ESERCIZI DI RIPASSO DI MATEMATICA. Insiemistica
|
|
|
- Vittoria Casini
- 9 anni fa
- Visualizzazioni
Transcript
1 ESERCIZI DI RIPASSO DI MATEMATICA Insiemistica Esercizio. È vero o falso che {7, 2, 3, 4, } = {2,, 4, 3, 7}? Esercizio 2. Che relazione insiemistica c è fra gli insiemi C = {x R x > 7} e D = {x R x 7}? Esercizio 3. Che relazione insiemistica c è fra gli insiemi { E = {t R 0 < t < 2} e F = 3, 2 3, 4 3, 5 }? 3 Esercizio 4. Se A è l insieme dei numeri naturali minori di 0 e B è l insieme dei numeri naturali dispari, determina A B, A \ B, N \ B e N \ (A B). Esercizio 5. Se A = {, 5, 6, 7} e B = {2, 4, 6}, determina A B e B A. Esercizio 6. In un campione di 300 studenti universitari, tutti conoscono almeno una lingua straniera tra inglese, francese e tedesco. Inoltre 225 conoscono l inglese, 80 il francese e 33 sia l inglese che il francese. Infine 40 studenti conoscono il tedesco e nessuno di questi conosce il francese. Quanti studenti del campione conoscono sia l inglese che il tedesco? Esercizio 7. Siano A e B sottoinsiemi di un insieme Ω. Verifica che A \ B = A B, dove B = Ω \ B è il complementare di B in Ω. Esercizio 8. Dimostra, partendo dalle definizioni, che A \ (B C) = (A \ B) (A \ C) e che A \ (B C) = (A \ B) (A \ C). Logica elementare Esercizio 9. Sia A = {n Z n è multiplo di 6}. L affermazione è vera o falsa? Che cosa esprime? x A esiste h Z tale che x = 2h Esercizio 0. Sia A = {n Z n è multiplo di 2 e di 5}. L affermazione è vera o falsa? Che cosa esprime? x A esiste h Z tale che x = 5h Esercizio. Scrivi la negazione della frase Tutti i giovani amano le canzoni dei Beatles. Esercizio 2. Scrivi la negazione della frase Alcuni bambini delle scuole materne credono a Babbo Natale.
2 2 ESERCIZI DI RIPASSO DI MATEMATICA Esercizio 3. Scrivi la negazione della frase Se domani piove, allora dormo fino a tardi. Esercizio 4. Il tuo assistente asserisce che masticare una foglia di ananas due volte al giorno guarisce in un mese qualsiasi cancro alla prostata. Cosa devi fare per convincerlo senza ombra di dubbio che ha torto? Esercizio 5. Un tuo collega geloso tenta di convincere il tuo assistente ad andare a lavorare con lui dicendogli che certamente ha ragione in quanto lui stesso conosce decine di persone guarite dal cancro alla prostata dopo aver masticato foglie di ananas. Come controbatti? Esercizio 6. Il tuo assistente (di ritorno da un viaggio alle Maldive che gli avevi offerto per evitare che andasse a lavorare con il tuo collega dell esercizio precedente) asserisce che masticare foglie di betel riduce gli stimoli della fame. Cosa devi fare per verificare senza ombra di dubbio se ha ragione? Esercizio 7. Quale delle seguenti affermazioni sono vere? (a) x R, x 2 < x 4. (b) x R, πx < 7x. (c) x R, x < x + π. (d) x R, x < 0 x 2 > x. (e) x R, x 2 < x. (f) x R, x > 0 x /2 < x. dove significa per ogni. Esercizio 8. Quali delle seguenti implicazioni sono vere? 2 (a) < 3 2 < 3(x 2). x 2 (b) 2x + > x 2x + > (x ) 2. (c) x > x x > x 2. (d) x x x2. Esercizio 9. Indichiamo con P (x) la proprietà x + 2 > 0. (a) È vero o falso che x N vale P (x)? (b) È vero o falso che x N per cui vale P (x)? (c) Determina (se possibile) un insieme A N per cui risulti vera l affermazione x A vale P (x). (d) Determina (se possibile) un insieme B N per cui risulti vera l affermazione x B per cui vale P (x). Esercizio 20. Determina quali delle seguenti affermazioni sono vere. (a) x è pari x è divisibile per 4. (b) y è negativo y è positivo. (c) z non è pari z non è divisibile per 0. Esercizio 2. Sia x R qualsiasi. Determina quali delle seguenti implicazioni sono vere. (a) x = 7 (x ) 2 = 49. (b) (x + 2) 2 = 6 x + 2 = 4.
3 ESERCIZI DI RIPASSO DI MATEMATICA 3 (c) x > 4 x 2 > 4x. Esercizio 22. Posto A = {n Z n è multiplo di 6}, determina quali delle seguenti affermazioni sono vere. (a) x A h Z, x = 6h. (b) x A h Z : x = 3h. (c) x A h Z : x = 6h. (d) x A h Z : x = 2h. (e) h Z : x = 2h x A. (f) h Z : x = 2h x A. Fra le implicazioni (a) (f), ce n è una che esprime il fatto che. condizione necessaria affinché un numero sia multiplo di 6 è che sia multiplo di 3? 2. condizione sufficiente affinché un numero sia multiplo di 6 è che sia multiplo di 2? Numeri e operazioni Esercizio 23. Quali fra i seguenti numeri sono razionali? (a) 3,38. (b) 6 4. (c) 6/7. (d) 8. (e) 36/4. (f) (, ) 7. (g) 2 + π. (h) ( 2 + 6)/3. Esercizio 24. Disponi in ordine crescente i seguenti numeri: ( ) 3,, 0, 5, 2, ( 2) 4 2 5, 7 3. Esercizio 25. Esprimi i seguenti numeri nella forma a r per opportuni a > 0 e r R: (a) 7 3 /7 5. (b) / 3 3. (c) 5 /5 / 5 5. (d) ( (e) / ) 2. (f) / ( 6 3. (g) / ) 2. Esercizio 26. Esprimi le seguenti espressioni sotto forma di un unica frazione: (a) a + b. (b) a b a b 2.
4 4 ESERCIZI DI RIPASSO DI MATEMATICA (c) (d) a + b 3 a b. a(a + b) + 2 b(a + b). Esercizio 27. Sapendo che R = + R R 2 ricava l espressione di R in termini di R ed R 2. Esercizio 28. Un cono di raggio di base r e altezza h ha volume V dato dalla formula V = 3 πr2 h. Che altezza deve avere un secondo cono con raggio di base doppio ma volume un quinto del precedente? Uguaglianze e disuguaglianze Esercizio 29. Scrivi le equazioni descritte dalle frasi seguenti e, se possibile, risolvile. (a) Se al triplo del numero a si aggiunge 5, e si moltiplica per 2 il risultato, si ottiene la metà della somma di a e della sua metà. (b) Se al doppio del numero b si aggiunge 6, e si divide per 3 il risultato, si ottiene il doppio della somma del quadrato di b e di un terzo di b. (c) Se al quadruplo di c si toglie 3 e si divide il risultato per 2, si ottiene il doppio della somma di c e del suo terzo. (d) Se al quadruplo di d si aggiunge 3 e si divide il risultato per 3, si ottiene il triplo della somma di d e della sua metà. Esercizio 30. Risolvi le seguenti equazioni rispetto a x. (a) x 2 = 4x. (b) x 6 = 5x 4. (c) c 2 x = x 3, con c > 0. Esercizio 3. Risolvi la disequazione x > x 3. Esercizio 32. Trova il numero a tale che a = 2, a b = 3. a + b Esercizio 33. Se a è un numero reale negativo, trova per quali valori di x si ha a 4 x > 0. Esercizio 34. (a) Se a < b, è vero che a 2 < b 2? (b) Se a < b, è vero che a /5 < b /5?
5 ESERCIZI DI RIPASSO DI MATEMATICA 5 Esercizio 35. Supponi che a e b siano numeri uguali. Allora a = b da cui, moltiplicando per b, ricaviamo ab = b 2 ; sottraendo a 2 ricaviamo ab a 2 = b 2 a 2. Raccogliendo b a si trova a(b a) = (b+a)(b a) e, semplificando, a = b+a. Ma a = b; quindi otteniamo a = a + a = 2a e, semplificando, = 2. Dov è l errore?
Principio di induzione: esempi ed esercizi
Principio di induzione: esempi ed esercizi Principio di induzione: Se una proprietà P n dipendente da una variabile intera n vale per n e se, per ogni n N vale P n P n + allora P vale su tutto N Variante
POTENZE E NOTAZIONE ESPONENZIALE Conoscenze
POTENZE E NOTAZIONE ESPONENZIALE Conoscenze 1. Completa la seguente affermazione : L elevamento a potenza è l operazione che associa a due numeri a ed n, detti rispettivamente base ed esponente, un terzo
L INSIEME DEI NUMERI RELATIVI
L INSIEME DEI NUMERI RELATIVI Scegli il completamento corretto.. L insieme dei numeri reali R si indica con: a. R = Q I b. R = Q I c. R = Q Z I. L insieme Z: a. è costituito dallo zero e da tutti i numeri
POTENZE E NOTAZIONE ESPONENZIALE Conoscenze
POTENZE E NOTAZIONE ESPONENZIALE Conoscenze 1. Completa la seguente affermazione: L elevamento a potenza è l operazione che associa a...... che si ottiene...... 2. Completa la seguente tabella: Potenza
Corso di Laurea in Matematica a.a. 2009/2010
Corso di Laurea in Matematica a.a. 009/010 (1) Il numero ( 5) 4 è uguale a: (a) 5 (b) 8 5 (c) 5 (d) 4 5 () Il numero log 4 16 è uguale a: (a) 4 (b) 8 (c) (d) 1/ (3) È vero che: (a) 5 > 3 4 (b) 5 > 8 5
04 - Logica delle dimostrazioni
Università degli Studi di Palermo Facoltà di Economia CdS Sviluppo Economico e Cooperazione Internazionale Appunti del corso di Matematica 04 - Logica delle dimostrazioni Anno Accademico 013/014 D. Provenzano,
Chi non risolve esercizi non impara la matematica.
. esercizi 85 Esercizio 50. Senza utilizzare la calcolatrice, calcola il prodotto 8. Soluzione. 8 = 0 )0 + ) = 0 = 900 = 896 Espressioni con i prodotti notevoli Esercizio 5. Calcola l espressione + ) +
9.4 Esercizi. Sezione 9.4. Esercizi 253
Sezione 9.. Esercizi 5 9. Esercizi 9..1 Esercizi dei singoli paragrafi 9.1 - Espressioni letterali e valori numerici 9.1. Esprimi con una formula l area della superficie della zona colorata della figura
Equazioni Problemi con Equazioni.(Teoria 27-28/es ) A ) Introduzione.
Equazioni Problemi con Equazioni.(Teoria 27-28/es.96-100) A ) Introduzione. 1) Ad un numero aggiungo quattro ed ottengo 12. Trova il numero. Il numero che non conosciamo è detto incognita, e viene normalmente
Esercizi di matematica della Scuola Secondaria
Esercizi di matematica della Scuola Secondaria 1. Quale é il risultato corretto della seguente operazione aritmetica? (dare la risposta senza eseguire la moltiplicazione) X = 23, 45 0, 0123 (A) X = 0,
Rilevazione degli apprendimenti
Rilevazione degli apprendimenti Anno Scolastico 00-0 PROVA DI MATEMATICA Scuola secondaria di II grado Classe... Studente... Simulazioni di prove costruite secondo il Quadro di riferimento Invalsi pubblicato
Frazioni. 8 Esercizi di Analisi Matematica Versione Argomenti: Operazioni sulle frazioni Tempo richiesto: Completare la seguente tabella: a b
8 Esercizi di Analisi Matematica ersione 2006 razioni Argomenti: Operazioni sulle frazioni Difficoltà: Tempo richiesto: Completare la seguente tabella: a b a + b a b 1/3 1/2 1/3 1/2 1/3 1/2 a b a a + b
Dr. Erasmo Modica
UNIVERSITÀ DEGLI STUDI DI PALERMO FACOLTÀ DI ARCHITETTURA CORSO ZERO DI MATEMATICA EQUAZIONI E DISEQUAZIONI DI PRIMO GRADO Dr. Erasmo Modica [email protected] IDENTITÀ ED EQUAZIONI Si consideri un uguaglianza
Rilevazione degli apprendimenti
Rilevazione degli apprendimenti Anno Scolastico 00-0 PROVA DI MATEMATICA Scuola secondaria di II grado Classe... Studente... Simulazioni di prove costruite secondo il Quadro di riferimento Invalsi pubblicato
Chi non risolve esercizi non impara la matematica.
5.5 esercizi 9 Per trovare la seconda equazione ragioniamo così: la parte espropriata del primo terreno è x/00, la parte espropriata del secondo è y/00 e in totale sono stati espropriati 000 m, quindi
Istituto Professionale di Stato per l Industria e l Artigianato Giancarlo Vallauri. Classe I H
Istituto Professionale di Stato per l Industria e l Artigianato Giancarlo Vallauri Classe I H ALUNNO CLASSE Ulteriore ripasso e recupero anche nei siti www.vallauricarpi.it (dip. matematica recupero).
1^A - MATEMATICA compito n Calcola: MCD (216, 288); MCD (32, 27); mcm (72, 90); mcm (27, 81)
1^A - MATEMATICA compito n 1-2012-2013 1. Svolgi la seguente espressione nell'insieme Z : 5 3 2 :{4 5 [ 2 2 3 5 2 4 : 2 4 ] 2 : 3 2 3 5 2 } 2 1 5 5 2. Svolgi utilizzando le proprietà delle potenze: { 6
Syllabus delle conoscenze e abilità per il modulo Matematica di base comune a tutti i corsi di laurea scientifici
Syllabus delle conoscenze e abilità per il modulo Matematica di base comune a tutti i corsi di laurea scientifici Numeri numeri primi, scomposizione in fattori massimo divisore comune e minimo multiplo
MATEMATICA: Compiti delle vacanze Estate 2015
MATEMATICA: Compiti delle vacanze Estate 2015 Classe II a PRIMA PARTE Ecco una raccolta degli esercizi sugli argomenti svolti quest anno: risolvili sul tuo quaderno! Per algebra ho inserito anche una piccola
02 - Logica delle dimostrazioni
Università degli Studi di Palermo Facoltà di Economia Dipartimento di Scienze Economiche, Aziendali e Statistiche Appunti del corso di Matematica 0 - Logica delle dimostrazioni Anno Accademico 015/016
Facoltà di Ingegneria Università di Pisa
Facoltà di Ingegneria Università di Pisa Esame Debiti Formativi del 19/12/2005 1. 100 6 =... (A) 10 64 (B) 10 6 (C) 10 12 (D) 10 7 2. cos(120 ) + cos(60 ) =... (A) cos(60 ) (B) cos(180 ) (C) 0 (D) 1. log
Chi non risolve esercizi non impara la matematica.
1.6 esercizi Chi non risolve esercizi non impara la matematica. 1 Indica la risposta corretta. a. La somma dei numeri 10 e 3 è: A 13 B 30 C 103 D 310 1.6 esercizi 13 b. La differenza tra i numeri 55 e
Il calcolo letterale algebrico. (NLM teoria pag ; esercizi pag )
Il calcolo letterale algebrico. (NLM teoria pag. 7 86; esercizi pag. 11 5) Il calcolo letterale, o algebrico, è quella parte della matematica che generalizza il calcolo numerico utilizzando delle lettere
Syllabus: argomenti di Matematica delle prove di valutazione
Syllabus: argomenti di Matematica delle prove di valutazione abcdef... ABC (senza calcolatrici, senza palmari, senza telefonini... ) Gli Argomenti A. Numeri frazioni e numeri decimali massimo comun divisore,
PROVA DI ORIENTAMENTO A.A
PROVA DI ORIENTAMENTO A.A. 000-001 Sono stati proposti 30 quesiti. Per ciascun quesito sono proposte cinque risposte, una sola delle quali e` corretta. La risposta corretta e` indicata alla fine di ciascun
0 Insiemi, funzioni, numeri
Giulio Cesare Barozzi, Giovanni Dore, Enrico Obrecht Elementi di analisi matematica - Volume 1 Zanichelli 0 Insiemi, funzioni, numeri Esercizi 0.1. Il linguaggio degli insiemi 0.1.1. Esercizio Poniamo
1) Premessa: Al posto dei numeri posso utilizzare delle.. m) La differenza tra due numeri qualsiasi:...
IL Calcolo letterale ( o algebrico ). 1) Premessa: Al posto dei numeri posso utilizzare delle.. Esempi:. 2) Introduzione. a) Un numero qualsiasi: b) Il doppio di un numero qualsiasi:. c) Il triplo di un
I NUMERI NATURALI, I NUMERI INTERI e I NUMERI RAZIONALI
I NUMERI NATURALI, I NUMERI INTERI e I NUMERI RAZIONALI ESERCIZI Scrivi tutti i divisori dei seguenti gruppi di numeri e alcuni loro multipli. ; 0; 0. 8; ; 5;. Completa, quando è possibile, mettendo il
MATEMATICA CORSO A CORSO DI LAUREA IN SCIENZE BIOLOGICHE I PROVA IN ITINERE COMPITO PROVA 3
MATEMATICA CORSO A CORSO DI LAUREA IN SCIENZE BIOLOGICHE I PROVA IN ITINERE COMPITO PROVA 3 1-Il giorno 7 gennaio Francesca riscontrò un aumento di peso del 10% rispetto al suo peso prima delle vacanze
Università degli Studi di Perugia - Facoltà di Ingegneria Secondo test d ingresso A.A. 2011/ Settembre 2011
Università degli Studi di Perugia - Facoltà di Ingegneria Secondo test d ingresso A.A. 2011/2012-16 Settembre 2011 1. Quale tra i seguenti numeri è razionale? A. 2 3. B. 2 + 3. C. π. D. 2 8. E. 8. 2. Quali
IL Calcolo letterale (o algebrico). (teoria pag ;esercizi pag , es.59 66) 1) Premessa: Al posto dei numeri posso utilizzare delle..
IL Calcolo letterale (o algebrico). (teoria pag. 29 31;esercizi pag. 100 103, es.59 66) 1) Premessa: Al posto dei numeri posso utilizzare delle.. Esempi:. 2) Introduzione. a) Un numero qualsiasi: b) Il
ESERCITAZIONE: CALCOLO APPROSSIMATO ED ERRORI
ESERCITAZIONE: CALCOLO APPROSSIMATO ED ERRORI e-mail: [email protected] web: www.dm.unipi.it/ tommei Esercizio 1 Se 2 x 2.5 e 5 y 6, fra quali limiti sono compresi i numeri x + y, y x, x y e y/x? 7 x
Liceo Classico e Internazionale C. Botta Ivrea LAVORI ESTIVI
Liceo Classico e Internazionale C. Botta Ivrea LAVORI ESTIVI Anno scolastico: 0-05 Classe A clac B E F G H lisl Docenti: Gerace, Ricci, Battuello, Fecchio, Ferrero Disciplina: MATEMATICA Tutti gli studenti
5. EQUAZIONI e DISEQUAZIONI
5. EQUAZIONI e DISEQUAZIONI 1. Per ognuna delle affermazioni seguenti, indicare se e vera o falsa, motivando la risposta (a) L equazione di primo grado (1 2)x = 2 ha soluzione x = 2(1+ 2). V F (b) La disequazione
Prontuario degli argomenti di Algebra
Prontuario degli argomenti di Algebra NUMERI RELATIVI Un numero relativo è un numero preceduto da un segno + o - indicante la posizione rispetto ad un punto di riferimento a cui si associa il valore 0.
Alunno/a Pag La figura indica quanti romanzi leggono gli alunni di una classe in un mese. Quanti sono gli alunni che leggono almeno 2 romanzi?
Alunno/a Pag. Esercitazione Alunno/a in preparazione alla PROVA d ESAME Classe III.. 2008 Buon Lavoro Prof.ssa Elena Spera. Quale tra le seguenti proposizioni è FALSA? A. La somma di due numeri dispari
RIPASSO DI MATEMATICA FRAZIONI
SOMMA a) Trovo m.c.m.tra i denominatori b) il risultato diventa il nuovo denominatore RIPASSO DI MATEMATICA FRAZIONI a) eseguo la divisione tra il nuovo denominatore con il denominatore b) moltiplico il
Chi non risolve esercizi non impara la matematica.
1.6 esercizi 17 Esercizio 25. Determina MCD e mcm fra i seguenti polinomi: 8a 2 + 16ab + 8b 2 4a 4 4a 2 b 2 12a 2 + 12ab Soluzione. Scomponiamo in fattori i tre polinomi: 8a 2 + 16ab + 8b 2 = 8(a 2 + 2ab
Matematica per le scienze sociali Elementi di base. Francesco Lagona
Matematica per le scienze sociali Elementi di base Francesco Lagona University of Roma Tre F. Lagona ([email protected]) 1 / 24 Outline 1 Struttura del corso 2 Algebra booleana 3 Algebra degli
Soluzione. Soluzione. Soluzione. Soluzione
SUCCESSIONI E PROGRESSIONI Esercizio 78.A, 5, 8,, 4, La differenza tra ogni termine e il suo precedente è sempre uguale a 3. Pertanto si tratta di una progressione aritmetica crescente di ragione 3. La
Esercizi svolti di aritmetica
1 Liceo Carducci Volterra - Classi 1A, 1B Scientifico - Francesco Daddi - 15 gennaio 29 Esercizi svolti di aritmetica Esercizio 1. Dimostrare che il quadrato di un numero intero che finisce per 25 finisce
UNIVERSITÀ DEGLI STUDI DI TRENTO
UNIVERSITÀ DEGLI STUDI DI TRENTO PROVA DI AMMISSIONE AI CORSI DI LAUREA IN Fisica Matematica Informatica Ingegneria dell Informazione e Organizzazione d Impresa, Ingegneria dell Informazione e delle Comunicazioni
Corso di Laurea in Matematica Prova di orientamento. Questionario 2
Università Roma Tre Facoltà di Scienze M.F.N. Corsi di Studio in Matematica Corso di Laurea in Matematica Prova di orientamento Questionario 2 Questionario preparato per consentire la autovalutazione in
Ripasso di potenze. Esercitazione effettuata dal al Ore effettive. Formatore. Alessia Cesana. N scheda. Corso: II O.S.P.A. Laboratorio: Matematica
C.S.F. En.A.I.P. Cuneo Corso: II O.S.P.A. Laboratorio: Matematica N scheda 1 Titolo Esercitazione / Argomento trattato Ripasso di potenze Obiettivi: Le proprietà delle potenze: teoria ed esercizi h previste:
Questionario il valore dell espressione è: A. B. C. D. E. 5. Il numero è uguale a A. B. C. D. E.
Questionario 1 1. Considerati i tre numeri 21, 49 e 10, è vero che: il loro massimo comune divisore è 1 B. il loro minimo comune multiplo è 210 C. sono a due a due primi fra loro D. sono tutti divisibili
Liceo Classico e Internazionale C. Botta Ivrea LAVORI ESTIVI
Liceo Classico e Internazionale C. Botta Ivrea LAVORI ESTIVI Anno scolastico: 0-05 Classe: B clac, E, F, G, I, L, M Docente: Ferrero, Degrandi, Marchetti, Sartorio, Ganassin Disciplina MATEMATICA Ripasso
Linguaggio della Matematica
Linguaggio della Matematica concetti primitivi: elementi fondamentali di natura intuitiva (punto, retta, insieme, elemento di un insieme,...). assiomi: enunciati, proposizioni vere a priori (gli assiomi
6. La disequazione A. per nessun x R;
Università degli Studi di Perugia - Facoltà di Ingegneria Terzo test d ingresso A.A. 0/0-6 Dicembre 0. Quale delle seguenti affermazioni è corretta? A. la funzione y = x è monotona crescente; B. le funzioni
Cenni di logica matematica e di teoria degli insiemi Paola Rubbioni
Cenni di logica matematica e di teoria degli insiemi Paola Rubbioni CORSI INTRODUTTIVI Dipartimento di Ingegneria di Perugia a.a. 2017/2018 1 Corsi Introduttivi - a.a. 2017/2018 2 1 Logica matematica Serve
2) Quale delle seguenti frazioni corrisponde al numero decimale 2,7? a) 2/7 b) 27/10 c) 27/5 d) 27/100
Università degli Studi di Bologna Scuola di Economia, Management e Statistica.. 2012/2013 Sede didattica di Rimini Corsi di laurea CLET e CLEI Test di logica-matematica Risposta corretta: 1 punto, risposta
Buon lavoro e serene vacanze
Indicazioni per un buon ingresso nella scuola superiore Caro/a alunno/a, siamo i tuoi futuri insegnanti di MATEMATICA e, per conoscerti meglio, vogliamo suggerirti un piccolo lavoro che dovrai svolgere
INSIEMI. DEF. Un INSIEME è una qualsiasi collezione di oggetti.
INSIEMI DEF. Un INSIEME è una qualsiasi collezione di oggetti. Esso è ben definito quando è chiaro se un oggetto appartiene o non appartiene all insieme stesso. Esempio. E possibile definire l insieme
Parte Seconda. Prova di selezione culturale
Parte Seconda Prova di selezione culturale TEORIA DEGLI INSIEMI MATEMATICA ARITMETICA Insieme = gruppo di elementi di cui si può stabilire inequivocabilmente almeno una caratteristica in comune. Esempi:
Domande di Analisi Matematica tratte dai Test di autovalutazione o di recupero dei debiti formativi.
Domande di Analisi Matematica tratte dai Test di autovalutazione o di recupero dei debiti formativi. (1) Sia A l insieme dei numeri dispari minori di 56 e divisibili per 3. Quale delle seguenti affermazioni
--- Domande a Risposta Multipla --- Numeri, Frazioni e Potenze
Corso Zero di Matematica per FARMACIA A.A. 009/0 Prof. Massimo Panzica Università degli Studi di Palermo FARMACIA CORSO ZERO DI MATEMATICA 009/0 --- Domande a Risposta Multipla --- Numeri, Frazioni e Potenze
Temperatura( C) Precipitazioni (mm)
D12. Osserva il seguente grafico che rappresenta l andamento delle temperature (scala a sinistra) e delle precipitazioni piovose (scala a destra) in Italia negli ultimi anni. Figura 1. Media annua della
Progetto Pilota Valutazione della scuola italiana. Anno Scolastico PROVA DI MATEMATICA. Scuola Superiore. Classe Prima.
Ministero dell Istruzione, dell Università e della Ricerca Gruppo di lavoro per la predisposizione degli indirizzi per l attuazione delle disposizioni concernenti la valutazione del servizio scolastico
Chi non risolve esercizi non impara la matematica.
6 iti Per ricercare gli eventuali asintoti verticali dobbiamo calcolare i iti della funzione agli estremi finiti degli intervalli che costituiscono il dominio. In questo caso, quindi, dobbiamo calcolare
Esercizi per il corso Matematica clea
Esercizi per il corso Matematica clea Daniele Ritelli anno accademico 008/009 Lezione : Numeri naturali e principio di induzione Esercizi svolti. Provare che + + + n. Provare che + + + n n(n + ) n(n +
radicando. Si ottiene 5 RADICALI Termini a x = indice della radice y = esponente del radicando Esempi: 25 = 5 perché 5 = 25
RADICALI Termini x y a x = indice della radice y = esponente del radicando 25 = 5 perché 5 = 25 5 indica la radice quadrata di 5, non è un numero intero, è decimale, illimitato e non periodico. 16 = 2
Calcolo algebrico. Maria Simonetta Bernabei & Horst Thaler
Calcolo algebrico Maria Simonetta Bernabei & Horst Thaler CALCOLO LETTERALE Perché? E opportuno rappresentare i numeri con lettere dell alfabeto per fare affermazioni che valgono indipendentemente dal
Test di ingresso per il corso di laurea triennale in Scienze della Natura Conoscenze di base di matematica 22 settembre 2011
Test di ingresso per il corso di laurea triennale in Scienze della Natura Conoscenze di base di matematica 22 settembre 2011 1. Il massimo comun divisore e il minimo comune multiplo dei numeri 288 e 1350
TEST NUMERO 1. Domanda numero 1 Siano a, b, c numeri interi positivi arbitrari. Una sola delle identitá seguenti è falsa. Quale? Risposte 1 a b+c = ac
TEST NUMERO 1 COGNOME NOME... Gli studenti sono pregati di apporre il loro cognome e nome come indicato e di mettere un segno sopra al numero della risposta scelta nell elenco sotto le domande. Domanda
QUESTIONARIO FINALE DI AUTOVALUTAZIONE. a cura di Mariacristina Fornasari, Daniela Mari, Giuliano Mazzanti, Valter Roselli, Luigi Tomasi
QUESTIONARIO FINALE DI AUTOVALUTAZIONE a cura di Mariacristina Fornasari, Daniela Mari, Giuliano Mazzanti, Valter Roselli, Luigi Tomasi 2006-2007 1 1) L espressione ( 2 log x)( 2 log 2 2 x) è definita
COORDINAMENTO DI MATEMATICA COMPITI ESTIVI CLASSE PRIMA 1^ CAM
COORDINAMENTO DI MATEMATICA COMPITI ESTIVI CLASSE PRIMA 1^ CAM E meglio non concentrare lo svolgimento degli esercizi in un solo periodo (inizio o fine delle vacanze) ma cercare di distribuire il lavoro
Cenni di logica matematica e di teoria degli insiemi. CORSI INTRODUTTIVI Dipartimento di Ingegneria di Perugia a.a. 2016/2017 Paola Rubbioni
Cenni di logica matematica e di teoria degli insiemi CORSI INTRODUTTIVI Dipartimento di Ingegneria di Perugia a.a. 2016/2017 Paola Rubbioni 1 1 Logica matematica Corsi Introduttivi - a.a. 2016/2017 2 Serve
Conoscenze. 1. L addizione è l operazione che associa a due numeri, detti, un... numero, detto, che si ottiene...
Conoscenze 1. L addizione è l operazione che associa a due numeri, detti, un... numero, detto, che si ottiene...... 2. La sottrazione è l operazione che associa a due numeri, detti rispettivamente... e..,
1 Fattorizzazione di polinomi
1 Fattorizzazione di polinomi Polinomio: un polinomio di grado n nella variabile x, è dato da p(x) = a n x n + a n 1 x n 1 + + a 1 x + a 0 con a n 0, a 0 è detto termine noto, a k è detto coefficiente
Linguaggio della Matematica
Linguaggio della Matematica concetti primitivi: elementi fondamentali di natura intuitiva (punto, retta, insieme, elemento di un insieme,...). assiomi: enunciati, proposizioni vere a priori (gli assiomi
Le disequazioni di primo grado
Le disequazioni di primo grado Cos è una disequazione? Una disequazione è una disuguaglianza tra due espressioni algebriche (una delle quali deve contenere un incognita) che può essere vera o falsa a seconda
Università degli Studi di Cagliari Facoltà di Scienze Matematiche, Fisiche e Naturali Corso di Laurea in Informatica Problemi per il test d Ingresso
Università degli Studi di Cagliari Facoltà di Scienze Matematiche, Fisiche e Naturali Corso di Laurea in Informatica Problemi per il test d Ingresso 1. Se p e q sono 2 numeri primi il loro m.c.m. è A)
Scheda numero 1. Attività: Dal linguaggio naturale al linguaggio formale in ambito numerico
Scheda numero 1 Attività: Dal linguaggio naturale al linguaggio formale in ambito numerico Traduci dalla lingua italiana alla lingua matematica le seguenti frasi Attento! Non ci interessa che tu calcoli
Verifica per la classe prima COGNOME... NOME... Classe... Data...
Capitolo Gli insiemi Insiemi Insiemi Sottoinsiemi Operazioni.a Rappresentare per tabulazione e tramite l uso dei diagrammi di Eulero-Venn i seguenti insiemi dati per caratteristica: A {n n H 0 ; n 7} B
2. Quesiti dell area scientifica e scientifico-tecnologica
2. Quesiti dell area scientifica e scientifico-tecnologica Logica 01 Scegliere fra le alternative proposte quella che completa la serie: a b c d e 02 Un auto percorre 20.000 km nel corso di un lungo viaggio.
ORDINAMENTO 2009 SESSIONE STRAORDINARIA - QUESITI QUESITO 1
www.matefilia.it ORDINAMENTO 009 SESSIONE STRAORDINARIA - QUESITI QUESITO 1 Si inscriva in una semisfera di raggio R il tronco di cono di massima superficie laterale, avente la base maggiore coincidente
se d=0 Dimostrazione In una progressione aritmetica la differenza tra ogni termine e quello predente è uguale a d:
Progressioni aritmetiche Progressioni Una progressione aritmetica è una successione numerica tale che la differenza tra ogni termine e il suo precedente è costante. Tale differenza costante è detta ragione,
LE EQUAZIONI Conoscenze
LE EQUAZIONI Conoscenze 1. Completa. a. L identità è una... fra due... che è sempre..., qualunque sia... b. L equazione è una... fra due... che è... solo per... c. Due equazioni si dicono equivalenti se...
PNI SESSIONE SUPPLETIVA QUESTIONARIO QUESITO 1
www.matefilia.it PNI 200 - SESSIONE SUPPLETIVA QUESTIONARIO QUESITO Enunciare il teorema del valor medio o di Lagrange illustrandone il legame con il teorema di Rolle e le implicazioni ai fini della determinazione
1. Elementi di teoria degli insiemi
ISTITUZIONI DI MATEMATICHE E FONDAMENTI DI BIOSTATISTICA 1. Elementi di teoria degli insiemi A. A. 2014-2015 L.Doretti 1 Secondo il matematico tedesco Cantor (1845-1918), il vocabolo insieme va usato in
Parte III. Incontro del 26 gennaio 2012
Parte III Incontro del 6 gennaio 01 17 Alcuni esercizi Esercizio (Giochi di Archimede 011). Un canguro e una rana si trovano inizialmente sullo stesso vertice di un poligono regolare di 41 lati, e cominciano
Versione di Controllo
Università degli Studi di Trento test di ammissione ai corsi di laurea in Fisica - Matematica - Informatica Ingegneria dell Informazione e Organizzazione d Impresa Ingegneria dell Informazione e delle
TEST PER L ATTRIBUZIONE DI UN EVENTUALE OBBLIGO FOR- MATIVO AGGIUNTIVO - COMPITO A (2013)
TEST PER L ATTRIBUZIONE DI UN EVENTUALE OBBLIGO FOR- MATIVO AGGIUNTIVO - COMPITO A (2013) FACOLTÀ DI ECONOMIA 1. Cinque amici arrivano ad una festa uno per volta. Antonio arriva prima di Beppe. Carlo arriva
Insiemistica. Capitolo 1. Prerequisiti. Obiettivi. Gli insiemi numerici di base Divisibilità e fattorizzazione nei numeri interi
Capitolo 1 Insiemistica Prerequisiti Gli insiemi numerici di base Divisibilità e fattorizzazione nei numeri interi Obiettivi Sapere utilizzare opportunamente le diverse rappresentazioni insiemistiche Sapere
2 non è un numero razionale
2 non è un numero razionale 1. Richiami: numeri pari e dispari. Un numero naturale m è pari (rispettivamente dispari) se e solo se esiste un numero naturale r tale che m = 2r (rispettivamente m = 2r +
Liceo Classico e Internazionale C. Botta Ivrea LAVORI ESTIVI
Liceo Classico e Internazionale C. Botta Ivrea LAVORI ESTIVI Anno scolastico: 05-0 Classe: B, E, F, G, I, L,M Docente: Battuello, Bosco, Fecchio, Ferrero, Gerace, Menaldo Disciplina Matematica Ripassare
