.8. Il calcolatore ad orologio di Gauss. L aritmetica dell orologio di Gauss. Operazioni e calcoli in Z n

ESERCITAZIONE N.8. Il calcolatore ad orologio di Gauss. L aritmetica dell orologio di Gauss. Operazioni e calcoli in Z n Il calcolatore ad orologio di Gauss ESERCITAZIONE N.8 18 novembre L aritmetica dell orologio di Gauss Operazioni e calcoli in Z n 1, 1, -11, sono tra loro equivalenti ( modulo 12 ) Rosalba Barattero Sono

Dettagli

L insieme dei numeri naturali N Prof. Walter Pugliese

L insieme dei numeri naturali N Prof. Walter Pugliese L insieme dei numeri naturali N Prof. Walter Pugliese Che cosa sono i numeri naturali I numeri naturali sono: 0,1,2,3,4,5,6,7,8,9,10, Sono chiamati così perché sono stati i primi numeri che abbiamo conosciuto,

Dettagli

Piccolo teorema di Fermat

Piccolo teorema di Fermat Piccolo teorema di Fermat Proposizione Siano x, y Z, p N, p primo. Allora (x + y) p x p + y p (mod p). Piccolo teorema di Fermat Proposizione Siano x, y Z, p N, p primo. Allora (x + y) p x p + y p (mod

Dettagli

Le quattro operazioni fondamentali

Le quattro operazioni fondamentali Le quattro operazioni fondamentali ADDIZIONE Def: Si dice ADDIZIONE l operazione con la quale si calcola la somma; i numeri da addizionare si dicono ADDENDI e il risultato si dice SOMMA o TOTALE. Proprietà:

Dettagli

Quando possiamo dire che un numero a è sottomultiplo del numero b? Al posto dei puntini inserisci è divisibile per oppure è divisore di

Quando possiamo dire che un numero a è sottomultiplo del numero b? Al posto dei puntini inserisci è divisibile per oppure è divisore di ESERCIZI Quando possiamo dire che un numero a è divisibile per un numero b? Quando possiamo dire che un numero a è sottomultiplo del numero b? Quando un numero si dice primo? Al posto dei puntini inserisci

Dettagli

Richiami di aritmetica (1)

Richiami di aritmetica (1) Richiami di aritmetica (1) Operazioni fondamentali e loro proprietà Elevamento a potenza e proprietà potenze Espressioni aritmetiche Scomposizione: M.C.D. e m.c.m Materia: Matematica Autore: Mario De Leo

Dettagli

Frazioni e numeri decimali

Frazioni e numeri decimali Frazioni e numeri decimali Sappiamo che uno stesso numero razionale può essere rappresentato sia sotto forma di frazione (in infiniti modi tra loro equivalenti) che sotto forma di numero decimale. Precisiamo

Dettagli

posso assicurare che le mie sono ancora maggiori

posso assicurare che le mie sono ancora maggiori PROF. SSA G. CAFAGNA CLASSI: 1 B, 1 G, 1 I, 1 M, 1 N Non preoccuparti delle difficoltà che incontri in matematica, ti posso assicurare che le mie sono ancora maggiori (Albert Einstein) ADDIZIONE I due

Dettagli

Capitolo 2 Svolgimento degli esercizi proposti

Capitolo 2 Svolgimento degli esercizi proposti Copyright 010 - The McGraw-Hill Companies srl Capitolo Svolgimento degli esercizi proposti 1. Vi sono solo termini contenenti potenze di x, e tutti hanno coefficiente numerico uguale a 1, perciò raccogliamo

Dettagli

La costruzione dei numeri naturali nodi, attività, materiali DIVISIBILITÀ MULTIPLI E DIVISORI. Margherita D Onofrio Roma 26 ottobre 2016

La costruzione dei numeri naturali nodi, attività, materiali DIVISIBILITÀ MULTIPLI E DIVISORI. Margherita D Onofrio Roma 26 ottobre 2016 La costruzione dei numeri naturali nodi, attività, materiali DIVISIBILITÀ MULTIPLI E DIVISORI Margherita D Onofrio Roma 26 ottobre 2016 La divisibilità è un tema che contribuisce alla «sensibilità numerica»,

Dettagli

Geometria e Matematica di Base. Foglio di esercizi 1, con soluzioni

Geometria e Matematica di Base. Foglio di esercizi 1, con soluzioni Geometria e Matematica di Base. Foglio di esercizi 1, con soluzioni Maria Rita D Orio, Giada Moretti, Daniele Vitacolonna Nota! Useremo per tutti gli esercizi a = 5, b = 9. 1 Esercizi di logica Esercizio

Dettagli

Il primo insieme numerico che abbiamo scoperto è stato l insieme dei numeri naturali, l insieme N. L impossibilità di trovare in N il quoziente tra

Il primo insieme numerico che abbiamo scoperto è stato l insieme dei numeri naturali, l insieme N. L impossibilità di trovare in N il quoziente tra Il primo insieme numerico che abbiamo scoperto è stato l insieme dei numeri naturali, l insieme N. L impossibilità di trovare in N il quoziente tra due numeri naturali ci ha portati a vedere la frazione

Dettagli

DIVISIBILITÀ E FATTORIZZAZIONE. MULTIPLI E DIVISORI.

DIVISIBILITÀ E FATTORIZZAZIONE. MULTIPLI E DIVISORI. MULTIPLI E DIVISORI DIVISIBILITÀ E FATTORIZZAZIONE MCD e mcm per ripassare Multipli di un numero sono tutti i numeri che si ottengono moltiplicando il numero dato per la serie dei numeri naturali I multipli

Dettagli

MATEMATICA LEZIONE 9 POTENZE DI NUMERI RELATIVI. (Prof. Daniele Baldissin)

MATEMATICA LEZIONE 9 POTENZE DI NUMERI RELATIVI. (Prof. Daniele Baldissin) MATEMATICA LEZIONE 9 ARGOMENTI POTENZE DI NUMERI RELATIVI (Prof. Daniele Baldissin) 1) Definizione di potenza di un numero relativo 2) Le proprietà delle potenze (un ripasso) Prendiamo un numero relativo

Dettagli

M 5 M 10 = {.. } Definisci per estensione i seguenti insiemi e rappresenta con il diagramma di Venn:

M 5 M 10 = {.. } Definisci per estensione i seguenti insiemi e rappresenta con il diagramma di Venn: Multipli Divisori. 1) I multipli di un numero. (Teoria 31 31; Esercizi 117 120) Mn = {x N x sia un multiplo di n} es. M7 = {x N x sia un multiplo di 7} = {.. } Definisci per elencazione i seguenti insiemi:

Dettagli

1.2 MONOMI E OPERAZIONI CON I MONOMI

1.2 MONOMI E OPERAZIONI CON I MONOMI Matematica C Algebra. Le basi del calcolo letterale. Monomi e operazioni con i monomi. MONOMI E OPERAZIONI CON I MONOMI... L insieme dei monomi D ora in poi quando scriveremo un espressione letterale in

Dettagli

SISTEMI DI NUMERAZIONE POSIZIONALI

SISTEMI DI NUMERAZIONE POSIZIONALI SISTEMI DI NUMERAZIONE POSIZIONALI I numeri sono entità matematiche astratte e vanno distinti dalla loro rappresentazione. Definiamo con sistema di numerazione un sistema utilizzato per esprimere i numeri

Dettagli

Il Sistema di numerazione decimale

Il Sistema di numerazione decimale Il Sistema di numerazione decimale Il NUMERO è un oggetto astratto, rappresentato da un simbolo (o cifra) ed è usato per contare e misurare. I numeri usati per contare, 0,1,2,3,4,5,. sono detti NUMERI

Dettagli

Operatori di confronto:

Operatori di confronto: Operatori di confronto: confrontano tra loro due numeri e come risultato danno come risposta o operatore si legge esempio risposta = uguale a diverso da > maggiore di < minore di maggiore o uguale a minore

Dettagli

I criteri di divisibilita: magie della aritmetica modulare. Silvana Rinauro

I criteri di divisibilita: magie della aritmetica modulare. Silvana Rinauro I criteri di divisibilita: magie della aritmetica modulare Silvana Rinauro Si vuole risolvere il seguente problema: se oggi è mercoledì, quale giorno della settimana sarà fra 100 giorni? Per rispondere

Dettagli

Insiemi numerici. Teoria in sintesi NUMERI NATURALI

Insiemi numerici. Teoria in sintesi NUMERI NATURALI Insiemi numerici Teoria in sintesi NUMERI NATURALI Una delle prime attività matematiche che viene esercitata è il contare gli elementi di un dato insieme. I numeri con cui si conta 0,,,. sono i numeri

Dettagli

M.C.D. e m.c.m. Conoscenze

M.C.D. e m.c.m. Conoscenze M.C.D. e m.c.m. Conoscenze 1. Segna con una crocetta le affermazioni esatte: Il M.C.D. tra due numeri a e b è: a. il più piccolo multiplo comune tra i numeri a e b b. il più grande multiplo comune tra

Dettagli

CORSO ZERO DI MATEMATICA

CORSO ZERO DI MATEMATICA UNIVERSITÀ DEGLI STUDI DI PALERMO FACOLTÀ DI ARCHITETTURA CORSO ZERO DI MATEMATICA CALCOLO LETTERALE Dr. Erasmo Modica erasmo@galois.it MONOMI In una formula si dicono variabili le lettere alle quali può

Dettagli

Sfide di Matematica. Corso PON Competenze per lo sviluppo Liceo A. Galizia Nocera Inferiore. Ing. Ivano Coccorullo Prof.ssa Daniella Garreffa

Sfide di Matematica. Corso PON Competenze per lo sviluppo Liceo A. Galizia Nocera Inferiore. Ing. Ivano Coccorullo Prof.ssa Daniella Garreffa Corso PON Competenze per lo sviluppo Liceo A. Galizia Nocera Inferiore Ing. Ivano Coccorullo Prof.ssa Daniella Garreffa Algebra ALGEBRA Algebra Criteri di divisibilità Algebra Criteri di divisibilità per

Dettagli

Equazioni di secondo grado Prof. Walter Pugliese

Equazioni di secondo grado Prof. Walter Pugliese Equazioni di secondo grado Prof. Walter Pugliese La forma normale di un equazione di secondo grado Un equazione è di secondo grado se, dopo aver applicato i principi di equivalenza già studiati per le

Dettagli

Esponente 32 = 9 Valore della potenza Base 9 = 3

Esponente 32 = 9 Valore della potenza Base 9 = 3 1 L estrazione di radice Consideriamo la potenza 3 2 = 9 di cui conosciamo: Esponente 3 2 = 9 Valore della potenza Base L operazione di radice consiste nel chiedersi qual è quel numero x che elevato alla

Dettagli

Le quattro operazioni fondamentali

Le quattro operazioni fondamentali Le quattro operazioni fondamentali ADDIZIONE Def: Si dice ADDIZIONE l operazione con la quale si calcola la somma; i numeri da addizionare si dicono ADDENDI e il risultato si dice SOMMA o TOTALE. Proprietà:

Dettagli

1. (A1) Quali tra le seguenti uguaglianze sono vere? 2. (A1) Una sola delle seguenti affermazioni è vera. Quale?

1. (A1) Quali tra le seguenti uguaglianze sono vere? 2. (A1) Una sola delle seguenti affermazioni è vera. Quale? M ============= (A) Aritmetica ===================== rappresentazione dei numeri algebra dei numeri proprietà delle operazioni. (A) Quali tra le seguenti uguaglianze sono vere? e. 2 + 2 2 2 + = 2 2 + =

Dettagli

1. Esistono numeri della forma , ottenuti cioè ripetendo le cifre 2006 un certo numero di volte, che siano quadrati perfetti?

1. Esistono numeri della forma , ottenuti cioè ripetendo le cifre 2006 un certo numero di volte, che siano quadrati perfetti? 1 Congruenze 1. Esistono numeri della forma 200620062006...2006, ottenuti cioè ripetendo le cifre 2006 un certo numero di volte, che siano quadrati perfetti? No, in quanto tutti questi numeri sono congrui

Dettagli

1 La frazione come numero razionale assoluto

1 La frazione come numero razionale assoluto 1 La frazione come numero razionale assoluto DEFINIZIONE. La frazione che dà origine ad un numero decimale si dice frazione generatrice. Consideriamo le frazioni e determiniamo i corrispondenti valori

Dettagli

LEZIONE DI MATEMATICA SISTEMI DI NUMERAZIONE. (Prof. Daniele Baldissin)

LEZIONE DI MATEMATICA SISTEMI DI NUMERAZIONE. (Prof. Daniele Baldissin) LEZIONE DI MATEMATICA SISTEMI DI NUMERAZIONE (Prof. Daniele Baldissin) L'uomo usa normalmente il sistema di numerazione decimale, probabilmente perché ha dieci dita. Il sistema decimale è collegato direttamente

Dettagli

I NUMERI NATURALI E RELATIVI

I NUMERI NATURALI E RELATIVI Ministero dell Istruzione, dell Università e della Ricerca ISTITUTO DI ISTRUZIONE SUPERIORE B. PASCAL PRE - CORSO DI MATEMATICA I NUMERI NATURALI E RELATIVI DOCENTI: PROF.SSA DAMIANI PROF.SSA DE FEO PROF.

Dettagli

CONGRUENZE. proprietà delle congruenze: la congruenza è una relazione di equivalenza inoltre: Criteri di divisibilità

CONGRUENZE. proprietà delle congruenze: la congruenza è una relazione di equivalenza inoltre: Criteri di divisibilità CONGRUENZE I) Definizione: due numeri naturali a e b si dicono congrui modulo un numero naturale p se hanno lo stesso resto nella divisione intera per p. Si scrive a b mod p oppure a b (p) proprietà delle

Dettagli

4 + 7 = 11. Possiamo quindi dire che:

4 + 7 = 11. Possiamo quindi dire che: Consideriamo due numeri naturali, per esempio 4 e 7. Contando successivamente, dopo le unità del primo, le unità del secondo si esegue l operazione aritmetica detta addizione, il cui simbolo è + ; 4 +

Dettagli

3. SCOMPOSIZIONI E FRAZIONI

3. SCOMPOSIZIONI E FRAZIONI MATEMATICA C3 ALGEBRA 3. SCOMPOSIZIONI E FRAZIONI Cobalt3, Wicker Composition http://www.flickr.com/photos/cobalt/3945539/ SCOMPOSIZIONI SCOMPOSIZIONE IN FATTORI. Cosa significa scomporre in fattori Scomporre

Dettagli

nota 1. Aritmetica sui numeri interi.

nota 1. Aritmetica sui numeri interi. nota 1. Aritmetica sui numeri interi. Numeri interi. Numeri primi. L algoritmo di Euclide per il calcolo del mcd. Equazioni diofantee di primo grado. Congruenze. Il Teorema Cinese del Resto. 1 0. Numeri

Dettagli

Dott. Dallavalle Riccardo UNITA DIATTICA nr. 5 Gli argomenti di oggi:

Dott. Dallavalle Riccardo UNITA DIATTICA nr. 5 Gli argomenti di oggi: Gli argomenti di oggi: Le operazioni matematiche con i numeri INTERI RELATIVI Come facciamo a fare la ADDIZIONE con i numeri interi relativi? Consideriamo un esempio: (+5) + (+7) =? Come potrei fare? Prova

Dettagli

Definizione. Siano a, b Z. Si dice che a divide b se esiste un intero c Z tale che. b = ac.

Definizione. Siano a, b Z. Si dice che a divide b se esiste un intero c Z tale che. b = ac. 0. Numeri interi. Sia Z = {..., 3, 2, 1, 0, 1, 2, 3,...} l insieme dei numeri interi e sia N = {1, 2, 3,...} il sottoinsieme dei numeri interi positivi. Sappiamo bene come addizionare, sottrarre e moltiplicare

Dettagli

Le tecniche di calcolo mentale rapido usano alcune proprietà delle operazioni. Le principali proprietà utilizzate sono: 3 + 2 = 2 + 3 3 2 = 2 3

Le tecniche di calcolo mentale rapido usano alcune proprietà delle operazioni. Le principali proprietà utilizzate sono: 3 + 2 = 2 + 3 3 2 = 2 3 Calcolo mentale rapido Proprietà delle operazioni Le tecniche di calcolo mentale rapido usano alcune proprietà delle operazioni. Le principali proprietà utilizzate sono: Proprietà commutativa dell addizione

Dettagli

COMPITI VACANZE ESTIVE 2017 MATEMATICA Scuola Media Montessori Cardano al Campo (VA)

COMPITI VACANZE ESTIVE 2017 MATEMATICA Scuola Media Montessori Cardano al Campo (VA) COMPITI VACANZE ESTIVE 2017 MATEMATICA Scuola Media Montessori Cardano al Campo (VA) Nel presente documento sono elencati gli esercizi da svolgere nel corso delle vacanze estive 2017 da parte degli studenti

Dettagli

Liceo Scientifico Statale S. Cannizzaro Palermo Classe III D EQUAZIONI POLINOMIALI Divisione di polinomi, teorema del resto e teorema di Ruffini

Liceo Scientifico Statale S. Cannizzaro Palermo Classe III D EQUAZIONI POLINOMIALI Divisione di polinomi, teorema del resto e teorema di Ruffini Divisione di polinomi, teorema del resto e teorema di Ruffini Teorema (della divisione con resto tra due polinomi in una variabile). Dati due polinomi A x e B x, con B x 0, esistono sempre, e sono unici,

Dettagli

www.matematicamente.it Verifica classe II liceo scientifico: equazioni, disequazioni, problemi di 2 grado 1

www.matematicamente.it Verifica classe II liceo scientifico: equazioni, disequazioni, problemi di 2 grado 1 www.matematicamente.it Verifica classe II liceo scientifico: equazioni, disequazioni, problemi di grado 1 Verifica di matematica, classe II liceo scientifico Equazioni di secondo grado, equazioni frazionarie,

Dettagli

Scomposizione in fattori

Scomposizione in fattori Scomposizione in fattori 13 Scomporre un polinomio in fattori significa scrivere il polinomio come il prodotto di polinomi e monomi che moltiplicati tra loro danno come risultato il polinomio stesso. Si

Dettagli

623 = , 413 = , 210 = , 203 =

623 = , 413 = , 210 = , 203 = Elementi di Algebra e Logica 2008. 3. Aritmetica dei numeri interi. 1. Determinare tutti i numeri primi 100 p 120. Sol. :) :) :) 2. (i) Dimostrare che se n 2 non è primo, allora esiste un primo p che divide

Dettagli