Le due leggi di Ohm La corrente elettrica.

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Le due leggi di Ohm La corrente elettrica."

Transcript

1 Le due leggi di Ohm In questo capitolo presentiamo le relazioni matematiche che intercorrono fra la tensione (differenza di potenziale) posta ai capi di un conduttore e la corrente elettrica che, a causa di essa, vi circola. Naturalmente, daremo anche, come prima cosa, una definizione quantitativa di corrente elettrica La corrente elettrica. Consideriamo un generatore di tensione, per esempio una comune batteria, e ricordiamo che la tensione, che è sinonimo di differenza di potenziale, si misura in volt. Supponiamo che la tensione sia (per esempio 1,5 volt). Colleghiamo questa batteria ad un conduttore metallico (per esempio un filo di rame). Gli elettroni contenuti nel conduttore (di rame), specificatamente quelli più esterni che sono praticamente liberi di muoversi nel reticolo del conduttore, sentiranno una forza elettrica e cominceranno a muoversi verso il polo positivo della batteria. Graficamente : Si viene così ad instaurare così una corrente elettrica che, almeno per un "breve" intervallo di tempo (la batteria tenderà nel tempo a scaricarsi...), sarà continua, ovvero gli elettroni si muoveranno mediamente con velocità costante verso il polo positivo. Il verso "reale" (fisico) della corrente, essendo essa costituita di elettroni (nel caso di conduttori metallici), è dal polo negativo al polo positivo (nel conduttore). Il verso "convenzionale" di tale corrente è invece dal polo positivo al polo negativo.

2 Questa evidente discrepanza dipende dal fatto che, quando i fisici stabilirono tale verso, gli elettroni non erano stati ancora scoperti e si pensava che a muoversi nei conduttori elettrici fossero le cariche positive. Comunque, come vedremo meglio in seguito (per le problematiche di cui ci interesseremo), ciò che conta veramente è l'intensità della corrente elettrica, cioè quanta carica si sposta nell'unità di tempo, e non il suo verso che può rimanere del tutto convenzionale. Ora consideriamo una sezione (ideale) del conduttore attraversato dalla corrente e misuriamo quanta carica elettrica passa per detta sezione in un certo intervallo di tempo. Chiamiamo tale carica (intendendola positiva) e il tempo durante il quale essa passa per la suddetta sezione : Orbene, la corrente elettrica formula : che passa nel conduttore è definita matematicamente dalla. Se per esempio in 3 secondi passano per la sezione del conduttore 6 coulomb, si ha una corrente di 6/3 = 2 coulomb/secondo (C/s). Il coulomb/secondo si chiama ampere (A). Avremo quindi nell'esempio :.

3 Essendo la corrente elettrica definita come "carica fratto tempo", il suo valore esprime (come sempre quando siamo di fronte ad una grandezza definita da una divisione) quanta carica passa (in una sezione del conduttore) nell'unità di tempo ovvero quanti coulomb passano al secondo. Nell'esempio precedente abbiamo ovviamente il passaggio di due coulomb al secondo. Occorre infine precisare che la definizione che abbiamo qui dato di corrente elettrica non è quella attualmente riconosciuta dai fisici. La definizione di corrente come "carica fratto tempo" veniva usata all'inizio degli studi sull'elettricità ed è assai problematica a causa dell'impossibilità pratica di misurare la carica elettrica che effettivamente passa in un conduttore. La definizione "moderna" di corrente elettrica la presenteremo più avanti perché coinvolge concetti complessi che non è possibile mostrare ora. Comunque, la "vecchia" definizione di corrente elettrica è matematicamente equivalente a quella "moderna" ed è con essa "intercambiabile" La resistenza. Ora chiediamoci : data una certa tensione applicata ai capi di conduttori diversi, che valore assume la corrente che vi circola? Supponiamo per esempio di disporre di una batteria da 6 volt ed immaginiamo di collegare ad essa conduttori costituiti da materiali diversi. Per esempio colleghiamo alla batteria un filo di rame di un certo spessore e di una certa lunghezza. Successivamente, dopo avere rimosso il precedente conduttore, colleghiamo un filo di ferro di dati spessore e lunghezza ed infine, sempre dopo avere rimosso il precedente conduttore, una certa quantità di carbone. Supponiamo di misurare la corrente nei vari casi tenendo presente che abbiamo tenuto, per comodità, la tensione costante. Supponiamo di riassumere i risultati nella seguente tabella : (dati di fantasia, non derivati da alcun esperimento diretto) Osservando la tabella, risulta subito evidente che la stessa tensione ha prodotto nei vari conduttori correnti diverse. Questo dipende dal fatto che quando le cariche si muovono all'interno dei conduttori esse "interagiscono" col conduttore stesso e ne vengono in qualche modo "ostacolate" nel loro moto.

4 La proprietà fisica per cui un conduttore si oppone al passaggio delle cariche elettriche al suo interno si chiama resistenza elettrica. Più precisamente, la resistenza elettrica di un conduttore viene definita come il rapporto fra la tensione ai suoi capi e la corrente elettrica che in esso si produce, cioè :. La resistenza si misura quindi in volt/ampere che per brevità si chiama ohm e si indica con la lettera greca "omega" maiuscola. Un ohm è quindi la resistenza di un conduttore a cui è applicata una tensione di un volt ed in cui scorre una corrente di un ampere, cioè :. Ritornando all'esempio precedente, nel caso del conduttore di rame abbiamo che esso presenta una resistenza di 3/2 = 1,5, nel caso del conduttore di ferro una resistenza di 6/2 = 3 e nel caso del conduttore di carbone una resistenza di 6/1 = 6. Evidentemente il conduttore di carbone dell'esempio presenta una resistenza maggiore rispetto agli altri (questo risultato è verosimile in quanto il rame ed il ferro sono metalli, quindi "buoni" conduttori, mentre il carbonio no). In generale, i "buoni" conduttori presentano resistenza elettrica minore dei "cattivi" conduttori (a parità di dimensioni dei conduttori) La prima legge di Ohm. Eseguiamo ora una serie di misurazioni per vedere se la resistenza di un conduttore metallico, tenuto a temperatura costante, dipende dalla tensione applicata ai suoi estremi. Per misurare la resistenza di questo conduttore misureremo la tensione ai suoi estremi, la corrente che lo attraversa e poi faremo il rapporto, secondo la definizione di resistenza. Per le misurazioni utilizziamo il seguente circuito elettrico :

5 I circuiti elettrici sono schemi simbolici che descrivono reali apparati elettrici. Essi presentano simboli e convenzioni che ne permettono una facile ed immediata interpretazione. I simboli riportati nel presente circuito sono : - il simbolo di generatore di tensione (o differenza di potenziale). In esso l'anodo (polo positivo) è rappresentato con un tratto più sottile e lungo mentre il catodo (polo negativo) con un tratto più grosso e corto. - il simbolo di resistore (simbolo a "zig-zag"). Un resistore è un conduttore dotato di resistenza elettrica. Le linee continue che collegano i vari apparati del circuito sono invece da considerarsi prive di resistenza elettrica ( ). - il simbolo di voltmetro. Il voltmetro è uno strumento che misura le tensioni fra due punti del circuito. Si dice che il voltmetro è collegato in parallelo al resistore ai cui capi esso misura la tensione. - il simbolo dell'amperometro. L'amperometro è uno strumento che misura la corrente che passa in un punto del circuito. Si dice che l'amperometro è collegato in serie al resistore entro cui passa la corrente che esso misura. Esistono anche altri simboli elettrici che vedremo di volta in volta. Nel circuito in questione il generatore eroga una tensione che può essere variata all'occorrenza. La corrente che si produce ha il verso convenzionale dal + al -. Supponiamo ora di variare la tensione erogata dal generatore e di leggere la tensione misurata dal voltmetro ai capi del resistore nonché, tramite l'amperometro, leggere la corrente che circola nel resistore stesso. A questo punto occorre però fare una precisazione molto importante. Per conoscere i valori della tensione ai capi del resistore e della corrente che vi circola utilizziamo degli strumenti di misura. Altrimenti non vi sarebbe possibilità di conoscenza diretta in quanto la fisica è una scienza sperimentale. Gli strumenti che inseriamo nel circuito, però, sono circuiti elettrici essi stessi e posseggono una resistenza elettrica. Utilizzando gli strumenti di misura noi inseriamo nel circuito originario

6 altri resistori!!! In questo modo noi modifichiamo, perturbiamo, il circuito originario ottenendo un nuovo circuito diverso dal precedente!!! E' chiaro quindi che le tensioni e le correnti che misuriamo dopo l'inserimento degli strumenti non sono le effettive tensioni e correnti presenti nel circuito prima dell'inserimento degli strumenti. Questo è un "grosso problema" di cui si deve tenere conto nella valutazione dei risultati. Nel nostro caso l'inserimento del voltmetro e dell'amperometro modifica la situazione iniziale presente nel circuito, ma a noi, per le misurazioni che dobbiamo fare, questo non interessa molto. Noi dobbiamo soltanto misurare la tensione ai capi del resistore e la corrente che lo attraversa. Il voltmetro misura l'effettiva tensione ai capi di e l'unico errore presente è l'errore dovuto allo strumento. L'amperometro invece misura la corrente che lo attraversa e questa non è la corrente che attraversa, ma un po' maggiore. Questa "piccola differenza", però, per i nostri scopi, può essere trascurata. Infatti, dal punto di vista delle correnti : La corrente, entrando nel "sistema" resistore + voltmetro, si divide in due parti. La corrente che passa nel resistore e la corrente che passa nel voltmetro. Siccome la resistenza del voltmetro è molto grande, si ha, cioè la corrente nel resistore è molto maggiore della corrente nel voltmetro. La corrente nel voltmetro è quindi trascurabile. Dopo avere attraversato il resistore ed il voltmetro le due correnti si "riuniscono" per cui si torna ad avere la corrente "originaria", cioè (nulla si crea e nulla si distrugge!!!). La corrente così "ricostituita" passerà poi nell'amperometro e da esso verrà misurata. La presenza del voltmetro, in questo circuito, fa sì che l'amperometro misuri non la corrente che effettivamente circola nel resistore, ma la corrente. Però, essendo la corrente nel voltmetro molto piccola, essa può essere trascurata per cui si può considerare che (il simbolo significa "quasi uguale"). Un altro "grosso problema" sono gli errori che inevitabilmente si compiono quando si effettua una misura. Questi errori sono di vario tipo e di questi i più importanti, che quindi vanno

7 assolutamente valutati, sono gli errori introdotti dalla precisione finita (mai infinita!!!) degli strumenti utilizzati nella misura. Della valutazione degli errori di misura non parleremo qui. Riportiamo nella seguente tabella i risultati delle misure (realmente effettuate in laboratorio con un resistore da stufa elettrica) : Naturalmente, la resistenza del resistore è stata calcolata nei vari casi usando la formula : ed il numero delle cifre decimali è stato preso "opportunamente" (qui non prendiamo in considerazione l'analisi della precisione ottenuta in questa misura). Osservando la tabella notiamo che, pur variando la tensione, la resistenza del conduttore, a temperatura costante, rimane pressoché costante. Questo importante risultato è annoverato come prima legge di Ohm. Questa legge afferma quindi che certi conduttori sono tali per cui, a temperatura costante, la loro resistenza elettrica è costante. I conduttori che soddisfano la prima legge di Ohm (che hanno cioè resistenza costante) sono principalmente i metalli. Altri tipi di conduttori (per esempio non metalli, liquidi, gas) generalmente non soddisfano la prima legge di Ohm, cioè hanno resistenza variabile in dipendenza della tensione che si pone ai loro capi. I conduttori per cui vale la prima legge di Ohm si chiamano conduttori ohmici. Se la temperatura del conduttore cambia, si ha una variazione della "struttura dinamica" del conduttore per cui le cariche in moto al suo interno vengono diversamente "ostacolate" dal conduttore stesso.

8 Si tenga presente che maggiore temperatura significa maggiore agitazione degli atomi che compongono il conduttore. Maggiore agitazione degli atomi fra i quali passano gli elettroni che costituiscono la corrente elettrica (nel caso dei metalli) significa che gli elettroni avranno più probabilità di urtare detti atomi per cui la resistenza del conduttore, in generale, all'aumentare della temperatura, deve aumentare!!! 04 - Rappresentazione grafica della prima legge di Ohm. I dati riportati nella precedente tabella possono essere proficuamente rappresentati in un sistema di assi cartesiani ortogonali. Otteniamo così il grafico della prima legge di Ohm. Per i dati sperimentali ricavati sopra otteniamo : (per comodità abbiamo portato il dato 4,1 a 4 ) La curva che si ottiene è evidentemente una retta. La rappresentazione grafica della prima legge di Ohm è quindi data da una retta. Questo dipende dal fatto che le grandezze ed sono direttamente proporzionali, ovvero il loro rapporto, che vale appunto la resistenza, è costante. Si noti che la retta passa per l'origine. Infatti, se la tensione è nulla, non si produce alcuna corrente elettrica Relazione fra temperatura e resistenza elettrica in un conduttore. La prima legge di Ohm, che afferma la costanza (che si verifica in generale nei conduttori metallici) del rapporto fra tensione e corrente, rapporto che si chiama resistenza, vale se la temperatura del conduttore non cambia. Se la temperatura cambia, come già affermato in precedenza, la prima legge di Ohm cessa di valere e non si ha quindi più proporzionalità costante fra tensione e corrente. Si avrà invece che la resistenza di un conduttore cambia in funzione della temperatura. Le ragioni fisiche di ciò sono state mostrate sopra. Eseguiamo allora, per chiarire meglio il fenomeno, un esperimento molto semplice.

9 Tutti sappiamo che una lampadina ad incandescenza, quando è accesa, si scalda notevolmente. Utilizziamo allora una lampadina come resistore e poniamo ai suoi capi una tensione via via crescente fino alla sua tensione di lavoro (che di solito è indicata sul vetro stesso). Utilizziamo una lampadina da 12 volt applicandovi tensioni diverse a partire da 2 volt. Per tensioni basse, la temperatura sarà bassa (così come la luce emessa), per tensioni prossime alla tensione di lavoro di 12 volt, la temperatura sarà molto alta. L'aumento di temperatura della lampadina lo rileviamo qualitativamente semplicemente toccandola (non ci interessa qui ricavare una legge esatta di come varia la resistenza in funzione della temperatura, ma ci interessa dimostrare solo che la resistenza varia!!). Lo schema del circuito è il seguente (analogo a quello del precedente esperimento) : I dati ottenuti dall'esperimento sono : Dai dati si vede bene che la resistenza della lampadina aumenta all'aumentare della temperatura. La lampadina non è quindi un resistore ohmico per cui cioè valga la prima legge di Ohm, ovvero per cui il rapporto fra tensione e corrente, la resistenza, è costante.

10 Possiamo mostrare il medesimo fenomeno più semplicemente lasciando la tensione costante, per esempio 2 volt, e scaldando la lampadina per qualche secondo con l'aiuto della fiamma di un accendino. Così facendo abbiamo ottenuto : Durante il riscaldamento esterno della lampadina, la corrente, a parità di tensione, è diminuita per cui la resistenza è aumentata La seconda legge di Ohm. E' evidente che la resistenza elettrica di un conduttore dipende dal materiale di cui esso è costituito e dalle sue dimensioni (oltre che dalla sua temperatura). Per ricavare la formula matematica che esprime questa dipendenza, consideriamo un conduttore metallico, quindi di in generale un conduttore ohmico, di materiale omogeneo (per esempio rame, oppure ferro ecc.) e di forma cilindrica (a sezione circolare). E' chiaro che un cilindro è caratterizzato dalla sua lunghezza e dalla sua sezione (a volte è utile considerare anche il diametro ). Per ricavare sperimentalmente la formula matematica cercata, eseguiremo allora delle misure di resistenza utilizzando vari conduttori cilindrici di lunghezza, sezione e materiale diversi. Utilizzeremo per questo l'usuale circuito elettrico :

11 dove il resistore è costituito di volta in volta dei suddetti diversi conduttori. Siccome la resistenza dipende anche dalla temperatura, eseguiremo l'esperimento considerando i vari conduttori a temperatura costante (quella del laboratorio). Abbiamo i seguenti casi : conduttori di rame, di sezione fissa e di lunghezza variabile Riportiamo i risultati sperimentali nella seguente tabella : Come si vede bene analizzando i dati, la resistenza "potrebbe" essere direttamente proporzionale alla lunghezza del conduttore. La presenza di errori di una certa rilevanza causati dalla bassa qualità degli strumenti utilizzati e da altri fattori quali il riscaldamento dei conduttori, fa sì che la legge di proporzionalità diretta sia solamente intuibile. Per una maggiore "certezza" di quanto affermato, occorrerebbe eseguire misure più precise. Riportiamo qui i dati sperimentali di una misura effettuata con strumenti più precisi e mantenendo la temperatura maggiormente costante.

12 Questi dati ci permettono di affermare con maggiore precisione che, a parità di materiale e di sezione, la resistenza è direttamente proporzionale alla lunghezza del conduttore. Possiamo perciò scrivere : dove è una costante di proporzionalità che nell'esperimento vale : (non importa se nella terza misura si è ottenuto un valore lievemente diverso in quanto ciò rientra negli errori che influenzano una misura e che non sono mai completamente eliminabili). Tale costante dipenderà dal tipo di materiale, dalla sezione del conduttore e dalla temperatura del medesimo. Si noti che nella tabella sono presenti diversi valori per la tensione. Questo non crea problemi perché i conduttori utilizzati sono ohmici per cui la loro resistenza non cambia al variare della tensione. Riportando i dati della precedente tabella su un grafico cartesiano otteniamo : La proporzionalità diretta fra resistenza e lunghezza del conduttore è rappresentabile nel piano cartesiano da una retta passante per l'origine.

13 - 2 - conduttori di rame, di sezione variabile e di lunghezza fissa Consideriamo i seguenti dati sperimentali : Da essi si evince che, variando la sezione del conduttore (lasciandone invariata la lunghezza), il prodotto fra la resistenza e la sezione stessa rimane pressoché costante. Questo significa che resistenza e sezione del conduttore sono grandezze inversamente proporzionali. La formula matematica che esprime questo è : ovvero : dove è una costante che dipende dal materiale di cui è costituito il conduttore, dalla sua lunghezza e dalla temperatura e che si esprime in e vale circa ). (nell'esempio essa è stata espressa in La curva che rappresenta nel piano cartesiano la proporzionalità inversa fra resistenza e sezione è l'iperbole :

14 - 3 - conduttori di diverso materiale, di sezione fissa e di lunghezza fissa La dipendenza della resistenza dal tipo di materiale di cui è composto un conduttore ohmico è indicata dalla grandezza fisica chiamata resistività (o resistenza specifica) che si indica con la lettera greca ("ro") e si misura in (ohm per metro). Il perché di questa unità di misura sarà chiaro a breve. La resistività è definita come la resistenza elettrica di un conduttore lungo un metro con sezione di un metro quadrato (ad una data temperatura). Ovviamente è una definizione del tutto teorica perché conduttori di tali dimensioni non hanno applicazioni pratiche!!! Riportiamo qui la resistività di alcuni metalli (i valori sono riferiti alla temperatura di ) : Si noti che è l'argento il metallo con minore resistività!!! Questo significa che fra i metalli, proprio a causa della definizione di resistività, l'argento è il miglior conduttore, quello cioè che, a parità di lunghezza e sezione, presenta la minore resistenza. Subito dopo viene il rame con cui sono costruiti la gran parte dei conduttori elettrici. Il ferro ha una resistività molto maggiore del rame e questo spiega il fatto che esso non viene usato nei circuiti elettrici non ostante il prezzo molto minore sintesi dei risultati : seconda legge di Ohm Siamo ora in grado di riassumere in un'unica formula matematica tutte le considerazioni fin qui fatte circa la dipendenza della resistenza dal materiale, lunghezza e sezione (ad una data temperatura). Abbiamo che, per un conduttore ohmico cilindrico (ad una data temperatura) : ovvero la resistenza elettrica è direttamente proporzionale alla resistività ed alla lunghezza ed inversamente proporzionale alla sezione. Questa importante affermazione va sotto il nome di seconda legge di Ohm. Se ricaviamo la resistività, otteniamo :

15 e per la sua unità di misura : come sopra affermato. Esempio : - Calcoliamo la resistenza elettrica di un filo di rame lungo e di diametro. Applicando la formula della seconda legge di Ohm si ricava : Si noti che, dato il diametro, la sezione (area del cerchio) vale :..

La prima legge di Ohm

La prima legge di Ohm E-school di Arrigo Amadori (Per ragioni didattiche sono state apportate alcune modifiche alla terminologia del testo originale) Tutorial di fisica La prima legge di Ohm In questo capitolo presentiamo le

Dettagli

La Legge di Ohm (scheda per il docente)

La Legge di Ohm (scheda per il docente) La Legge di Ohm (scheda per il docente) Descrizione dell esperimento La relazione tra la tensione V ai capi di un componente elettrico e la corrente i che vi scorre è chiamata curva caratteristica del

Dettagli

Elettrodinamica. 1. La corrente elettrica continua 2. I circuiti elettrici. Prof Giovanni Ianne

Elettrodinamica. 1. La corrente elettrica continua 2. I circuiti elettrici. Prof Giovanni Ianne Elettrodinamica 1. La corrente elettrica continua 2. I circuiti elettrici Prof. Giovanni Ianne 1 La corrente elettrica Si chiama corrente elettrica un moto ordinato di cariche elettriche. La lampada ad

Dettagli

Liberamente tratto da Prima Legge di Ohm

Liberamente tratto da  Prima Legge di Ohm Liberamente tratto da www.openfisica.com Prima Legge di Ohm Agli estremi di due componenti elettrici di un circuito (che si possono chiamare conduttore X ed Y) è applicata una differenza di potenziale

Dettagli

LEZIONI ED ESERCITAZIONI DI FISICA Prof. Francesco Marchi 1 Appunti su: corrente elettrica, leggi di Ohm, circuiti 29 novembre 2010 1 Per altri materiali didattici o per contattarmi: Blog personale: http://francescomarchi.wordpress.com/

Dettagli

Moto degli elettroni di conduzione per effetto di un campo elettrico.

Moto degli elettroni di conduzione per effetto di un campo elettrico. LA CORRENTE ELETTRICA: Moto degli elettroni di conduzione per effetto di un campo elettrico. Un filo metallico, per esempio di rame, da un punto di vista microscopico, è costituito da un reticolo di ioni

Dettagli

INTENSITÀ DI CORRENTE E LEGGI DI OHM

INTENSITÀ DI CORRENTE E LEGGI DI OHM QUESITI 1 INTENSITÀ DI CORRENTE E LEGGI DI OHM 1. (Da Veterinaria 2014) Un filo di alluminio ha una sezione di 1,0 x 10-6 m 2. Il filo è lungo 16,0 cm ed ha una resistenza pari a 4,0 x 10-3 Ω. Qual è la

Dettagli

Collegamento di resistenze

Collegamento di resistenze Collegamento di resistenze Resistenze in serie Vogliamo calcolare la resistenza elettrica del circuito ottenuto collegando tra loro più resistenze in serie. Colleghiamo a una pila di forza elettromotrice

Dettagli

La corrente alternata

La corrente alternata La corrente alternata Corrente continua e corrente alternata Le correnti continue sono dovute ad un generatore i cui poli hanno sempre lo stesso segno e pertanto esse percorrono un circuito sempre nello

Dettagli

Campi Elettrici e Magnetici. ELETTROSTATICA Cariche Elettriche e Forze Elettriche

Campi Elettrici e Magnetici. ELETTROSTATICA Cariche Elettriche e Forze Elettriche Campi Elettrici e Magnetici ELETTROSTATICA Cariche Elettriche e Forze Elettriche Esperienza ==> Forza tra cariche SI INTRODUCE UNA NUOVA GRANDEZZA FONDAMENTALE: LA CARICA ELETTRICA UNITÀ DI MISURA NEL

Dettagli

Proprietà elettriche della materia

Proprietà elettriche della materia Proprietà elettriche della materia Conduttori Materiali in cui le cariche elettriche scorrono con facilità. In un metallo gli elettroni più esterni di ciascun atomo formano una specie di gas all interno

Dettagli

Sulla superficie interna del guscio sferico (induzione totale) si avrà la carica indotta q distribuita uniformemente, quindi

Sulla superficie interna del guscio sferico (induzione totale) si avrà la carica indotta q distribuita uniformemente, quindi 1) Una sfera conduttrice di raggio r = 5 cm possiede una carica q = 10 8 C ed è posta nel centro di un guscio sferico conduttore, di raggio interno R = 20 cm, posto in contatto con la terra (a massa).

Dettagli

Lezione 39: la legge di Ohm e i circuiti elettrici

Lezione 39: la legge di Ohm e i circuiti elettrici Lezione 39 - pag.1 Lezione 39: la legge di Ohm e i circuiti elettrici 39.1. Il circuito elementare Nella scorsa lezione abbiamo rappresentato in modo più o meno realistico alcuni circuiti elettrici particolarmente

Dettagli

LICEO SCIENTIFICO CAVOUR COMPITO DI FISICA PER LA CLASSE 5D Durata della prova 1 ora

LICEO SCIENTIFICO CAVOUR COMPITO DI FISICA PER LA CLASSE 5D Durata della prova 1 ora LICEO SCIENTIFICO CAVOUR COMPITO DI FISICA PER LA CLASSE 5D Durata della prova 1 ora 1)Nel circuito rappresentato in figura la pila fornisce una differenza di potenziale di 12 V e le tre resistenze hanno

Dettagli

Corrente ele)rica. Cariche in movimento e legge di Ohm

Corrente ele)rica. Cariche in movimento e legge di Ohm Corrente ele)rica Cariche in movimento e legge di Ohm Corrente ele)rica Nei metalli si possono avere elettroni che si muovono anche velocemente fra un estremo e l altro del metallo, ma la risultante istante

Dettagli

Corso di Laurea in Scienza dei Materiali Laboratorio di Fisica II

Corso di Laurea in Scienza dei Materiali Laboratorio di Fisica II Corso di Laurea in Scienza dei Materiali Laboratorio di Fisica II ESPERIENZA DC1 Scopo dell'esperienza: Circuiti in corrente continua 1. Utilizzo di voltmetro ed amperometro; 2. verifica della validita'

Dettagli

Richiami su grandezze fisiche considerate e convenzioni utilizzate nell analisi di circuiti. Gianluca Susi

Richiami su grandezze fisiche considerate e convenzioni utilizzate nell analisi di circuiti. Gianluca Susi Richiami su grandezze fisiche considerate e convenzioni utilizzate nell analisi di circuiti Gianluca Susi Carica E indicata con q e si misura in Coulomb [C] Principio di conservazione della carica elettrica:

Dettagli

Corso di Laurea in Scienza dei Materiali Laboratorio di Fisica II ESPERIENZA DC1. Circuiti in corrente continua

Corso di Laurea in Scienza dei Materiali Laboratorio di Fisica II ESPERIENZA DC1. Circuiti in corrente continua Corso di Laurea in Scienza dei Materiali Laboratorio di Fisica II ESPERIENZA DC1 Circuiti in corrente continua Scopo dell'esperienza 1. Utilizzo di voltmetro ed amperometro; 2. verifica della validità

Dettagli

4. I principi della meccanica

4. I principi della meccanica 1 Leggi del moto 4. I principi della meccanica Come si è visto la cinematica studia il moto dal punto di vista descrittivo, ma non si sofferma sulle cause di esso. Ciò è compito della dinamica. Alla base

Dettagli

Esempio di Relazione Esperimento rivolto a Istituti di scuola superiore di secondo grado Esperimento N 14 Luigi De Biasi

Esempio di Relazione Esperimento rivolto a Istituti di scuola superiore di secondo grado Esperimento N 14 Luigi De Biasi Esempio di Relazione Esperimento rivolto a Istituti di scuola superiore di secondo grado Esperimento N 1 Luigi De Biasi .1 a) Studio della caratteristica di una resistenza Obbiettivo: erificare la validità

Dettagli

LA CORRENTE ELETTRICA

LA CORRENTE ELETTRICA LA CORRENTE ELETTRICA Giuseppe Frangiamore con la collaborazione di Antonino Palumbo Definizione di corrente elettrica La corrente elettrica è un qualsiasi moto ordinato di cariche elettriche, definita

Dettagli

VERIFICA SPERIMENTALE DELLA PROPORZIONALITA' INVERSA

VERIFICA SPERIMENTALE DELLA PROPORZIONALITA' INVERSA 20/11/2015 Marco Baj e Jacopo Corrao Laboratorio di fisica 1, liceo scientifico Leonardo Da Vinci Gallarate (VA) VERIFICA SPERIMENTALE DELLA PROPORZIONALITA' INVERSA SCOPO DELL'ESPERIENZA: verificare che

Dettagli

LA PRIMA LEGGE DI OHM

LA PRIMA LEGGE DI OHM Applichiamo le conoscenze 1. Osserva la seguente tabella relativa alla corrente che attraversa un circuito. V (V) 15 3 45 6 I (A),1,2,3,4 a) Il rapporto tra la differenza di potenziale e intensità di corrente

Dettagli

CORSO DI FISICA dispensa n.4 ELETTROSTATICA/CORRENTE ELETTRICA

CORSO DI FISICA dispensa n.4 ELETTROSTATICA/CORRENTE ELETTRICA CORSO DI FISICA dispensa n.4 ELETTROSTATICA/CORRENTE ELETTRICA Elettrostatica L elettrostatica é lo studio dei fenomeni elettrici in presenza di cariche a riposo. Fin dall antichitá sono note alcune proprietá

Dettagli

Elettronica Bipoli lineari; nodi e maglie; legge di Ohm; leggi di Kirchhoff

Elettronica Bipoli lineari; nodi e maglie; legge di Ohm; leggi di Kirchhoff Elettronica Bipoli lineari; nodi e maglie; legge di Ohm; leggi di Kirchhoff alentino Liberali Dipartimento di Fisica Università degli Studi di Milano valentino.liberali@unimi.it Elettronica Bipoli lineari;

Dettagli

Relazione laboratorio di fisica

Relazione laboratorio di fisica Relazione laboratorio di fisica I CIRCUITI ELETTRICI A.A 2014/2015 Gruppo: Jessica Deidda, Pamela Depau, Eleonora Ibba Giulia Murgia, Ida Piroddi, Alice Pisanu, Claudia Soro, Giorgia Tegas La seguente

Dettagli

Le Derivate. Appunti delle lezioni di matematica di A. Pisani Liceo Classico Dante Alighieri

Le Derivate. Appunti delle lezioni di matematica di A. Pisani Liceo Classico Dante Alighieri Le Derivate Appunti delle lezioni di matematica di A. Pisani Liceo Classico Dante Alighieri Nota bene Questi appunti sono da intendere come guida allo studio e come riassunto di quanto illustrato durante

Dettagli

Corrente elettrica e resistenza. Ingegneria Energetica Docente: Angelo Carbone

Corrente elettrica e resistenza. Ingegneria Energetica Docente: Angelo Carbone Corrente elettrica e resistenza Ingegneria Energetica Docente: Angelo Carbone Argomenti Cap. 25 La batteria elettrica La corrente elettrica Legge di Ohm. Le resistenza e la resistività Potenza elettrica,

Dettagli

CONSIGLI PER LA RISOLUZIONE DEI CIRCUITI ELETTRICI

CONSIGLI PER LA RISOLUZIONE DEI CIRCUITI ELETTRICI CONSIGLI PER L RISOLUZIONE DEI CIRCUITI ELETTRICI In questa lezione lo scopo è quello di mostrare che, con i principi e i teoremi proposti, si possono ottenere i risultati richiesti. Per mostrare l efficacia

Dettagli

Studio di circuiti contenenti diodi Uso di modelli semplificati

Studio di circuiti contenenti diodi Uso di modelli semplificati STUDIO DI CIRCUITI CONTENENTI DIODI USO DI MODELLI SEMPLIFICATI 1 Primo modello 2 Secondo modello 4 Terzo modello 6 La caratteristica e la retta di carico 8 Studio di circuiti contenenti diodi Uso di modelli

Dettagli

Integrazioni al corso di Economia Politica (anno accademico ) Marianna Belloc

Integrazioni al corso di Economia Politica (anno accademico ) Marianna Belloc Integrazioni al corso di Economia Politica (anno accademico 2013-2014) Marianna Belloc 1 L elasticità Come è già noto, la funzione di domanda di mercato indica la quantità che il mercato è disposto ad

Dettagli

Relazione di fisica del 28 febbraio 2008 Esperienza con il tester

Relazione di fisica del 28 febbraio 2008 Esperienza con il tester Relazione di fisica del 28 febbraio 2008 Esperienza con il tester 1. PREMESSA ALL ESPERIENZA 2. SCOPO DELL ESPERIENZA a) verificare la proporzionalità diretta fra la corrente I e la tensione, con la resistenza

Dettagli

UNITÀ 1 LA CARICA ELETTRICA E L'ELETTRIZZAZIONE. I corpi possono acquisire (prendere) una proprietà che si chiama carica elettrica.

UNITÀ 1 LA CARICA ELETTRICA E L'ELETTRIZZAZIONE. I corpi possono acquisire (prendere) una proprietà che si chiama carica elettrica. UNITÀ 1 Prerequisiti: conoscere le caratteristiche del modello atomico conoscere e operare con le potenze: prodotto e divisione tra potenze con stessa base, potenze di 10, potenze ad esponente negativo

Dettagli

1^ LEGGE di OHM - CONDUTTORI in SERIE e in PARALLELO

1^ LEGGE di OHM - CONDUTTORI in SERIE e in PARALLELO ^ LEGGE di OHM - CONDUTTOI in SEIE e in PAALLELO attività svolta con le classi 3^D e 3^G - as 2009/0 Scopo dell esperienza Le finalità dell esperimento sono: ) Verificare la relazione tra la ddp ai capi

Dettagli

CORSO DI FISICA ASPERIMENTALE II ESERCIZI SU RESISTENZE IN SERIE E PARALLELO Docente: Claudio Melis

CORSO DI FISICA ASPERIMENTALE II ESERCIZI SU RESISTENZE IN SERIE E PARALLELO Docente: Claudio Melis CORSO DI FISICA ASPERIMENTALE II ESERCIZI SU RESISTENZE IN SERIE E PARALLELO Docente: Claudio Melis 1) Un generatore di tensione reale da 20 V provvisto di resistenza interna r pari a 2 Ω è connesso in

Dettagli

Appunti di Elettronica I Lezione 3 Risoluzione dei circuiti elettrici; serie e parallelo di bipoli

Appunti di Elettronica I Lezione 3 Risoluzione dei circuiti elettrici; serie e parallelo di bipoli Appunti di Elettronica I Lezione 3 Risoluzione dei circuiti elettrici; serie e parallelo di bipoli Valentino Liberali Dipartimento di Tecnologie dell Informazione Università di Milano, 2603 Crema email:

Dettagli

Energia elettrica. L atomo nel suo complesso è neutro perché ha l equilibrio tra protoni ed elettroni presenti nello stesso numero.

Energia elettrica. L atomo nel suo complesso è neutro perché ha l equilibrio tra protoni ed elettroni presenti nello stesso numero. Energia elettrica Si fonda sulla costituzione dell atomo che è costituito da particelle più piccole : neutroni (carica neutra) e protoni (carica +) che costituiscono il nucleo ed elettroni (carica negativa)

Dettagli

ESPERIENZA DI LABORATORIO N 1. 1) Misura diretta mediante tester della resistenza elettrica dei resistori R1, R2, R3 e calcolo degli errori di misura.

ESPERIENZA DI LABORATORIO N 1. 1) Misura diretta mediante tester della resistenza elettrica dei resistori R1, R2, R3 e calcolo degli errori di misura. ESPERIENZA DI LABORATORIO N. ) Misura diretta mediante tester della resistenza elettrica dei resistori R, R, R3 e calcolo degli errori di misura. Dalla misurazione diretta delle singole resistenze abbiamo

Dettagli

Numeri decimali, rapporti e proporzioni

Numeri decimali, rapporti e proporzioni Numeri decimali, rapporti e proporzioni E. Modica erasmo@galois.it Liceo Scientifico Statale S. Cannizzaro Corso P.O.N. Modelli matematici e realtà A.S. 2010/2011 Da una forma all altra... Dalla frazione

Dettagli

Unità 8. Fenomeni magnetici fondamentali

Unità 8. Fenomeni magnetici fondamentali Unità 8 Fenomeni magnetici fondamentali 1. La forza magnetica e le linee del campo magnetico Già ai tempi di Talete (VI sec. a.c.) era noto che la magnetite, un minerale di ferro, attrae piccoli oggetti

Dettagli

Università degli studi di Brescia Facoltà di Medicina e Chirurgia Corso di Laurea in Infermieristica. Corso propedeutico di Matematica e Informatica

Università degli studi di Brescia Facoltà di Medicina e Chirurgia Corso di Laurea in Infermieristica. Corso propedeutico di Matematica e Informatica Università degli studi di Brescia Facoltà di Medicina e Chirurgia Corso di Laurea in Infermieristica a.a. 2008/2009 Docente Ing. Andrea Ghedi Docente: Dott. Ing. Andrea Ghedi Ingegnere Biomedico, specialista

Dettagli

Stabilire se il punto di coordinate (1,1) appartiene alla circonferenza centrata nell origine e di raggio 1.

Stabilire se il punto di coordinate (1,1) appartiene alla circonferenza centrata nell origine e di raggio 1. Definizione di circonferenza e cerchio. Equazione della circonferenza centrata in O e di raggio R. Esercizi. La circonferenza e il cerchio Definizioni: dato un punto C nel piano cartesiano e dato un numero

Dettagli

Elettronica I Bipoli lineari; legge di Ohm; caratteristica tensione-corrente; nodi e maglie di un circuito

Elettronica I Bipoli lineari; legge di Ohm; caratteristica tensione-corrente; nodi e maglie di un circuito Elettronica Bipoli lineari; legge di Ohm; caratteristica tensionecorrente; nodi e maglie di un circuito alentino Liberali Dipartimento di Tecnologie dell nformazione Università di Milano, 603 Crema email:

Dettagli

0 : costante dielettrica nel vuoto

0 : costante dielettrica nel vuoto 0 : costante dielettrica nel vuoto Φ Flusso del campo elettrico E dφ E E da EdAcosθ Se la superficie è chiusa (superficie gaussiana) il flusso si calcola come integrale chiuso: Φ E dφ E E da v EdAcosθ

Dettagli

ELETTRICITÀ. In natura esistono due tipi di elettricità: positiva e negativa.

ELETTRICITÀ. In natura esistono due tipi di elettricità: positiva e negativa. Elettricità 1 ELETTRICITÀ Quando alcuni corpi (vetro, ambra, ecc.) sono strofinati con un panno di lana, acquistano una carica elettrica netta, cioè essi acquistano la proprietà di attrarre o di respingere

Dettagli

Università degli studi di Trento Facoltà di Ingegneria Corso di Laurea in Viticoltura ed Enologia

Università degli studi di Trento Facoltà di Ingegneria Corso di Laurea in Viticoltura ed Enologia Università degli studi di Trento Facoltà di Ingegneria Corso di Laurea in Viticoltura ed Enologia Prof. Dino Zardi Dipartimento di Ingegneria Civile, Ambientale e Meccanica Fisica Componenti elementari

Dettagli

RISONANZA. Fig.1 Circuito RLC serie

RISONANZA. Fig.1 Circuito RLC serie RISONANZA Risonanza serie Sia dato il circuito di fig. costituito da tre bipoli R, L, C collegati in serie, alimentati da un generatore sinusoidale a frequenza variabile. Fig. Circuito RLC serie L impedenza

Dettagli

Elettromagnetismo. Prof. Francesco Ragusa Università degli Studi di Milano. Lezione n

Elettromagnetismo. Prof. Francesco Ragusa Università degli Studi di Milano. Lezione n Elettromagnetismo Prof. Francesco Ragusa Università degli Studi di Milano Lezione n. 24 12.1.2016 Circuiti elettrici Equazioni per la soluzione dei circuiti Anno Accademico 2015/2016 Forza elettromotrice

Dettagli

METODI PER LA MISURA DELLE RESISTENZE. Metodo strumentale.

METODI PER LA MISURA DELLE RESISTENZE. Metodo strumentale. METODI PER LA MISURA DELLE RESISTENZE 1)Metodo strumentale. 2)Metodo Volt-Amperometrico. 3)Metodo del ponte di WHEATSTONE. Metodo strumentale. Per metodo strumentale si intende un metodo che prevede l

Dettagli

Circuiti in corrente continua

Circuiti in corrente continua Domanda Le lampadine mostrate in figura sono le stesse. Con quali collegamenti si ha maggiore luce? Circuiti in corrente continua Ingegneria Energetica Docente: Angelo Carbone Circuito 1 Circuito 2 La

Dettagli

Corso di Laurea in Scienza dei Materiali Laboratorio di Fisica II ESPERIENZA DC3. Circuiti in corrente continua

Corso di Laurea in Scienza dei Materiali Laboratorio di Fisica II ESPERIENZA DC3. Circuiti in corrente continua Corso di Laurea in Scienza dei Materiali Laboratorio di Fisica II ESPERIENZA DC3 Circuiti in corrente continua Scopo dell'esperienza 1. Determinazione della caratteristica I/V di un conduttore non ohmico:

Dettagli

LEGGI PER LE ANALISI E LA SINTESI DELLE RETI ELETTRICHE

LEGGI PER LE ANALISI E LA SINTESI DELLE RETI ELETTRICHE LEGGI PER LE ANALISI E LA SINTESI DELLE RETI ELETTRICHE Partitore di tensione 2 legge kirkoff Partitore di corrente 1 legge kirkoff Principio di sovrapposizione degli effetti Legge di Thevenin Legge di

Dettagli

Q V C = coulomb volt. Quando ad un conduttore isolato viene conferita una carica elettrica Q, esso assume un potenziale V.

Q V C = coulomb volt. Quando ad un conduttore isolato viene conferita una carica elettrica Q, esso assume un potenziale V. CAPACITÀ ELETTRICA Quando ad un conduttore isolato viene conferita una carica elettrica Q, esso assume un potenziale. Si definisce capacità elettrica Unità di misura della capacità elettrica nel S.I. C

Dettagli

Il blocco amplificatore realizza la funzione di elevare il livello (di tensione o corrente) del segnale (in tensione o corrente) in uscita da una

Il blocco amplificatore realizza la funzione di elevare il livello (di tensione o corrente) del segnale (in tensione o corrente) in uscita da una l blocco amplificatore realizza la funzione di elevare il livello (di tensione o corrente) del segnale (in tensione o corrente) in uscita da una sorgente. Nel caso, come riportato in figura, il segnale

Dettagli

Problema n 1 Sulla risoluzione di circuiti applicando i principi di Kirchhoff

Problema n 1 Sulla risoluzione di circuiti applicando i principi di Kirchhoff Problema n 1 Sulla risoluzione di circuiti applicando i principi di Kirchhoff primo principio di Kirchhoff "principio dei nodi " - la sommatoria di tutte le correnti che confluiscono in un nodo (siano

Dettagli

CORRENTI ALTERNATE. Dopo che la spira è ruotata di in certo angolo in un tempo t si ha

CORRENTI ALTERNATE. Dopo che la spira è ruotata di in certo angolo in un tempo t si ha 1 easy matematica CORRENI ALERNAE Consideriamo una bobina ruotante, con velocità angolare ω costante all'interno di un campo magnetico uniforme B. Gli estremi della spira sono collegati a due anelli chiamati

Dettagli

DIODO. La freccia del simbolo indica il verso della corrente.

DIODO. La freccia del simbolo indica il verso della corrente. DIODO Si dice diodo un componente a due morsetti al cui interno vi è una giunzione P-N. Il terminale del diodo collegato alla zona P si dice anodo; il terminale collegato alla zona N si dice catodo. Il

Dettagli

LABORATORIO DI ELETTRONICA OGGETTO: RILIEVO DELLA CURVA DI RISPOSTA DI UN FILTRO RC PASSA-BASSO SCHEMA

LABORATORIO DI ELETTRONICA OGGETTO: RILIEVO DELLA CURVA DI RISPOSTA DI UN FILTRO RC PASSA-BASSO SCHEMA ALUNNO: Fratto Claudio CLASSE: IV B Informatico ESERCITAZIONE N : 2 LABORATORIO DI ELETTRONICA OGGETTO: RILIEVO DELLA CURVA DI RISPOSTA DI UN FILTRO RC PASSA-BASSO SCHEMA DATI: R = 1kΩ C = 100nF VIn =

Dettagli

Corso di Informatica Generale (C. L. Economia e Commercio) Ing. Valerio Lacagnina Rappresentazione dei numeri relativi

Corso di Informatica Generale (C. L. Economia e Commercio) Ing. Valerio Lacagnina Rappresentazione dei numeri relativi Codice BCD Prima di passare alla rappresentazione dei numeri relativi in binario vediamo un tipo di codifica che ha una certa rilevanza in alcune applicazioni: il codice BCD (Binary Coded Decimal). È un

Dettagli

Corrente elettrica. a = e E/m. La velocita' cresce linearmente. v= a t

Corrente elettrica. a = e E/m. La velocita' cresce linearmente. v= a t Corrente elettrica In un buon conduttore è disponibile una notevole quantità di elettroni liberi di muoversi Se applico un campo elettrico E essi sono accelerati a = e E/m La velocita' cresce linearmente

Dettagli

Misure voltamperometriche su dispositivi ohmici e non ohmici

Misure voltamperometriche su dispositivi ohmici e non ohmici Misure voltamperometriche su dispositivi ohmici e non ohmici Laboratorio di Fisica - Liceo Scientifico G.D. Cassini Sanremo 7 ottobre 28 E.Smerieri & L.Faè Progetto Lauree Scientifiche 6-9 Ottobre 28 -

Dettagli

La parola elettricità deriva da elektron, termine che gli antichi greci chiamavano una resina naturale,l ambra,dalla quale se strofinata con un

La parola elettricità deriva da elektron, termine che gli antichi greci chiamavano una resina naturale,l ambra,dalla quale se strofinata con un INDICE Elettrizzazione Carica elettrica e stato e elettrico Natura dell elettricità Conduttori e isolanti La corrente elettrica Le grandezze elettriche Correnti Volt Le leggi di Ohm Gli effetti della corrente

Dettagli

Cavo Carbonio. Sergio Rubio Carles Paul Albert Monte

Cavo Carbonio. Sergio Rubio Carles Paul Albert Monte Cavo o Sergio Rubio Carles Paul Albert Monte o, Rame e Manganina PROPRIETÀ FISICHE PROPRIETÀ DEL CARBONIO Proprietà fisiche del o o Coefficiente di Temperatura α o -0,0005 ºC -1 o Densità D o 2260 kg/m

Dettagli

circostanze che lo determinano e lo modificano. Secondo alcuni studi portati avanti da Galileo GALILEI e Isac

circostanze che lo determinano e lo modificano. Secondo alcuni studi portati avanti da Galileo GALILEI e Isac La DINAMICA è il ramo della meccanica che si occupa dello studio del moto dei corpi e delle sue cause o delle circostanze che lo determinano e lo modificano. Secondo alcuni studi portati avanti da Galileo

Dettagli

Nome Cognome...Classe Data.. 1

Nome Cognome...Classe Data.. 1 Esercitazione in preparazione al compito di fisica 1 Una spira rettangolare di filo di rame di lati, rispettivamente, di 2,0 cm e 4,0 cm è percorsa da 0,5 ma di corrente e viene immersa in un campo magnetico

Dettagli

L errore percentuale di una misura è l errore relativo moltiplicato per 100 ed espresso in percentuale. Si indica con e p e risulta: e ( e 100)%

L errore percentuale di una misura è l errore relativo moltiplicato per 100 ed espresso in percentuale. Si indica con e p e risulta: e ( e 100)% UNITÀ L ELBORZIONE DEI DTI IN FISIC 1. Gli errori di misura.. Errori di sensibilità, errori casuali, errori sistematici. 3. La stima dell errore. 4. La media, la semidispersione e lo scarto quadratico

Dettagli

Capitolo 2 Le misure delle grandezze fisiche

Capitolo 2 Le misure delle grandezze fisiche Capitolo 2 Le misure delle grandezze fisiche Gli strumenti di misura Gli errori di misura Il risultato di una misura Errore relativo ed errore percentuale Propagazione degli errori Rappresentazione di

Dettagli

La distribuzione delle frequenze. T 10 (s)

La distribuzione delle frequenze. T 10 (s) 1 La distribuzione delle frequenze Si vuole misurare il periodo di oscillazione di un pendolo costituito da una sferetta metallica agganciata a un filo (fig. 1). A Figura 1 B Ricordiamo che il periodo

Dettagli

LIMITI E DERIVATE DI UNA FUNZIONE

LIMITI E DERIVATE DI UNA FUNZIONE LIMITI E DERIVATE DI UNA FUNZIONE INTRODUZIONE In generale, abbiamo un idea chiara del significato di pendenza quando viene utilizzata in contesti concernenti l esperienza quotidiana, ad esempio quando

Dettagli

Corso di fisica generale con elementi di fisica tecnica

Corso di fisica generale con elementi di fisica tecnica Corso di fisica generale con elementi di fisica tecnica Aniello (Daniele) Mennella Dipartimento di Fisica Secondo modulo Parte prima (fondamenti di elettromagnetismo) Lezione 2 Circuiti elettrici Sommario

Dettagli

4.4 Il regolatore di tensione a diodo zener.

4.4 Il regolatore di tensione a diodo zener. 4.4 l regolatore di tensione a diodo zener. n molte applicazioni il valore del fattore di ripple ottenibile con un alimentatore a raddrizzatore e filtro capacitivo non è sufficientemente basso. Per renderlo

Dettagli

Corso di Laurea in Scienza dei Materiali Laboratorio di Fisica II ESPERIENZA DC3. Circuiti in corrente continua

Corso di Laurea in Scienza dei Materiali Laboratorio di Fisica II ESPERIENZA DC3. Circuiti in corrente continua Corso di Laurea in Scienza dei Materiali Laboratorio di Fisica II Scopo dell'esperienza ESPERIENZA DC3 Circuiti in corrente continua 1. Determinazione della caratteristica I/V di un conduttore non ohmico:

Dettagli

RAPPORTI E PROPORZIONI

RAPPORTI E PROPORZIONI RAPPORTI E PROPORZIONI RAPPORTI E PROPORZIONI Definizione: Dicesi rapporto fra due numeri, preso in un certo ordine, il quoziente della divisione fra il primo di essi e il secondo. Il rapporto tra i numeri

Dettagli

IL CIRCUITO ELETTRICO RESISTENZE IN PARALLELO

IL CIRCUITO ELETTRICO RESISTENZE IN PARALLELO Laboratorio di.... Scheda n. 4 Livello: Medio A.S.... Classe. NOME..... DATA... Prof.... IL CIRCUITO ELETTRICO RESISTENZE IN PARALLELO R1 R2 Conoscenze - Conoscere le grandezze elettriche che caratterizzano

Dettagli

Gli alimentatori stabilizzati

Gli alimentatori stabilizzati Gli alimentatori stabilizzati Scopo di un alimentatore stabilizzato è di fornire una tensione di alimentazione continua ( cioè costante nel tempo), necessaria per poter alimentare un dispositivo elettronico

Dettagli

Generatori equivalenti di tensione e cor rente

Generatori equivalenti di tensione e cor rente Luciano De Menna Corso di Elettrotecnica 61 Generatori equivalenti di tensione e cor rente Il teorema di sovrapposizione degli effetti è anche una notevole arma speculativa che consente di dimostrare proprietà

Dettagli

Grande rilevanza hanno in elettronica i segnali sinusoidali. Un. segnale sinusoidale è un segnale che varia nel tempo con una legge

Grande rilevanza hanno in elettronica i segnali sinusoidali. Un. segnale sinusoidale è un segnale che varia nel tempo con una legge I segnali sinusoidali Grande rilevanza hanno in elettronica i segnali sinusoidali. Un segnale sinusoidale è un segnale che varia nel tempo con una legge del seguente tipo u = U sen( ω t+ ϕ ) Figura A andamento

Dettagli

10 ottobre Marina Bertolini Dipartimento di Matematica F.Enriques Università degli Studi di Milano

10 ottobre Marina Bertolini Dipartimento di Matematica F.Enriques Università degli Studi di Milano Fondamenti e didattica della matematica - Geometria - Corso speciale - Facoltà di Scienze della Formazione - Università Milano Bicocca - a.a. 2007-2008 10 ottobre 2007 Marina Bertolini (marina.bertolini@mat.unimi.it)

Dettagli

Corso di Laurea in FARMACIA

Corso di Laurea in FARMACIA Corso di Laurea in FARMACIA 2015 simulazione 1 FISICA Cognome nome matricola a.a. immatric. firma N Evidenziare le risposte esatte Una sferetta è appesa con una cordicella al soffitto di un ascensore fermo.

Dettagli

UNITÀ DIDATTICA 5 LA RETTA

UNITÀ DIDATTICA 5 LA RETTA UNITÀ DIDATTICA 5 LA RETTA 5.1 - La retta Equazione generica della retta Dalle considerazioni emerse nel precedente capitolo abbiamo compreso come una funzione possa essere rappresentata da un insieme

Dettagli

3. Le coordinate geografiche: latitudine e longitudine

3. Le coordinate geografiche: latitudine e longitudine Introduzione 3. Le coordinate geografiche: latitudine e longitudine Ogni volta che vogliamo individuare un punto sulla superficie terrestre gli associamo due numeri, le coordinate geografiche: la latitudine

Dettagli

CIRCUITI ELETTRICI. Le grandezze fondamentali nei circuiti elettrici sono:

CIRCUITI ELETTRICI. Le grandezze fondamentali nei circuiti elettrici sono: CIRCUITI ELETTRICI Riccardo Scannaliato 4H 2015/16 Le grandezze fondamentali nei circuiti elettrici sono: La corrente elettrica: la quantità di carica che attraversa una sezione S di conduttore in un secondo.

Dettagli

Risoluzione dei circuiti elettrici col metodo dei sistemi di equazioni

Risoluzione dei circuiti elettrici col metodo dei sistemi di equazioni Risoluzione dei circuiti elettrici col metodo dei sistemi di equazioni Definizioni e breve richiamo alle principali leggi dei circuiti elettrici Risolvere un circuito elettrico significa determinare i

Dettagli

Grandezze fisiche e loro misura

Grandezze fisiche e loro misura Grandezze fisiche e loro misura Cos è la fisica? e di che cosa si occupa? - Scienza sperimentale che studia i fenomeni naturali suscettibili di sperimentazione e che implicano grandezze misurabili. - Sono

Dettagli

Nella seguente foto, possiamo vedere l'esterno di alcuni transistor:

Nella seguente foto, possiamo vedere l'esterno di alcuni transistor: IL BJT Il transistor BJT è un componente che viene utilizzato come amplificatore. Si dice amplificatore di tensione un circuito che dà in uscita una tensione più grande di quella di ingresso. Si dice amplificatore

Dettagli

FISICA. Elaborazione dei dati sperimentali. Autore: prof. Pappalardo Vincenzo docente di Matematica e Fisica

FISICA. Elaborazione dei dati sperimentali. Autore: prof. Pappalardo Vincenzo docente di Matematica e Fisica FISICA Elaborazione dei dati sperimentali Autore: prof. Pappalardo Vincenzo docente di Matematica e Fisica LA MISURA GLI STRUMENTI DI MISURA Gli strumenti di misura possono essere analogici o digitali.

Dettagli

Amplificatori a retroazione negativa

Amplificatori a retroazione negativa I.T.I.S. "Antonio Meucci" di Roma Amplificatori a retroazione negativa a cura del Prof. Mauro Perotti Anno Scolastico 2011-2012 Sommario 1. Schemi a blocchi...3 1.1. Caratteristiche degli schemi a blocchi...

Dettagli

FISICA. Elaborazione dei dati sperimentali. Autore: prof. Pappalardo Vincenzo docente di Matematica e Fisica

FISICA. Elaborazione dei dati sperimentali. Autore: prof. Pappalardo Vincenzo docente di Matematica e Fisica FISICA Elaborazione dei dati sperimentali Autore: prof. Pappalardo Vincenzo docente di Matematica e Fisica LE GRANDEZZE FISICHE Una grandezza fisica è una quantità che può essere misurata con uno strumento

Dettagli

SCHEDA PER LO STUDENTE DETERMINAZIONE DELLA DENSITÀ DI UN CORPO SOLIDO

SCHEDA PER LO STUDENTE DETERMINAZIONE DELLA DENSITÀ DI UN CORPO SOLIDO SCHEDA PER LO STUDENTE DETERMINAZIONE DELLA DENSITÀ DI UN CORPO SOLIDO I Titolo dell esperienza N 2 DETERMINAZIONE DEL VOLUME E DELLA DENSITÀ DI UN CORPO SOLIDO IRREGOLARE Autori Prof.sse Fabbri Fiamma,

Dettagli

ELETTROTECNICA T - A.A. 2014/2015 ESERCITAZIONE 1

ELETTROTECNICA T - A.A. 2014/2015 ESERCITAZIONE 1 ELETTROTECNICA T - A.A. 2014/2015 ESERCITAZIONE 1 ESERCIZIO 1 Dopo aver risolto il circuito lineare tempo-invariante mostrato Fig. 1.1, calcolare la potenza erogata/assorbita da ogni componente. Fig. 1.1

Dettagli

BREVE GUIDA ALL'USO DEL TESTER

BREVE GUIDA ALL'USO DEL TESTER BREVE GUIDA ALL'USO DEL TESTER Un tester digitale sufficientemente preciso per uso hobbistico si può acquistare oramai con pochi spiccioli: considerata l'utilità dello strumento, è un vero peccato non

Dettagli

Circuiti elettrici (1' parte)

Circuiti elettrici (1' parte) Circuiti elettrici (1' parte) Il circuito elettrico più semplice è il seguente : Naturalmente si possono costruire circuiti complicati quanto si vuole semplicemente inserendo un numero qualsiasi di resistori

Dettagli

6. IL MOTO Come descrivere un moto.

6. IL MOTO Come descrivere un moto. 6. IL MOTO Per definire il movimento di un corpo o il suo stato di quiete deve sempre essere individuato un sistema di riferimento e ogni movimento è relativo al sistema di riferimento in cui esso avviene.

Dettagli

FISICA E LABORATORIO INDIRIZZO C.A.T. CLASSE PRIMA. OBIETTIVI U. D. n 1.2: La rappresentazione di dati e fenomeni

FISICA E LABORATORIO INDIRIZZO C.A.T. CLASSE PRIMA. OBIETTIVI U. D. n 1.2: La rappresentazione di dati e fenomeni FISICA E LABORATORIO INDIRIZZO C.A.T. CLASSE PRIMA Le competenze di base a conclusione dell obbligo di istruzione sono le seguenti: Osservare, descrivere ed analizzare fenomeni appartenenti alla realtà

Dettagli

Componenti elettronici

Componenti elettronici A.R.I. - Sezione di Parma Corso di preparazione esame patente radioamatore 2016 Componenti elettronici Carlo Vignali, I4VIL Esempi di grandezze esprimibili con numeri reali esprimibili con numeri complessi

Dettagli

E' esperienza comune che quando un conduttore è percorso da una corrente elettrica, esso si scalda, cioè viene prodotto del calore.

E' esperienza comune che quando un conduttore è percorso da una corrente elettrica, esso si scalda, cioè viene prodotto del calore. Effetto Joule E' esperienza comune che quando un conduttore è percorso da una corrente elettrica, esso si scalda, cioè viene prodotto del calore Questo fatto è addirittura sfruttato in molti elettrodomestici

Dettagli

Calibrazione di una molla come sensore di forze

Calibrazione di una molla come sensore di forze Calibrazione di una molla come sensore di forze Materiale occorrente: un supporto metallico, una molla, un cestello, bulloni di uguale massa, una bilancia, una riga millimetrata, carta millimetrata. Esecuzione

Dettagli

Ellisse. Come fa un giardiniere a creare un aiuola di forma ellittica?

Ellisse. Come fa un giardiniere a creare un aiuola di forma ellittica? Ellisse Come fa un giardiniere a creare un aiuola di forma ellittica? Pianta due chiodi, detti fuochi, nel terreno ad una certa distanza. Lega le estremità della corda, la cui lunghezza supera la distanza

Dettagli

valore v u = v i / 2 V u /V i = 1/ 2

valore v u = v i / 2 V u /V i = 1/ 2 I Filtri Il filtro è un circuito che ricevendo in ingresso segnali di frequenze diverse è in grado di trasferire in uscita solo i segnali delle frequenze volute, in pratica seleziona le frequenze che si

Dettagli

Trasformatore reale monofase

Trasformatore reale monofase Macchine elettriche parte Trasformatore reale monofase ei paragrafi precedenti si è ricavato il circuito equivalente del trasformatore ideale, si è anche visto che la corrente di primario (corrente di

Dettagli