Esercizi sui sistemi trifase
|
|
|
- Renzo Conti
- 9 anni fa
- Visualizzazioni
Transcript
1 Esercizi sui sistemi trifase Esercizio : Tre carichi, collegati ad una linea trifase che rende disponibile una terna di tensioni concatenate simmetrica e diretta (regime AC, frequenza 50 Hz, valore efficace 80V), sono costituiti come in figura. Calcolare le potenze attiva e reattiva assorbite dai carichi e U, il fattore di potenza del carico U = +U +U e la capacità necessaria a rifasare a cos Φ = 0.9 l utilizzatore U con una terna di condensatori a triangolo. Ω Ω Ω U U P = 8 kw cos φ = 0.9 Q > 0 Soluzione I carichi ed U sono, rispettivamente, un carico a triangolo equilibrato di impedenze Z = 4 +7 j ed un carico a stella equilibrato di impedenze Z Y = 5 + j. Le potenze complesse assorbite sono pari a: N N ( 80) = = j P = 6.6 kw, Q = 4.85 kvar 4 7 j + ( 0) = = j P = 4. kw, Q = 0. kvar 5 j + La potenza apparente del carico U è N = P /cos φ = 8888 VA, quindi la potenza reattiva è pari a Q = N P 87 VAR, e la potenza complessa è pari a N = j. Per l additività = delle potenze, la potenza complessa assorbita dal carico U = +U +U è pari a N = N + N + N = j. Quindi complessivamente i tre carichi assorbono P = 8.9 kw e Q = 9 kvar P P con un fattore di potenza pari a: cos Φ = = = N P + Q A parità di potenza attiva assorbita, se il carico U avesse un fattore di potenza 0.9 la potenza reattiva, quindi il banco di condensatori deve assorbire assorbita sarebbe Q = ( P / 0.9) P = 4 kvar una potenza Q C = Q' Q = 5 kvar. Dato che i condensatori sono a triangolo Q C = ωc V e quindi risulta C = F 7 µf.
2 Esercizio : Due carichi, collegati ad una linea trifase che rende disponibile una terna di tensioni concatenate simmetrica e diretta (regime AC, frequenza 50 Hz, valore efficace 400 V), sono costituiti come in figura (sono indicate le reattanze a 50 Hz). Calcolare: il valore efficace della corrente I, il valore efficace della corrente I R, il fattore di potenza del carico U = +U, e la capacità C Y necessaria a rifasare a cos Φ = 0.9 l utilizzatore U = + U con una terna di condensatori a stella. Suggerimento: visto che la stella è equilibrata ogni fase è soggetta alla corrispondente tensione principale di fase. Si può quindi fare riferimento al circuito equivalente per una fase. I U P = kw cos φ = 0.85 Q > 0 0 Ω Ω 0 Ω Ω 0 Ω Ω I R I = 9. A I R = 7. A cos Φ U = C Y = 4 µf Il carico è un carico a stella equilibrato, pertanto la tensioni sulle tre fasi sono le tensioni principali di fase, con valore efficace E = V/ = 400/ = 0 V e fasi 0, 0 e 0. Si può quindi fare riferimento al circuito equivalente di una fase (E,0 = 0 exp(j0)). I j + 40j 0 L impedenza equivalente del parallelo è: Z p = 0 (40j)/(0+40j) = j. Quindi la corrente I è data da: I = 0/(j +Z p ) E quindi I = 0/ j +Z p = 0/ ( ) = 9. A La corrente I R è data da: I R = V AB /0 = Z p I/0. Quindi I R = Z p I /0 = 7.87 A ( 0) La potenza complessa assorbita da è pari a: N = = j j La potenza apparente del carico U è pari a: N = 000/0.85 = 5 VA Quindi Q = (5 000 ) = 40 VAR e N = j La potenza complessa assorbita da U è pari a: N U = N + N = j E dunque cos Φ U = P U / N U = 6779/ ( ) = La potenza apparente del carico rifasato è pari a: N' = 6779/0.9 = 75 VA Quindi Q' = ( ) = 8 VAR e la potenza reattiva che devono assorbire i condensatori è quindi Q C = Q' Q U = 8 5 = 09 VAR. Dato che Q C = ωc Y E si ha: C Y = Q C /(ωe ) = 09/( ) = F = 40.9 µf A B I R 0 Esercizio : Calcolare il fattore di potenza del carico + U. I carichi sono alimentati da una rete trifase (in AC) simmetrica diretta con un valore efficace della tensione concatenata pari a 400 V alla frequenza di 50 Hz. Suggerimento: si noti che i due resistori sono soggetti alla tensione concatenata.
3 50 Ω 50 Ω U 00 mh 00 mh 00 mh P = 0. kw cos φ = 0.5 Q < 0 cos Φ = 0.9 Il carico non è un carico a stella né un carico a triangolo. Si può risolvere, nel dominio simbolico, rappresentando la rete tramite generatori a stella o a triangolo, per dedurre le correnti e le potenze assorbite. Oppure si possono utilizzare le trasformazioni stella-triangolo per determinare un carico equivalente a triangolo la cui soluzione è semplice (ogni impedenza è soggetta ad una tensione concatenata, quindi le correnti e le potenze complesse assorbite sono immediatamente calcolabili). Tuttavia è più semplice notare che, per come è costituito, può essere rappresentato come segue: Il carico quindi è costituito da due resistori soggetti a tensioni concatenate (400 V) ed una stella equilibrata ( reattanze uguali, ωl =., soggette alle tensioni principali di fase 400/ = 0 V) Grazie all additività delle potenze in AC, la potenza complessa assorbita da è pari a: ( 400) ( 0) N = + j = j 50.4 Il carico U è ohmico-capacitivo. P = 00 W, N = 00/0.5 = 000 VA. La potenza reattiva assorbita è quindi Q = ( ) = 977 VAR ed N = j. La potenza complessa assorbita è pari a: N = N + N = j. Quindi cos Φ = P/ N = 6700/ ( ) = j.4 j.4 j Esercizio 4: Calcolare i fattori di potenza del carico, del carico U e del carico U = + U. I carichi sono alimentati da una rete trifase (in regime AC) simmetrica diretta. Nota: sullo schema del circuito sono riportati direttamente i valori delle reattanze associate agli induttori (ωl) ed ai condensatori (/ωc in modulo) alla U 0 Ω 0 Ω 0 Ω Soluzione cos Φ = 0.45 cos Φ = 0.7 cos Φ = 0.84
4 Il carico è un carico a stella equilibrato, pertanto la tensioni sulle tre fasi sono le tensioni principali di fase, con valore efficace E = V/. L impedenza di ogni fase è Z = 0 + 0j. Quindi la potenza complessa assorbita da è pari a: N = E /Z* = V /Z* = V /(0 0j) = V (+j)/50, da cui P = V /50 ed N = V / 500. E dunque cos Φ = P /N = / 5 = (si noti che il valore di V non influisce sul fattore di potenza: come nel caso monofase il cos Φ dipende solo dal carico). Il carico U è un carico a triangolo equilibrato, pertanto la tensioni sulle tre impedenze Z = 0 0j sono le tensioni concatenate, con valore efficace V. Quindi la potenza complessa assorbita da U è pari a: N = V /Z * = V /(0 + 0j) = V ( j)/0, da cui P = V /0 ed N = V / 00. E dunque cos Φ = P /N = / = Infine la potenza complessa assorbita dai due carichi è pari a: N = N + N = V ( j) + V ( j) = V (0.7 0.j). Quindi cos Φ = P/ N = 0.7/ ( ) = (si noti che ovviamente N = 0.05V = N + N N + N = V + 0.V = 0.568V ) Esercizio 5: Calcolare il fattore di potenza del carico illustrato. La rete trifase (in regime AC) è simmetrica diretta. Suggerimento: semplificare il circuito notando che i rami delle due stelle sono a due a due collegati in parallelo. cos Φ = 0.8 In figura si rappresenta il carico trifase (nel dominio simbolico) evidenziando i collegamenti in parallelo fra le impedenze. A destra è mostrato lo stesso carico in cui si sono sostituiti ai paralleli le impedenze equivalenti. Il carico trifase è quindi costituito da una terna di impedenze a stella dello stesso valore. Il carico è quindi equilibrato e la potenza complessa assorbita è: E E N = = ( + j) j 9E E P P =, N = cos Φ = = = 0. 8 N + j + j + j
5 Esercizio 6: Calcolare i valori efficaci delle correnti su ogni fase del carico di figura; calcolare la potenza attiva e la potenza reattiva assorbite; calcolare il fattore di potenza. La rete trifase con neutro (in regime AC) è simmetrica diretta con un valore efficace della tensione concatenata pari a 80 V alla frequenza di 50 Hz. n U Ω Ω I = 8.8 A I = 6.9 A I = 44 A P =. kw Q = 9.7 kvar Assorbite cos Φ = 0.75 Ogni impedenza del carico è collegata tra una fase ed il neutro. Pertanto sono soggette alle tensioni principali di fase, con valore efficace E = V/ = 80/ = 0 V. Quindi i valori efficaci delle correnti sono: I = 0/ 4+7j = 0/ (4 +7 ) = 8.8 A, I = 0/ +5j = 0/ ( +5 ) = 6.9 A, I = 0/ +4j = 0/ ( +4 ) = 44 A. Grazie all additività delle potenze in AC, la potenza complessa assorbita da U è pari a N = N + N + N = 0 /(4 7j) + 0 /( 5j) +0 /( 4j) = j. Quindi P =. kw, Q = 9.7 kvar. Infine cos Φ = P/ (P +Q ) = Esercizio 7: Un carico trifase, collegato ad una linea trifase che rende disponibile una terna di tensioni concatenate simmetrica e diretta (AC, frequenza 50 Hz, valore efficace 80 V), è costituito da tre impedenze uguali collegate a triangolo. Ciascuna impedenza del carico è costituita come in figura. Calcolare il valore efficace della corrente circolante su ogni condensatore, la potenza attiva assorbita dal carico trifase, il fattore di potenza del carico, la capacità necessaria a rifasare a cos Φ = 0.9 l utilizzatore con una terna di condensatori a stella. 50 mh µf 4 I C =.54 A P = 8.8 kw cos Φ = 0.46 C Y = 4 µf Le reattanze induttiva e capacitiva sono ωl = 5.7 Ω, /ωc = Il condensatore è in parallelo al resistore da 4, quindi l impedenza equivalente del parallelo è Z p = /(/45 +/( 96.46j)) = /( j) = j. Questa è in serie al resistore da, e l impedenza equivalente della serie è Z s = 5 + Z p = j. Infine Z s è in parallelo all induttore, quindi l impedenza di ogni fase del triangolo è pari a Z = /(/(4.9 7.j) +/(5.7j)) = /( j) = j. Il valore efficace della corrente circolante su ogni condensatore è I C = jωc V p = jωc Z p (V/Z s ) = ωcv Z p / Z s =.54 A. La potenza complessa assorbita dal carico è N = V /Z * = j, quindi P = 8.8 kw e cos Φ = P/ N = Infine Q' = ((P/0.9) P ) = 480 VAR, da cui Q C = Q' Q = 960 VAR = ωc Y E. Dato che E = V/, si ha anche C Y = Q C /(ωv ) = 960/( ) = 4 µf.
Esercizi sui sistemi trifase
Esercizi sui sistemi trifase Esercizio : Tre carichi, collegati ad una linea trifase che rende disponibile una terna di tensioni concatenate simmetrica e diretta (regime C, frequenza 50 Hz, valore efficace
Figura 1 Figura 2. Dati : f = 45 Hz, V c = 350 V, R = 22, L 1 = 16 mh, L 2 = 13 mh.
1 2 3 I U 1 2 Un utilizzatore trifase (U) è costituito da tre impedenze uguali, ciascuna delle quali è mostrata nella figura 2, collegate a triangolo ed è alimentato da una linea trifase caratterizzata
Esercizi di Elettrotecnica
Esercizi di Elettrotecnica Sistemi trifase www.die.ing.unibo.it/pers/mastri/didattica.htm (versione del --007) Sistemi trifase Esercizio n. E G V E G V E G E G E G E G V e G (t) = 0 cos(ωt) V Nota e G
Figura 1 Figura 2. Dati : f = 45 Hz, V c = 350 V, R = 22 Ω, L 1 = 16 mh, L 2 = 13 mh.
1 2 3 I U 1 2 Un utilizzatore trifase (U) è costituito da tre impedenze uguali, ciascuna delle quali è mostrata nella figura 2, collegate a WUDQJO ed è alimentato da una linea trifase caratterizzata da
Elettrotecnica - Ing. Aerospaziale, Ing. Meccanica A.A. 2014/15 - Prova n. 2-2 luglio 2015
ognome Nome Matricola Firma Parti svolte: E E D Esercizio I G 4 gv E 5 D 6 Supponendo noti i parametri dei componenti, illustrare il procedimento di risoluzione del circuito rappresentato in figura con
Elettrotecnica Esercizi di riepilogo
Elettrotecnica Esercizi di riepilogo Esercizio 1 I 1 V R 1 3 V 2 = 1 kω, = 1 kω, R 3 = 2 kω, V 1 = 5 V, V 2 = 4 V, I 1 = 1 m. la potenza P R2 e P R3 dissipata, rispettivamente, sulle resistenze e R 3 ;
Esercizi sulle reti elettriche in corrente alternata (parte 1)
Esercizi sulle reti elettriche in corrente alternata (parte ) Esercizio : alcolare l andamento nel tempo delle correnti i, i 2 e i 3 del circuito in figura e verificare il bilancio delle potenze attive
Esercizi sulle reti elettriche in corrente alternata (parte 2)
Esercizi sulle reti elettriche in corrente alternata (parte 2) Esercizio 7: Verificare il bilancio delle potenze. Nota. l ramo costituito dal generatore di corrente in serie al resistore ha come caratteristica
Tipo 1 - Compiti A01 A04 A07 A10 A13 A16 A19 A22 A25 A28 A31. Esercizio 1. Esercizio 2
Tipo - Compiti A0 A0 A07 A0 A A6 A9 A A5 A8 A Esercizio Esempio di risoluzione. Scelto come riferimento il nodo C, le incognite sono le tensioni di nodo V A e V D. (La tensione V B = V 6 è nota.). Il sistema
SISTEMI TRIFASE. Nel. Nella forma polare: Nella forma cartesiana o algebrica:
SISTEMI TRIFASE 3_FASE I sistemi 3fase hanno fondamentale importanza nella produzione, trasformazione e trasmissione dell energia elettrica. Il sistema trifase è applicato in campo industriale o comunque
Esercizio 1: Determinare la misura del wattmetro W nella rete trifase simmetrica e equilibrata di Fig.1. I 2 I 1 P 1 Q 1. Fig.
Esercizio : Determinare la misura del wattmetro nella rete trifase simmetrica e equilibrata di Fig.. ( rit) ; 0Ω; 500 ; Q 000 ; 45 ; A 5; 0.7 ar E A Q Fig. l wattmetro legge la grandezza e con Nota la
Prerequisiti. Aver seguito la lezione sulla corrente di impiego Fattore di potenza cosφ
IL RIFASAMENTO Introduzione In questa lezione apprenderemo cosa comporta l angolo di sfasamento tra tensione e corrente in una linea elettrica Al termine della lezione saremo in grado di dimensionare i
Esercizi aggiuntivi Unità A2
Esercizi aggiuntivi Unità A2 Esercizi svolti Esercizio 1 A2 ircuiti in corrente alternata monofase 1 Un circuito serie, con 60 Ω e 30 mh, è alimentato con tensione V 50 V e assorbe la corrente 0,4 A. alcolare:
MACCHINE ELETTRICHE 11 gennaio 2006 Elettrotecnica _ Energetica _
MACCHINE ELETTRICHE 11 gennaio 2006 Elettrotecnica _ Energetica _ DOMANDE DI TEORIA 1) Diagrammi di Blondel e delle due reattanze. 2) Motore asincrono trifase: regolazione della velocità. 3) Motore a corrente
POTENZA CON CARICO EQUILIBRATO COLLEGATO A STELLA CON E SENZA NEUTRO
POTENZA CON CARICO EQUILIBRATO COLLEGATO A STELLA CON E SENZA NEUTRO Nel caso di alimentazione a quattro fili si assume come riferimento proprio il neutro cioè il centro stella del generatore. 1 I 1 I
1. RELAZIONI TENSIONE-CORRENTE NEL DOMINIO DEL TEMPO. i(t) = v(t) / R = V M / R sen ωt i(t) = I M sen ωt I(t) = I M e jωt
1. RELAZIONI TENSIONE-CORRENTE NEL DOMINIO DEL TEMPO i(t) Tensione applicata : v(t) v(t) = V M sen ωt V(t) = V M e jωt : vettore ruotante che genera la sinusoide RESISTORE i(t) = v(t) / R = V M / R sen
Esercizi di Elettrotecnica. prof. Antonio Maffucci Università degli Studi di Cassino. Circuiti in regime sinusoidale
Esercizi di Elettrotecnica prof. ntonio Maffucci Università degli Studi di assino ircuiti in regime sinusoidale versione. ottore 009 . Esercizi introduttivi. ES.. Esprimere la corrente i ( in termini di
Elettrotecnica - A.A Prova n. 2 3 febbraio 2011
Cognome Nome Matricola Firma 1 Parti svolte: E1 E2 D Esercizio 1 Supponendo noti i valori delle resistenze, della tensione V G1 e dei parametri di trasferimento dei generatori dipendenti, illustrare il
Esercitazioni di Elettrotecnica: circuiti in regime sinusoidale
Università degli Studi di assino Esercitazioni di Elettrotecnica: circuiti in regime sinusoidale ntonio Maffucci ver settembre 004 Maffucci: ircuiti in regime sinusoidale ver - 004 Esercizi introduttivi
Laurea di I Livello in Ingegneria Informatica
Laurea di I Livello in Ingegneria Informatica Sede di Mantova TEORIA DEI CIRCUITI II prova in itinere 3.2.2003 Problema I Nel circuito indicato in figura si ha v 1 = 10 cos (1000 t sec ) V Determinare
Corso di Elettrotecnica 1 - Cod N Diploma Universitario Teledidattico in Ingegneria Informatica ed Automatica Polo Tecnologico di Alessandria
Schede di Elettrotecnica orso di Elettrotecnica - od. 9200 N Diploma Universitario eledidattico in Ingegneria Informatica ed Automatica Polo ecnologico di Alessandria A cura di uca FERRARIS Scheda N 4
Prova Scritta di ELETTROTECNICA - 12 gennaio 2015
Prova Scritta di ELETTROTECNIC - 12 gennaio 215 i3(t) = 2 2sin(1t); e4(t) = 1 2cos(1t)V R1=R2=R5= 5 Ω; Rab= 1 kω; L1=L2=2mH; C2 = 1µF; C5 = 2µF Per la rete in figura, operante in regime sinusoidale permanente,
MACCHINE ELETTRICHE 23 giugno 2005 Elettrotecnica _ Energetica _
MACCHINE ELETTRICHE 23 giugno 2005 Elettrotecnica _ Energetica _ DOMANDE DI TEORIA 1) Circuiti equivalenti di un trasformatore monofase e considerazioni relative ai vari parametri. 2) Diagramma polare
Potenza in regime sinusoidale
26 Con riferimento alla convenzione dell utilizzatore, la potenza istantanea p(t) assorbita da un bipolo è sempre definita come prodotto tra tensione v(t) e corrente i(t): p(t) = v(t) i(t) Considerando
Competenze di ambito Prerequisiti Abilità / Capacità Conoscenze Livelli di competenza
Docente: LASEN SERGIO Classe: 3MAT Materia: Tecnologie Elettrico Elettroniche, dell Automazione e Applicazioni MODULO 1 - CIRCUITI E RETI ELETTRICHE IN CORRENTE CONTINUA Saper effettuare connessioni logiche
PARTE I. Sistemi Trifase
PARTE I Sistemi Trifase SISTEMI TRIFASE Il sistema trifase fa parte della famiglia dei sistemi di tipo polifase (bifase, trifase, esafase, dodecafase, etc) È il più impiegato per una serie di ragioni pratiche:
Tipo 1 Compiti A01 A03 A05 A07 A09 A11 A13 A15 A17 A19
Tipo 1 ompiti A01 A03 A05 A07 A09 A11 A13 A15 A17 A19 Es. 1: (Esempio di risoluzione) 1. Scelto l albero formato dai lati 1, 3, 4, le incognite sono le correnti di maglia I 1 e I 5 (la corrente I 6 = I
Esercizi sui circuiti in fase transitoria
Esercizi sui circuiti in fase transitoria v 5 mh 6 Ω Ω µf Ω Esercizio. alcolare la tensione v un i- stante dopo la chiusura dell interruttore T (t =). Si supponga che il circuito sia in regime stazionario
Corrente alternata. Capitolo 3. 3.1 Grandezze utilizzate. Simbolo Definizione Unità di misura Simbolo unità di misura. I Corrente ampere A
Capitolo 3 Corrente alternata 3. Grandezze utilizzate Simbolo Definizione Unità di misura Simbolo unità di misura I Corrente ampere A V Tensione volt V R Resistenza ohm Ω C Capacità farad F L Induttanza
PROVA SCRITTA DI ELETTROTECNICA, 20 febbraio 2018 CdS Ing. Meccanica canali (A-L) e (M-Z) Docenti: C. Petrarca F. Villone
PROVA SCRITTA DI ELETTROTECNICA, 20 febbraio 208 CdS Ing. Meccanica canali (A-L) e (M-Z) Docenti: C. Petrarca F. Villone COMPITO B Esercizio: La rete di Fig. è a regime sinusoidale per t < 0. Determinare
Compito di Elettrotecnica II prova - 7 giugno 2018 Ing. Nome: Cognome: Mtr:
Nel circuito a regime sinusoidale in figura, Ricavare la corrente i x =0.01F =1H 1100 e 230 Veff, chiuso su un carico di impedenza 15+j15. I parametri relativi alla diverse perdite perdite nel rame al
9.8 Con la LKT si scrive l equazione seguente: di (1) dt La costante di tempo èτ
9.8 Con la LKT si scrive l equazione seguente: di L Ri cos( t) () dt La costante di tempo èτ L / R ms / 5s ; la soluzione della () è 5t i( t) Ke Acos(t θ ) () Sia A θ il fasore corrispondente alla risposta
Università degli Studi di Bergamo Facoltà di Ingegneria Corso di Elettrotecnica DUM A.A. 2000/2001 Esame del 12 gennaio 2001
Università degli Studi di Bergamo Facoltà di Ingegneria Corso di Elettrotecnica DUM A.A. / Esame del gennaio Soluzione a cura di: Bellini Matteo Es. n Data la rete in figura determinare tutte le correnti
Elettrotecnica - A.A Prova n gennaio 2012
ognome Nome Matricola Firma 1 Parti svolte: E1 E2 D Esercizio 1 V G1 1 2 3 I G6 ri 2 4 7 8 E D Supponendo noti i valori delle resistenze, della tensione V G1, della corrente I G6 e del parametro di trasferimento
Principi di ingegneria elettrica. Reti in regime sinusoidale. Lezione 13 a. Impedenza Ammettenza
Principi di ingegneria elettrica Lezione 3 a Reti in regime sinusoidale mpedenza Ammettenza Legge di Ohm simbolica n un circuito lineare comprendente anche elementi dinamici (induttori e condensatori)
ISTITUTO TECNICO INDUSTRIALE STATALE E. FERMI GARA NAZIONALE DI ELETTROTECNICA PRIMA PROVA
ISTITTO TECNICO INDSTRILE STTLE E. FERMI GR NZIONLE DI ELETTROTECNIC PRIM PROV BSSNO DEL GRPP, 8 9 MGGIO 2014 Prima Prova 8 maggio 2014 TEM DELL PRIM PROV Descrizione generale rete BT LEGEND M S : quadro
Indice. XI Prefazione. 1 Capitolo 1 METODO CIRCUITALE: COMPONENTI E LEGGI DI KIRCHHOFF Modello circuitale dei fenomeni elettromagnetici
XI Prefazione 1 Capitolo 1 METODO CIRCUITALE: COMPONENTI E LEGGI DI KIRCHHOFF 1 1.1 Modello circuitale dei fenomeni elettromagnetici 1.1.1 Modello a parametri concentrati, p. 1-1.1.2 Modello a parametri
Esercizi & Domande per il Compito di Elettrotecnica del 13 giugno 2001
Esercizi & Domande per il Compito di Elettrotecnica del giugno 00 Teoria Domanda sul Trasformatore Assumendo di conoscere i dati di targa di un trasformatore monofase ricavare i parametri del circuito
PROVA SCRITTA DI ELETTROTECNICA, 21 maggio 2003 CDL: Ing. Gestionale, Prof. C. Petrarca
OA SITTA DI EETTOTENIA, maggio D: Ing. Gestionale, rof.. etrarca Esercizio: Determinare la corrente ( t) i 4 applicando il teorema del gen. equivalente di tensione e la sovrapposizione degli effetti (Fig.).
teoria di Elettrotecnica
1 teoria di corrente alternata monofase teoria di Elettrotecnica CORRENTE ALTERNATA MONOFASE A cura del prof. M. ZIMOTTI 1 teoria di corrente alternata monofase INTRODUZIONE TRIGONOMETRIA In un triangolo
Potenze in regime sinusoidale. Lezione 4 1
Potenze in regime sinusoidale Lezione 4 1 Definizione di Potenza disponibile Generatore di segnale Z g = Rg + j Xg Potenza disponibile P d V V = = 4R 8R oe om g g Standard industriale = R = 50 Ω Lezione
ELETTROTECNICA T A.A. 2014/2015 ESERCITAZIONE 9
ELETTROTECNICA T A.A. 2014/2015 ESERCITAZIONE 9 ESERCIZIO 1 Determinare per quale valore di Z L essa assorbe la massima potenza apparente dal circuito di Fig. 1.1. Calcolare quindi tale potenza. Considerare
UNIVERSITÀ DEGLISTUDIDIPAVIA Laurea in Ingegneria Elettronica e Informatica
7.09.0 Problema L interruttore indicato nel circuito in figura commuta nell istante t 0 dalla posizione AA alla posizione BB. Determinare le espressioni delle tensioni v (t) ev (t) per ogni istante di
UNIVERSITÀ DEGLI STUDI DI PAVIA Laurea in Ingegneria Elettronica e Informatica
22.0.206 Problema Con riferimento al circuito in figura, nel quale entrambi gli interruttori si aprono all istante t = 0, determinare l espressione di i(t) (per ogni istante di tempo t) e rappresentarne
Esercizi sulle reti elettriche in corrente continua (parte 1)
Esercizi sulle reti elettriche in corrente continua (parte ) Esercizio : eterminare la resistenza equivalente della rete in figura tra i terminali e (supponendo e isolati) e la conduttanza equivalente
Impedenze ed Ammettenze 1/5
Impedenze ed Ammettenze 1/5 V=Z I. Rappresentazione alternativa I=Y V Z ed Y sono numeri complessi Bipolo di impedenza Z = R+ j X Resistenza Reattanza Conduttanza 1 Y = = G+ jb Z Suscettanza Lezione 2
POTENZA ATTIVA, REATTIVA, APPARENTE NEI CIRCUITI COMPLESSI. TEOREMA DI BOUCHEROT
POTENZA ATTIVA, REATTIVA, APPARENTE NEI CIRCUITI COMPLESSI. TEOREMA DI BOUCHEROT In una rete complessa possono essere presenti contemporaneamente più resistori, induttori e condensatori. Il calcolo delle
UNIVERSITÀ DEGLI STUDI DEL SANNIO
UNIVERSITÀ DEGI STUDI DE SANNIO ORSI DI AUREA IN ING. ENERGETIA, INFORMATIA E TEEOMUNIAZIONI D Prova scritta di Elettrotecnica Teoria dei ircuiti 26/01/2006 Proff. D. Davino e. Visone ognome: Nome: Matr.
ESERCIZI di Elettrotecnica
1 esercizi in monofase completamente svolti ESERCII di Elettrotecnica IN CORRENTE ALTERNATA MONOFASE A cura del Prof. M. IMOTTI 1 esercizi in monofase completamente svolti ES.10 Una resistenza di 80 è
Università degli Studi di Bergamo Facoltà di Ingegneria Prova teorica di Elettrotecnica del
Università degli Studi di Bergamo Facoltà di Ingegneria Prova teorica di Elettrotecnica del 21.7.03 Cognome: Nome: Corso di Laurea: La risposta corretta di ogni domanda vale 3 punti, la risposta errata
TEST DI ELETTROTECNICA - 2
Zeno Martini (admin) TEST DI ELETTROTECNICA - 2 10 September 2012 Potenza ed energia 1 La potenza elettrica in continua è data da: A - Il rapporto tra la tensione ai capi di un bipolo e l'intensità di
Esercizi sui circuiti in fase transitoria
Esercizi sui circuiti in fase transitoria Esercizio. Determinare la costante di tempo del circuito di figura per k =.5 Ω,.5 Ω, Ω. τ = ms,.5 ms, 6 ms. Ω Ω.5 Ω i [A] k i [V] mh V Il circuito contiene un
vista dai morsetti 1-2 del bipolo in figura (A, B, C da tabella) (tensione di Thevenin) ai morsetti 1-2 del circuito in figura (A, B, E da tabella)
Compito di Elettrotecnica, Ing. Gestionale, Pisa, 3 Giugno 21 1) Calcolare la R e q vista dai morsetti 1-2 del bipolo in figura (A, B, C da tabella) Allievo... 2) Calcolare la E th (tensione di Thevenin)
Note sui circuiti a corrente alternata
Note sui circuiti a corrente alternata Versione provvisoria. Novembre 018 1 Per commenti o segnalazioni di errori scrivere, per favore, a: [email protected] Indice 1 Corrente alternata 1.1 Circuito
Corso di Principi e. Applicazioni di. Elettrotecnica. Teoria dei Circuiti. Corso di. Circuiti trifasi. Università degli Studi di Pavia
Università degli Studi di Pavia Facoltà di Ingegneria Corso di Principi e Corso di pplicazioni di Teoria dei Circuiti Elettrotecnica Circuiti trifasi Nelle applicazioni di potenza è frequente trovare,
I j e jarctag. ovvero. ESERCIZIO 7.1: Determinare le espressioni temporali sinusoidali relative alle grandezze rappresentate dai seguenti fasori.
EEO 7.: Determinare le espressioni temporali sinusoidali relative alle grandezze rappresentate dai seguenti fasori. 0 8e 3+ 4 ( 5 isulta necessario applicare le trasformazioni fra espressione polare ed
Introduzione ai circuiti
università DEGLI STUDI DI NAPOLI FEDERICO II Facoltà di Ingegneria Registro delle Lezioni dell insegnamento di Introduzione ai circuiti Corso di laurea in Ingegneria delle Telecomunicazioni Dettate dal
PROVA SCRITTA D ESAME DEL 09 GIUGNO 2008
UNVERSTÀ D ROMA LA SAPENZA FACOLTÀ D NGEGNERA CORSO D LAUREA N NGEGNERA ENERGETCA DSCPLNA D MAHNE E CONVERTTOR D ENERGA ELETTRCA PROVA SCRTTA D ESAME DEL 9 GUGNO 8 Quesito 1 parametri del circuito equivalente
Università degli studi di Bergamo Facoltà di Ingegneria
Università degli studi di ergamo Facoltà di Ingegneria Corso di elettrotecnica Soluzione tema d esame del 16 giugno 1998 Esercizio n 1 Data la rete in figura determinare le correnti I 1,I 2,I,I 5 e la
Esercizi aggiuntivi Unità A2 Esercizi svolti Esercizio 1
000-000 M6.qxp 7-09-01 1005 Pagina 1 sercizi aggiuntivi Unità sercizi svolti sercizio 1 ipoli elettrici e loro collegamenti 1 Per il circuito di figura.1 calcolare la resistenza equivalente tra i morsetti
Compito di Elettrotecnica, Ing. Gestionale, Pisa, 9 Giugno vista dai morsetti 1-2 del bipolo in figura (A, B da tabella)
Compito di Elettrotecnica, Ing. Gestionale, Pisa, 9 Giugno 211 Allievo... 1) Calcolare la R eq vista dai morsetti 1-2 del bipolo in figura (A, B da tabella) 2) Calcolare la E th (tensione di Thevenin)
università DEGLI STUDI DI NAPOLI FEDERICO II
università DEGLI STUDI DI NAPOLI FEDERICO II Facoltà o Scuola di INGEGNERIA Registro delle Lezioni del Corso di Introduzione ai Circuiti C.d.L. in Ingegneria dell'automazione e D.d.L. in Ingegneria informatica
Università del Salento Corso di Laurea Triennale in Ingegneria Industriale Secondo esonero di FISICA GENERALE 2 del 16/01/15
Università del Salento Corso di Laurea Triennale in Ingegneria Industriale Secondo esonero di FISICA GENERALE 2 del 16/01/15 Esercizio 1 (7 punti): Nella regione di spazio compresa tra due cilindri coassiali
(corrente di Norton) ai morsetti 1-2 del circuito in figura (A, B, C da tabella)
Compito di Elettrotecnica, Ing. Civile, Pisa, 5 Giugno 2013 1) Calcolare la R eq vista dai morsetti 1-2 del bipolo in figura (A, B, C, D da tabella) Allievo... 2) Calcolare la E th (tensione di Thevenin)
Esercizio 1. CALCOLO DEI PARAMETRI DEL CIRCUITO EQUIVALENTE DI UN TRASFORMATORE MONOFASE E DEL SUO RENDIMENTO MASSIMO
Conversione Elettromeanica A.A. 22/23 Esercizio 1. CALCOLO DEI AAMETI DEL CICUITO EQUIVALENTE DI UN TASFOMATOE MONOFASE E DEL SUO ENDIMENTO MASSIMO Si consideri un trasformatore monofase di cui sono noti
Classe: 4AP Docenti: Prof. SERGIO LASEN Prof. ANTONIO PONTRDURO PIANO DI LAVORO
Classe: 4AP Docenti: Prof. SERGIO LASEN Prof. ANTONIO PONTRDURO PIANO DI LAVORO Libro di testo: ELETTROTECNICA, ELETTRONICA ED APPLICAZIONI 1 G.CONTE - HOEPLI CONTENUTI (Moduli) PREREQ. OBIETTIVI STRUMENTI
CIRCUITI IN REGIME SINUSOIDALE
CIRCUITI IN REGIME SINUSOIDALE CIRCUITO PURAMENTE OHMICO Esaminiamo il comportamento dei circuiti in regime sinusoidale iniziando da un circuito puramente ohmico. Si consideri (figura 1) un circuito costituito
ELETTROTECNICA (10 CFU) CS INGEGNERIA MATEMATICA I
ELETTROTECNICA (10 CFU) CS INGEGNERIA MATEMATICA I prova in itinere 1 Novembre 008 SOLUZIONE - 1 - D1. (punti 8 ) Rispondere alle seguenti domande: punto per ogni risposta corretta, - 0.5 per ogni risposta
ELETTRONICA : Compiti delle vacanze. Nome e Cognome:.
POR FSE 04-00 PARTE : LEGGI I SEGUENTI CAPITOLI DEL LIBRO DEL LIBRO L ENERGIA ELETTRICA, E RISPONDI ALLE DOMANDE. Capitoli 0- del libro L energia elettrica.. Che cosa è il magnetismo?e cosa si intende
0. Ripasso di elettrotecnica
orso di Elementi di ingegneria elettrica di potenza ngelo Baggini [email protected] 0. ipasso di elettrotecnica orsi di Elementi di ingengeria elettrica di potenza mpianti elettrici ETE EETT Soluzione
ELETTROTECNICA (ESERCITAZIONI) TRIFASE: POTENZA E RIFASAMENTI.
ELETTROTECNICA (ESERCITAZIONI) TRIFASE: POTENZA E RIFASAMENTI [email protected] SOMMARIO: Defnzon. Formule sstem smmetrc. Carch a stella equlbrata e relatve formule. Carch a trangolo equlbrato e
