Variabile casuale Normale
|
|
|
- Mirella Luciani
- 9 anni fa
- Visualizzazioni
Transcript
1 Variabile casuale Normale La var. casuale Normale (o Gaussiana) è considerata la più importante distribuzione Statistica per le innumerevoli Applicazioni e per le rilevanti proprietà di cui gode L'importanza di tale v.c. risiede negli indubbi vantaggi formali, ma anche nel fatto che moltissimi fenomeni empirici possono essere rappresentati con un modello di tipo gaussiano Carl F. Gauss funzione di densità 1 f(x)= σ π e 1 x-μ - σ - <x<+ e=,71 π=3,14 È una v.c. continua che può assumere valori su tutto l asse reale Si dimostra che la f(x) è una funzione di densità perché 1 f(x) 0 + f(x)dx=1
2 IMPORTANZA DELLA NORMALE DIVERSI FENOMENI CONTINUI SEMBRANO SEGUIRE, ALMENO APPROSSIMATIVAMENTE UNA DISTRIBUZIONE NORMALE. Può ESSERE UTILIZZATA PER APPROSSIMARE NUMEROSE DISTRIBUZIONI DI PROBABILITà DISCRETE. E ALLA BASE DELL INFERENZA STATISTICA CLASSICAIN VIRTU DEL TEOREMA DEL LIMITE CENTRALE
3 Forma e parametri della distribuzione 1 f(x)= σ π e 1 x-μ - σ 1 La funzione di densità della v.c. è simmetrica rispetto al centro La densità diminuisce man mano che ci si allontana dal centro (asintoticamente a destra e a sinistra) L area sottesa alla curva, probabilità che la var. casuale X assuma valori nel suo dominio, è pari a 1 Si dimostra che i parametri caratteristici della v.c.normale sono esattamente il valore atteso e la varianza E( X ) = µ V ( ) X = σ - <µ<+ σ >0 In corrispondenza di x = μ±σ la funzione di prob. Presenta due punti di flesso
4 PROPRIETA DELLA NORMALE HA UNA FORMA CAMPANULARE E SIMMETRICA LE SUE MISURE DI POSIZIONE CENTRALE (VALORE ATTESO, MEDIANA, MODA, MIDRANGE, MEDIA INTERQUARTILE) COINCIDONO. IL SUO RANGE INTERQUARTILE è PARI A 1.33 VOLTE LO SCARTO QUADRATICO MEDIO, CIOè COPRE UN INTERVALLO COMPRESO TRA: µ / 3 σ, µ + / 3σ LA V. ALEATORIA CON DISTRIBUZIONE NORMALE ASSUME VALORI SU TUTTO L ASSE REALE
5 Il parametro μ(valore atteso) Al variare di µ il grafico resta inalterato nella sua forma ma si modifica solo la sua localizzazione: al crescere di µ la funzione di probabilità si sposta a destra, al diminuire di µ la funzione di probabilità si sposta a sinistra 0,45 µ=0 µ=1 µ= µ=3 µ=4 µ=5 0,30 0,15 0,00-1,5 0,0 1,5 3,0 4,5 6,0 7,5 La distribuzione normale è simmetrica rispetto al suo centro (valore atteso): a tale valore centrale corrisponde anche quello più probabile (valore modale)
6 Il parametro σ(deviazione standard) Al variare di σ il grafico resta inalterato nella sua localizzazione ma si modifica nella sua forma: al crescere di σla funzione di prob. è più schiacciata rispetto al centro, al diminuire di σla funzione di prob. è più appuntita 0,75 σ = 0,5 0,60 0,45 N(0;1) 0,30 0,15 σ = σ = 3 σ = 4 0,00-4,5-3,0-1,5 0,0 1,5 3,0 4,5 La spiegazione risiede nel fatto che l area sottesa alla funzione f(x) è sempre pari a 1: se la deviazione standard è bassa i valori di X si addensano intorno al valore atteso e ciò produce un innalzamento dell ordinata del valore modale
7 La funzione di ripartizione La funzione di ripartizione della v.c. Normale è data formalmente da f(x) x - 1 t-μ - σ 1 F(x)= e dt σ π Non è facile risolvere questo integrale, tanto che la funzione normale è citata in letteratura come esempio di funzione non elementare F(x) Possiamo però descrivere completamente la distribuzione di X attraverso i due parametri μe σ : noti questi valori è possibile calcolare la corrispondente F(x) Per semplificare il calcolo è possibile far uso di tabelle particolari riconducendo i valori X ad una forma standard
8 La variabile normale standardizzata Se la v.c. X ha una distribuzione normale con parametri μe σ, allora la v.c. Z X -µ Z = σ è ancora una v.c. Normale con media nulla e varianza unitaria f ( z ) = 1 π e z 0,45 0,30 0,15 0,95 0,00-1,96 0,00 1,96 E( Z) = 0 V( Z) = 1
9 Funzione di ripartizione della standardizzata Permette di semplificare i calcoli delle aree sottese alla funzione di densità X µ x µ P(X x) = P( ) = P(Z z) =Φ( z) z 0 σ σ 0,955 1,67 Nella tavola troviamo i valori di Ф(z), funzione di ripartizione di una Normale standardizzata: sulle righe della tabella si trova il valore intero e la prima cifra decimale, sulle colonne invece la seconda cifra decimale
10 Generalizziamo Le tre Normali riportate qui di fianco possono essere di fatto ricondotte a una sola distribuzione, attraverso la trasformazione dei valori x in unità standard σ=1 σ= σ=1 Le aree sottese a X N(µ,σ ) sono identiche a quelle della Z N(0,1)
11 Esempio
12 Esempio Esempio_3: calcolo dell area tra - e 1.5 Alcune tavole danno invece l area compresa tra il valore dato e lo zero. Per ottenere l intera area occorre sommare 0.5 che è l area a sinistra dello zero. φ(1.5) = = Esempio_4: calcolo dell area a destra di 0.7 Poiché l area totale è uguale ad uno si ha l identità: Area a sinistra=1- Area a destra
13 Esempio
Esercitazione: La distribuzione NORMALE
Esercitazione: La distribuzione NORMALE Uno dei più importanti esempi di distribuzione di probabilità continua è dato dalla distribuzione Normale (curva normale o distribuzione Gaussiana); è una delle
DISTRIBUZIONE NORMALE (1)
DISTRIBUZIONE NORMALE (1) Nella popolazione generale molte variabili presentano una distribuzione a forma di campana, bene caratterizzata da un punto di vista matematico, chiamata distribuzione normale
SCHEDA DIDATTICA N 7
FACOLTA DI INGEGNERIA CORSO DI LAUREA IN INGEGNERIA CIVILE CORSO DI IDROLOGIA PROF. PASQUALE VERSACE SCHEDA DIDATTICA N 7 LA DISTRIBUZIONE NORMALE A.A. 01-13 La distribuzione NORMALE Uno dei più importanti
distribuzione normale
distribuzione normale Si tratta della più importante distribuzione di variabili continue, in quanto: 1. si può assumere come comportamento di molti fenomeni casuali, tra cui gli errori accidentali; 2.
Capitolo 6. La distribuzione normale
Levine, Krehbiel, Berenson Statistica II ed. 2006 Apogeo Capitolo 6 La distribuzione normale Insegnamento: Statistica Corso di Laurea Triennale in Ingegneria Gestionale Facoltà di Ingegneria, Università
Capitolo 6 La distribuzione normale
Levine, Krehbiel, Berenson Statistica Casa editrice: Pearson Capitolo 6 La distribuzione normale Insegnamento: Statistica Corso di Laurea Triennale in Economia Dipartimento di Economia e Management, Università
LA DISTRIBUZIONE NORMALE (Vittorio Colagrande)
LA DISTRIBUZIONE NORMALE (Vittorio Colagrande) Allo scopo di interpolare un istogramma di un carattere statistico X con una funzione continua (di densità), si può far ricorso nell analisi statistica alla
DISTRIBUZIONI DI PROBABILITA
DISTRIBUZIONI DI PROBABILITA La distribuzione di probabilità e un modello matematico, uno schema di riferimento, che ha caratteristiche note e che può essere utilizzato per rispondere a delle domande derivate
tabelle grafici misure di
Statistica Descrittiva descrivere e riassumere un insieme di dati in maniera ordinata tabelle grafici misure di posizione dispersione associazione Misure di posizione Forniscono indicazioni sull ordine
Lezione n. 1 (a cura di Irene Tibidò)
Lezione n. 1 (a cura di Irene Tibidò) Richiami di statistica Variabile aleatoria (casuale) Dato uno spazio campionario Ω che contiene tutti i possibili esiti di un esperimento casuale, la variabile aleatoria
PROBABILITA. Distribuzione di probabilità
DISTRIBUZIONI di PROBABILITA Distribuzione di probabilità Si definisce distribuzione di probabilità il valore delle probabilità associate a tutti gli eventi possibili connessi ad un certo numero di prove
Indici di posizione e dispersione per distribuzioni di variabili aleatorie
Indici di posizione e dispersione per distribuzioni di variabili aleatorie 12 maggio 2017 Consideriamo i principali indici statistici che caratterizzano una distribuzione: indici di posizione, che forniscono
LA DISTRIBUZIONE NORMALE. La distribuzione Gaussiana. Dott.ssa Marta Di Nicola
LA DISTRIBUZIONE NORMALE http://www.biostatistica.unich.itit «È lo stesso delle cose molto piccole e molto grandi. Credi forse che sia tanto facile trovare un uomo o un cane o un altro essere qualunque
Scheda n.3: densità gaussiana e Beta
Scheda n.3: densità gaussiana e Beta October 10, 2008 1 Definizioni generali Chiamiamo densità di probabilità (pdf ) ogni funzione integrabile f (x) definita per x R tale che i) f (x) 0 per ogni x R ii)
V.C. RETTANGOLARE o UNIFORME
V.C. RETTANGOLARE o UNIFORME La v.c. continua RETTANGOLARE o UNIFORME descrive il modello probabilistico dell equiprobabilità. [ a b] X, con densità di probabilità associata: P( x) 1 b a con P(x) costante.
Probabilità e Statistica Esercizi
Corso di PIANIFICAZIONE DEI TRASPORTI 1 ing. Antonio Comi Marzo 2006 Probabilità e Statistica Esercizi 1 Variabile aleatoria X(E): funzione che associa ad un evento E dello spazio delle prove un numero
Variabili aleatorie continue
Variabili aleatorie continue Per descrivere la distribuzione di una variabile aleatoria continua, non si può più assegnare una probabilità positiva ad ogni valore possibile. Si assume allora di poter specificare
Teoria e tecniche dei test. Concetti di base
Teoria e tecniche dei test Lezione 2 2013/14 ALCUNE NOZIONI STATITICHE DI BASE Concetti di base Campione e popolazione (1) La popolazione è l insieme di individui o oggetti che si vogliono studiare. Questi
Statistica Inferenziale
Statistica Inferenziale a) L Intervallo di Confidenza b) La distribuzione t di Student c) La differenza delle medie d) L intervallo di confidenza della differenza Prof Paolo Chiodini Dalla Popolazione
Corso di Laurea: Diritto per le Imprese e le istituzioni a.a Statistica. Probabilità. Lezioni : 11, 12. Docente: Alessandra Durio
Corso di Laurea: Diritto per le Imprese e le istituzioni a.a. 2016-17 Statistica Probabilità Lezioni : 11, 12 Docente: Alessandra Durio 1 Contenuti 1. Variabili casuali notevoli DISCRETE (uniforme, di
LA DISTRIBUZIONE NORMALE
LA DISTRIBUZIONE NORMALE Italo Nofroni Statistica medica - Facoltà di Medicina Sapienza - Roma La più nota ed importante distribuzione di probabilità è, senza alcun dubbio, la Distribuzione normale, anche
CORSO DI LAUREA IN INFERMIERISTICA. LEZIONI DI STATISTICA Parte II Elaborazione dei dati Variabilità
CORSO DI LAUREA IN INFERMIERISTICA LEZIONI DI STATISTICA Parte II Elaborazione dei dati Variabilità Lezioni di Statistica VARIABILITA Si definisce variabilità la proprietà di alcuni fenomeni di assumere
LA DISTRIBUZIONE NORMALE o DI GAUSS
p. 1/2 LA DISTRIBUZIONE NORMALE o DI GAUSS Osservando gli istogrammi delle misure e degli scarti, nel caso di osservazioni ripetute in identiche condizioni Gli istogrammi sono campanulari e simmetrici,
FENOMENI CASUALI. fenomeni casuali
PROBABILITÀ 94 FENOMENI CASUALI La probabilità si occupa di fenomeni casuali fenomeni di cui, a priori, non si sa quale esito si verificherà. Esempio Lancio di una moneta Testa o Croce? 95 DEFINIZIONI
DISTRIBUZIONI DI PROBABILITA
DISTRIBUZIONI DI PROBABILITA Nell associare ai risultati di un esperimento un valore numerico si costruisce una variabile casuale (o aleatoria, o stocastica). Ogni variabile casuale ha una corrispondente
PROBABILITÀ SCHEDA N. 7 LA VARIABILE ALEATORIA NORMALE
Matematica e statistica: dai dati ai modelli alle scelte wwwdimaunige/pls_statistica Responsabili scientifici MP Rogantin e E Sasso (Dipartimento di Matematica Università di Genova) PROBABILITÀ SCHEDA
Variabili casuali. - di Massimo Cristallo -
Università degli Studi di Basilicata Facoltà di Economia Corso di Laurea in Economia Aziendale - a.a. 2012/2013 lezioni di statistica del 16 e 27 maggio 2013 - di Massimo Cristallo - Variabili casuali
Variabili aleatorie gaussiane
Variabili aleatorie gaussiane La distribuzione normale (riconoscibile dalla curva a forma di campana) è la più usata tra tutte le distribuzioni, perché molte distribuzioni che ricorrono naturalmente sono
Istituzioni di Statistica e Statistica Economica
Istituzioni di Statistica e Statistica Economica Università degli Studi di Perugia Facoltà di Economia, Assisi, a.a. 2013/14 Esercitazione n. 1 A. I dati riportati nella seguente tabella si riferiscono
Probabilità classica. Distribuzioni e leggi di probabilità. Probabilità frequentista. Probabilità soggettiva
Probabilità classica Distribuzioni e leggi di probabilità La probabilità di un evento casuale è il rapporto tra il numero dei casi favorevoli ed il numero dei casi possibili, purchè siano tutti equiprobabili.
Distribuzione Gaussiana o Normale. 1 Distribuzione Normale come limite della Binomiale
Statistica e analisi dei dati Data: 6 Maggio 26 Distribuzione Gaussiana o Normale Docente: Prof. Giuseppe Boccignone Scriba: Matteo Gandossi Distribuzione Normale come limite della Binomiale Data una distribuzione
esperimento casuale: è un esperimento condotto sotto l effetto del caso; evento elementare: ciascuno dei possibili esiti di un esperimento casuale;
Capitolo 15 Suggerimenti agli esercizi a cura di Elena Siletti Esercizio 15.1: Suggerimento Si ricordi che: esperimento casuale: è un esperimento condotto sotto l effetto del caso; evento elementare: ciascuno
LA DISTRIBUZIONE NORMALE o DI GAUSS
p. / LA DISTRIBUZIONE NORMALE o DI GAUSS È una delle più importanti distribuzioni di variabili casuali continue p. / LA DISTRIBUZIONE NORMALE o DI GAUSS È una delle più importanti distribuzioni di variabili
Esercizi di Probabilità e Statistica
Esercizi di Probabilità e Statistica parte 1 Massimo Guerriero Ettore Benedetti Indice Esercizi Presentazione dei dati Misure di sintesi numerica Probabilità Distribuzioni teoriche di probabilità Distribuzione
Esercitazione n. 3 - Corso di STATISTICA - Università della Basilicata - a.a. 2011/12 Prof. Roberta Siciliano
Esercitazione n. 3 - Corso di STATISTICA - Università della Basilicata - a.a. 2011/12 Prof. Roberta Siciliano Esercizio 1 Una moneta viene lanciata 6 volte. Calcolare a) La probabilità che escano esattamente
Sperimentazioni di Fisica I mod. A Statistica - Lezione 2
Sperimentazioni di Fisica I mod. A Statistica - Lezione 2 A. Garfagnini M. Mazzocco C. Sada Dipartimento di Fisica G. Galilei, Università di Padova AA 2014/2015 Elementi di Statistica Lezione 2: 1. Istogrammi
STATISTICA DESCRITTIVA. Elementi di statistica medica GLI INDICI INDICI DI DISPERSIONE STATISTICA DESCRITTIVA
STATISTICA DESCRITTIVA Elementi di statistica medica STATISTICA DESCRITTIVA È quella branca della statistica che ha il fine di descrivere un fenomeno. Deve quindi sintetizzare tramite pochi valori(indici
ISTOGRAMMI E DISTRIBUZIONI:
ISTOGRAMMI E DISTRIBUZIONI: i 3 4 5 6 7 8 9 0 i 0. 8.5 3 0 9.5 7 9.8 8.6 8. bin (=.) 5-7. 7.-9.4 n k 3 n k 6 5 n=0 =. 9.4-.6 5 4.6-3.8 3 Numero di misure nell intervallo 0 0 4 6 8 0 4 6 8 30 ISTOGRAMMI
Dispensa di Statistica
Dispensa di Statistica 1 parziale 2012/2013 Diagrammi... 2 Indici di posizione... 4 Media... 4 Moda... 5 Mediana... 5 Indici di dispersione... 7 Varianza... 7 Scarto Quadratico Medio (SQM)... 7 La disuguaglianza
Statistica. Lezione 4
Università degli Studi del Piemonte Orientale Corso di Laurea in Infermieristica Corso integrato in Scienze della Prevenzione e dei Servizi sanitari Statistica Lezione 4 a.a 2011-2012 Dott.ssa Daniela
Università degli studi della Tuscia. Principi di Statistica dr. Luca Secondi A.A. 2014/2015. Esercitazione di riepilogo Variabili casuali
Università degli studi della Tuscia Principi di Statistica dr. Luca Secondi A.A. 014/015 Esercitazione di riepilogo Variabili casuali ESERCIZIO 1 Il peso delle compresse di un determinato medicinale si
Tipi di variabili. Indici di tendenza centrale e di dispersione
Tipi di variabili. Indici di tendenza centrale e di dispersione L. Boni Variabile casuale In teoria della probabilità, una variabile casuale (o variabile aleatoria o variabile stocastica o random variable)
A1. La curva normale (o di Gauss)
Università degli Studi di Basilicata Facoltà di Economia Corso di Laurea in Economia Aziendale - a.a. 202/203 lezione n. 8 dell aprile 203 - di Massimo Cristallo - A. La curva normale (o di Gauss) La curva
Vedi: Probabilità e cenni di statistica
Vedi: http://www.df.unipi.it/~andreozz/labcia.html Probabilità e cenni di statistica Funzione di distribuzione discreta Istogrammi e normalizzazione Distribuzioni continue Nel caso continuo la probabilità
ESAME. 9 Gennaio 2017 COMPITO B
ESAME 9 Gennaio 2017 COMPITO B Cognome Nome Numero di matricola 1) Approssimare tutti i calcoli alla quarta cifra decimale. 2) Ai fini della valutazione si terrà conto solo ed esclusivamente di quanto
Distribuzione normale
Distribuzione normale istogramma delle frequenze di un insieme di misure relative a una grandezza che varia con continuità popolazione molto numerosa, costituita da una quantità praticamente illimitata
Il campionamento e l inferenza. Il campionamento e l inferenza
Il campionamento e l inferenza Popolazione Campione Dai dati osservati mediante scelta campionaria si giunge ad affermazioni che riguardano la popolazione da cui essi sono stati prescelti Il campionamento
Analisi degli Errori di Misura. 08/04/2009 G.Sirri
Analisi degli Errori di Misura 08/04/2009 G.Sirri 1 Misure di grandezze fisiche La misura di una grandezza fisica è descrivibile tramite tre elementi: valore più probabile; incertezza (o errore ) ossia
La Distribuzione Normale (Curva di Gauss)
1 DISTRIBUZIONE DI GAUSS o DISTRIBUZIONE NORMALE 1. E la più importante distribuzione statistica continua e trova numerose applicazioni nello studio dei fenomeni biologici. 2. Fu proposta da Gauss (1809)
STATISTICA 1 ESERCITAZIONE 6
STATISTICA 1 ESERCITAZIONE 6 Dott. Giuseppe Pandolfo 5 Novembre 013 CONCENTRAZIONE Osservando l ammontare di un carattere quantitativo trasferibile su un collettivo statistico può essere interessante sapere
Misure Meccaniche e Termiche. punti massa. Valore atteso: Varianza:
Fenomeni aleatori Misure Meccaniche e Termiche Sezione di Misure e Tecniche Sperimentali I fenomeni aleatori (o casuali) sono fenomeni empirici il cui risultato non è prevedibile a priori, caratterizzati
DISTRIBUZIONI DI CAMPIONAMENTO
DISTRIBUZIONI DI CAMPIONAMENTO 12 DISTRIBUZIONE DI CAMPIONAMENTO DELLA MEDIA Situazione reale Della popolazione di tutti i laureati in odontoiatria negli ultimi 10 anni, in tutte le Università d Italia,
Distribuzione esponenziale. f(x) = 0 x < 0
Distribuzione esponenziale Funzione densità f(x) = λe λx x 0 0 x < 0 Funzione parametrica (λ) 72 Funzione di densità della distribuzione esponenziale 1 0.9 0.8 0.7 λ=1 0.6 f(x) 0.5 0.4 0.3 λ=1/2 0.2 0.1
Compiti tematici dai capitoli 2,3,4
Compiti tematici dai capitoli 2,3,4 a cura di Giovanni M. Marchetti 2016 ver. 0.8 1. In un indagine recente, i rispondenti sono stati classificati rispetto al sesso, lo stato civile e l area geografica
Lezione VI: Distribuzione normale. La distribuzione normale (curva di Gauss). Prof. Enzo Ballone. Lezione 6a- Ia distribuzione normale
Lezione VI: Distribuzione normale Cattedra di Biostatistica Dipartimento di Scienze Biomediche, Università degli Studi G. d Annunzio di Chieti Pescara Prof. Enzo Ballone Lezione 6a- Ia distribuzione normale
CORSO DI STATISTICA (parte 2) - ESERCITAZIONE 2
CORSO DI STATISTICA (parte 2) - ESERCITAZIONE 2 Dott.ssa Antonella Costanzo [email protected] Esercizio 1. La variabile Uniforme Continua Data una scheda telefonica da 5 euro di cui non si sa se sia
Distribuzioni di Probabilità
Distribuzioni di Probabilità Distribuzioni discrete Distribuzione uniforme discreta Distribuzione di Poisson Distribuzioni continue Distribuzione Uniforme Distribuzione Gamma Distribuzione Esponenziale
PROVA SCRITTA DI STATISTICA. cod CLEA-CLAPI-CLEFIN-CLELI cod CLEA-CLAPI-CLEFIN-CLEMIT. 5 Novembre 2003 SOLUZIONI MOD.
PROVA SCRITTA DI STATISTICA cod. 4038 CLEA-CLAPI-CLEFIN-CLELI cod. 5047 CLEA-CLAPI-CLEFIN-CLEMIT 5 Novembre 003 SOLUZIONI MOD. A In 8 facoltà di un ateneo italiano vengono rilevati i seguenti dati campionari
Distribuzione Normale
Distribuzione Normale istogramma delle frequenze di un insieme di misure di una grandezza che può variare con continuità popolazione molto numerosa, costituita da una quantità praticamente illimitata di
La distribuzione delle frequenze. T 10 (s)
1 La distribuzione delle frequenze Si vuole misurare il periodo di oscillazione di un pendolo costituito da una sferetta metallica agganciata a un filo (fig. 1). A Figura 1 B Ricordiamo che il periodo
Nozioni di statistica
Nozioni di statistica Distribuzione di Frequenza Una distribuzione di frequenza è un insieme di dati raccolti in un campione (Es. occorrenze di errori in seconda elementare). Una distribuzione può essere
BLAND-ALTMAN PLOT. + X 2i 2 la differenza ( d ) tra le due misure per ognuno degli n campioni; d i. X i. = X 1i. X 2i
BLAND-ALTMAN PLOT Il metodo di J. M. Bland e D. G. Altman è finalizzato alla verifica se due tecniche di misura sono comparabili. Resta da comprendere cosa si intenda con il termine metodi comparabili
Esercitazioni di Statistica
Esercitazioni di Statistica Variabili casuali Prof. Livia De Giovanni [email protected] Esercizio Determinare se le funzioni seguenti: 0.0 se x < 0. se x = g(x) = 0.5 se x = 0.7 se x = 3 se x =
PROVE SCRITTE DI MATEMATICA APPLICATA, ANNO 2006/07
PROVE SCRITTE DI MATEMATICA APPLICATA, ANNO 006/07 Esercizio 1 Prova scritta del 16/1/006 In un ufficio postale lavorano due impiegati che svolgono lo stesso compito in maniera indipendente, sbrigando
Statistica. Alfonso Iodice D Enza
Statistica Alfonso Iodice D Enza [email protected] Università degli studi di Cassino () Statistica 1 / 27 Outline 1 () Statistica 2 / 27 Outline 1 2 () Statistica 2 / 27 Outline 1 2 3 () Statistica 2 /
Statistica 1 A.A. 2015/2016
Corso di Laurea in Economia e Finanza Statistica 1 A.A. 2015/2016 (8 CFU, corrispondenti a 48 ore di lezione frontale e 24 ore di esercitazione) Prof. Luigi Augugliaro 1 / 88 La variabile aleatoria Nello
Variabili aleatorie. Variabili aleatorie e variabili statistiche
Variabili aleatorie Variabili aleatorie e variabili statistiche Nelle prime lezioni, abbiamo visto il concetto di variabile statistica : Un oggetto o evento del mondo reale veniva associato a una certa
LABORATORIO DI PROBABILITA E STATISTICA
UNIVERSITA DEGLI STUDI DI VERONA LABORATORIO DI PROBABILITA E STATISTICA Docente: Bruno Gobbi Corso di laurea in Informatica e Bioinformatica 6 VARIABILI ALEATORIE CONTINUE z LA VARIABILE NORMALE Esempio
Approssimazione normale alla distribuzione binomiale
Approssimazione normale alla distribuzione binomiale P b (X r) costoso P b (X r) P(X r) per N grande Teorema: Se la variabile casuale X ha una distribuzione binomiale con parametri N e p, allora, per N
Il Corso di Fisica per Scienze Biologiche
Il Corso di Fisica per Scienze Biologiche Ø Prof. Attilio Santocchia Ø Ufficio presso il Dipartimento di Fisica (Quinto Piano) Tel. 75-585 278 Ø E-mail: [email protected] Ø Web: http://www.fisica.unipg.it/~attilio.santocchia/
ESERCIZI STATISTICA DESCRITTIVA
ESERCIZI STATISTICA DESCRITTIVA Frequenze assolute e relative Titolo di studio Frequenze assolute Frequenze relative Proporzioni Percentuali Senza titolo 30 0,025 2,5 Lic. elementare 509 0,424 42,4 Licenza
Modulo di Statistica e Tecnologia (Dott. Giorgio Poletti
Laurea in Scienze dell Educazione Insegnamento di Pedagogia Sperimentale (Prof. Paolo Frignani) Modulo di Statistica e Tecnologia (Dott. Giorgio Poletti [email protected]) MEDIA aritmetica semplice
IL CRITERIO DELLA MASSIMA VEROSIMIGLIANZA
Metodi per l Analisi dei Dati Sperimentali AA009/010 IL CRITERIO DELLA MASSIMA VEROSIMIGLIANZA Sommario Massima Verosimiglianza Introduzione La Massima Verosimiglianza Esempio 1: una sola misura sperimentale
