Esercizi su massimi e minimi locali
|
|
|
- Franca Marconi
- 9 anni fa
- Visualizzazioni
Transcript
1 Esercizi su massimi e minimi locali Determinare i punti di massimo locale, di minimo locale o di sella delle seguenti funzioni: 1. f(x, y = (x y 2 2. f(x, y = (x 1 2 y 2 3. f(x, y = x 2 + xy + y 2 2x y 4. f(x, y = x 4 + y 4 2x 2 + 4xy 2y 2 5. f(x, y = xy 1 x 2 y 2 6. f(x, y = (x 2 + y 2 e (x2 +y 2 7. f(x, y = e x y (x 2 2y 2 8. f(x, y, z = x 2 + y 2 + z 2 xy + x 2z 9. f(x, y, z = x 2 2x + y 2 + log(1 + z f(x, y, z = (x 2 + y 2 2 xy + z 2 Soluzioni Determinare i punti di massimo locale, di minimo locale o di sella delle seguenti funzioni: 1. f(x, y = (x y 2 Il gradiente di f è f(x, y = (2(x 1, 2y, quindi (1, 0 è l unico punto stazionario. La matrice Hessiana di f nel punto stazionario è che è definita positiva, quindi il punto stazionario è un punto di minimo locale. 2. f(x, y = (x 1 2 y 2 Il gradiente di f è f(x, y = (2(x 1, 2y, quindi (1, 0 è l unico punto stazionario. La matrice Hessiana di f nel punto stazionario è che è indefinita, quindi il punto stazionario è un punto di sella.
2 3. f(x, y = x 2 + xy + y 2 2x y Il gradiente di f è f(x, y = (2x + y 2, x + 2y 1, quindi (1, 0 è l unico punto stazionario. La matrice Hessiana di f nel punto stazionario è che è definita positiva, quindi il punto stazionario è un punto di minimo locale. 4. f(x, y = x 4 + y 4 2x 2 + 4xy 2y 2 Il gradiente di f è f(x, y = (4x 3 4x + 4y, 4y 3 +4x 4y, quindi (0, 0, ( 2, 2 e ( 2, 2 sono i tre punti stazionari. La matrice Hessiana di f in un generico punto di coordinate (x, y è 12x y 2 4 Nei punti ( 2, 2 e ( 2, 2 la matrice Hessiana è : H f ( 2, 2 = H f ( 2, = 4 20 che è definita positiva, quindi i due punti stazionari sono punti di minimo locale. Nel punto (0, 0 la matrice Hessiana è : che è semidefinita negativa, quindi l analisi della matrice Hessiana non permette di dire nulla sulla natura del punto stazionario. Andiamo ad analizzare il segno della differenza f(x, y f(0, 0 in un intorno di (0, 0. Se, ad esempio consideriamo i punti (x, y appartenenti all asse delle x, ovvero i punti della forma (x, 0, allora si ha che la differenza f(x, y f(0, 0 = x 4 2x 2 che assume valori negativi in un intorno di x = 0. Se invece consideriamo i punti (x, y appartenenti alla bisetrice del primo e del terzo quadrante, ovvero i punti della forma (x, x, allora si ha che la differenza f(x, y f(0, 0 = 4x 4 assume valori positivi. Questo ci consente di concludere che (0,0 è un punto di sella, dato che in ogni intorno del punto stazionario (0, 0 esistono sia punti (x, y tali che f(x, y > f(0, 0 sia punti (x, y tali che f(x, y < f(0, f(x, y = xy 1 x 2 y 2 Notiamo che la funzione è definita nell insieme {(x, y R 2 x 2 + y 2 1}. Il
3 gradiente è ( f(x, y = y 1 x 2 y 2 x 2 y 1 x2 y 2, x xy 2 1 x 2 y 2 1 x2 y 2 I punti in cui il gradiente si annulla, interni all insieme di definizione della funzione, sono: (0, 0, (1/ 3, 1/ 3, ( 1/ 3, 1/ 3, ( 1/ 3, 1/ 3, (1/ 3, 1/ 3. La matrice Hessiana H f (x, yè : 1 x 3xy x 3 y 2 y 2 (1 x 2 y 2 1 x2 y 2 x2 +y 2 3/2 1 x2 y 2 x2 +y 2 1 x 2 y 2 x 2 y 2 x 2 y 2 1 x 2 y 2 (1 x 2 y 2 3/2 3xy xy 3 (1 x 2 y 2 3/2 1 x 2 y 2 (1 x 2 y 2 3/2 Nel punto stazionario (0, 0 abbiamo: ( che è indefinita, quindi (0, 0 è una sella. In (1/ 3, 1/ 3 e in ( 1/ 3, 1/ 3 la matrice Hessiana è definita negativa e quindi i due punti stazionari sono punti di massimo locale, mentre in ( 1/ 3, 1/ 3 e in (1/ 3, 1/ 3 la matrice Hessiana è definita positiva e i due punti sono di minimo locale. 6. f(x, y = (x 2 + y 2 e (x2 +y 2. Il vettore gradiente è f(x, y = ( 2x(1 x 2 y 2 e (x2 +y 2, 2y(1 x 2 y 2 e (x2 +y 2. I punti stazionari sono dunque l origine (0, 0 e tutti i punti della circonferenza x 2 + y 2 = 1. La matrice Hessiana in (0,0 è : che è definita positiva, quindi (0,0 è un punto di minimo locale. Nei punti della circonferenza x 2 + y 2 = 1 la matrice Hessiana è 4x 2 4xy 4xy 4y 2 che è semidefinita negativa. Andando a studiare il comportamento della funzione ρ ρ 2 e ρ2 nelle vicinanze del valore ρ = 1 possiamo concludere che ρ = 1 è un punto di massimo locale e quindi tutti i opunti della circonferenza x 2 + y 2 = 1 sono punti di massimo locale per la funzione f.
4 7. f(x, y = e x y (x 2 2y 2 Il gradiente di f è f(x, y = (2xe x y + (x 2 2y 2 e x y, 4ye x y (x 2 2y 2 e x y, che si annulla nei punti (0, 0 e ( 4, 2. La matrice Hessiana in (0,0 è che è indefinita, quindi (0,0 è una sella. La matrice Hessiana in (-4,-2 è 6e 2 8e 2 8e 2 12e 2 che è definita negativa, quindi (-4,-2 è un massimo locale. 8. f(x, y, z = x 2 + y 2 + z 2 xy + x 2z Il vettore gradiente è f(x, y, z = (2x y + 1, 2y x, 2z 2, che si annulla in ( 2/3, 1/3, 1. La matrice Hessiana è H f ( 2/3, 1/3, 1 = Applicando il criterio dei minori nord-ovest si vede che è definita positiva, quindi ( 2/3, 1/3, 1. è un punto di minimo locale. 9. f(x, y, z = x 2 2x + y 2 + log(1 + z 2 La funzione ha un unico punto stazionario in (1,0,0, che è un punto di minimo, in quanto la matrice Hessiana è definita positiva. H f (1, 0, 0 = f(x, y, z = (x 2 + y 2 2 xy + z 2 I punti stazionari sono (0, 0, 0, (1/2 2, 1/2 2, 0 e ( 1/2 2, 1/2 2, 0. La Matrice Hessiana in (0,0,0 è H f (0, 0, 0 =
5 che è indefinita, quindi (0,0,0 è un punto di sella. La matrice Hessiana nei punti (1/2 2, 1/2 2, 0 e ( 1/2 2, 1/2 2, 0 è H f (1/2 2, 1/2 2, 0 = H f ( 1/2 2, 1/ , 0 = quindi tali punti sono di minimo locale.
Polinomio di Taylor del secondo ordine per funzioni di due variabili
Esercitazioni del 15 aprile 2013 Polinomio di Taylor del secondo ordine per funzioni di due variabili Sia f : A R 2 R una funzione di classe C 2. Fissato un p unto (x 0, y 0 A consideriamo il seguente
(a) Le derivate parziali f x. f y = x2 + 2xy + 3 si annullano contemporaneamente in (1, 2) e ( 1, 2). Le derivate seconde di f valgono.
Esercizio 1 Si consideri la funzione f(x, y) = x 2 y + xy 2 + y (a) Determinare i punti di massimo e minimo relativo e di sella del grafico di f. (b) Determinare i punti di massimo e minimo assoluto di
Estremi. 5. Determinare le dimensioni di una scatola rettangolare di volume v assegnato, che abbia la superficie minima.
Estremi 1. Determinare gli estremi relativi di f(x, y) = e x (x 1)(y 1) + (y 1).. Determinare gli estremi relativi di f(x, y) = y (y + 1) cos x. 3. Determinare gli estremi relativi di f(x, y) = xye x +y..
ESERCIZI DI METODI QUANTITATIVI PER L ECONOMIA DIP. DI ECONOMIA E MANAGEMENT DI FERRARA A.A. 2016/2017. Ottimizzazione libera
ESERCIZI DI METODI QUANTITATIVI PER L ECONOMIA DIP. DI ECONOMIA E MANAGEMENT DI FERRARA A.A. 2016/2017 Ottimizzazione libera Esercizio 1. Si determinino, se esistono, gli estremi delle seguenti funzioni
ANALISI B alcuni esercizi proposti
ANALISI B alcuni esercizi proposti G.P. Leonardi Parte II 1 Limiti e continuità per funzioni di 2 variabili Esercizio 1.1 Calcolare xy log(1 + x ) lim (x,y) (0,0) 2x 2 + 5y 2 Esercizio 1.2 Studiare la
ESERCITAZIONE SUI PUNTI STAZIONARI DI FUNZIONI LIBERE E SULLE FUNZIONI OMOGENEE
ESERCITAZIONE SUI PUNTI STAZIONARI DI FUNZIONI LIBERE E SULLE FUNZIONI OMOGENEE 1 Funzioni libere I punti stazionari di una funzione libera di più variabili si ottengono risolvendo il sistema di equazioni
Esercitazione n 6. Esercizio 1: Determinare i punti di massimo e minimo relativo delle seguenti funzioni: (b)f(x, y) = 4y 4 16x 2 y + x
Esercitazione n 6 1 Massimi e minimi di funzioni di più variabili Esercizio 1: Determinare i punti di massimo e minimo relativo delle seguenti funzioni: (a)f(x, y) = x 3 + y 3 + xy (b)f(x, y) = 4y 4 16x
DERIVATE SUCCESSIVE E MATRICE HESSIANA
FUNZIONI DI DUE VARIABILI 1 DERIVATE SUCCESSIVE E MATRICE HESSIANA Derivate parziali seconde e matrice hessiana. Sviluppo di Taylor del secondo ordine. Punti stazionari. Punti di massimo o minimo (locale
ESERCIZIO SVOLTO N 1 ESERCIZIO SVOLTO N 2. Determinare e rappresentare graficamente il dominio della funzione
ESERCIZIO SVOLTO N 1 Determinare e rappresentare graficamente il dominio della funzione f(x, y) = y 2 x 2 Trovare gli eventuali punti stazionari e gli estremi di f Il dominio della funzione è dato da dom
TEMI D ESAME DI ANALISI MATEMATICA I
TEMI D ESAME DI ANALISI MATEMATICA I Corso di laurea quadriennale) in Fisica a.a. 003/04 Prova scritta del 3 aprile 003 ] Siano a, c parametri reali. Studiare l esistenza e, in caso affermativo, calcolare
Derivate parziali, derivate direzionali, differenziabilità. a) Calcolare le derivate direzionali e le derivate parziali in (0, 1) di f(x, y) =
Derivate parziali, derivate direzionali, differenziabilità 1. a) Calcolare le derivate direzionali e le derivate parziali in (0, 1) di f(x, y) = 3 x (y 1) + 1. b) Calcolare D v f(0, 1), dove v è il versore
1 Punti di massimo o di minimo e punti stazionari 1
UNIVR Facoltà di Economia Corso di Matematica finanziaria 2008/09 1 Massimi e minimi liberi Indice 1 Punti di massimo o di minimo e punti stazionari 1 2 Condizioni di ottimalità 2 21 Condizione necessaria
a) Il denominatore dev essere diverso da zero. Studiamo il trinomio x 2 5x + 6. Si ha: x 1,2 = 5 ± se x ], 2[ ]3, + [;
ESERCIZIO - Data la funzione f (x) + x2 2x x 2 5x + 6, si chiede di: a) calcolare il dominio di f ; (2 punti) b) studiare la positività e le intersezioni con gli assi; (3 punti) c) stabilire se f ha asintoti
4.11 Massimi e minimi relativi per funzioni di più variabili
5. Determinare, al variare del parametro a R, la natura delle seguenti forme quadratiche: (i) Φ(x, y, z) = x 2 + 2axy + y 2 + 2axz + z 2, (ii) Φ(x, y, z, t) = 2x 2 + ay 2 z 2 t 2 + 2xz + 4yt + 2azt. 4.11
Massimi e minimi relativi in R n
Massimi e minimi relativi in R n Si consideri una funzione f : A R, con A R n, e sia x A un punto interno ad A. Definizione: si dice che x è un punto di massimo relativo per f se B(x, r) A tale che f(y)
COMPLEMENTI di MATEMATICA (Docente: Luca Guerrini)
COMPLEMENTI di MATEMATICA (Docente: Luca Guerrini) Alcuni esercizi assegnati in appelli precedenti, comprendenti anche quesiti a risposta multipla ed esercizi nei quali veri care se l a ermazione fatta
Analisi Matematica II Corso di Ingegneria Gestionale Compito del f(x, y) = e (x3 +x) y
Analisi Matematica II Corso di Ingegneria Gestionale Compito del 8--7 - È obbligatorio consegnare tutti i fogli, anche la brutta e il testo. - Le risposte senza giustificazione sono considerate nulle.
Matematica e Statistica
Matematica e Statistica Prova d esame (0/0/03) Università di Verona - Laurea in Biotecnologie - A.A. 0/3 Matematica e Statistica Prova di MATEMATICA (0/0/03) Università di Verona - Laurea in Biotecnologie
Note sulle funzioni convesse/concave
Note sulle funzioni convesse/concave 4th December 2008 1 Definizioni e proprietà delle funzioni convesse/concave. Definizione 1.1 Un insieme A IR n è detto convesso se per ogni x 1 e x 2 punti di A, il
ESAME DI MATEMATICA I parte Vicenza, 05/06/2017. x log 2 x?
A. Peretti Svolgimento dei temi d esame di Matematica A.A. 6/7 ESAME DI MATEMATICA I parte Vicenza, 5/6/7 log? Domanda. Per quali valori di è definita l espressione L espressione è definita se l argomento
Alcuni esercizi: funzioni di due variabili e superfici
ANALISI MATEMATICA T- (C.d.L. Ing. per l ambiente e il territorio) - COMPL. DI ANALISI MATEMATICA (A-K) (C.d.L. Ing. Civile) A.A.008-009 - Prof. G.Cupini Alcuni esercizi: funzioni di due variabili e superfici
Scritto d esame di Analisi Matematica II
Capitolo 2: Scritti d esame 145 Pisa, 1 Gennaio 2005 e gli insiemi f(x, y) = x 2 x 2 y + y, A = {(x, y) R 2 : x 2 + y 2 6, x 0, y 0}, B = {(x, y) R 2 : x 0, y 0}. (a) massimo e minimo di f(x, y) in A,
Esercizi su massimi e minimi
Esercizi su massimi e minimi 1. Studiare massimi e minimi relativi della funzione f : R! R de nita onendo (x; y) R : f (x; y) = x + y + xy + x. Risoluzione La funzione f è derivabile in tutto R e er ogni
Esercizi sulle funzioni di due variabili: parte II
ANALISI MATEMATICA T- (C.d.L. Ing. per l ambiente e il territorio) A.A.009-00 - Università di Bologna - Prof. G.Cupini Esercizi sulle funzioni di due variabili: parte II (Grazie agli studenti del corso
COMPITO IN CLASSE DI MATEMATICA Funzioni di due variabili Classe 5ª D. Fila A
Esercizio 1 Determinare il dominio della seguente funzione: COMPITO IN CLASSE DI MATEMATICA Funzioni di due variabili Classe 5ª D Fila A (a) f (, ln( + 4 Esercizio Calcolare le derivate parziali delle
Estremi vincolati, Teorema del Dini.
Estremi vincolati, Teorema del Dini. 1. Da un cartone di 1m si deve ricavare una scatola rettangolare senza coperchio. Trovare il massimo volume possibile della scatola.. Trovare gli estremi assoluti di
Esercizi di Analisi Matematica L-B
Esercii di Analisi Matematica L-B Marco Alessandrini Gennaio-Maro 7 Indice Funioni di più variabili reali. Calcolo differeniale........................................... Ricerca di massimi e minimi.......................................
Prima parte: DOMINIO E INSIEMI DI LIVELLO
FUNZIONI DI DUE VARIABILI 1 Prima parte: DOMINIO E INSIEMI DI LIVELLO Domini e disequazioni in due variabili. Insiemi di livello. Elementi di topologia insiemi aperti, chiusi, limitati, convessi, connessi
Esercizi. f(x, y, z) = exp(xz) + zy sin(xyz) + cos(xy 3 )
Esercizi 1. Determinare le derivate parziali di f(x, y, z) = exp(xz) + zy sin(xyz) + cos(xy 3 ) 2. Scrivere l equazione del piano tangente e della retta normale al grafico ln(xy) + cos(x + y) nel punto
Analisi Matematica II per il corso di Laurea Triennale in Matematica. Dipartimento di Matematica e Applicazioni, Università di Milano Bicocca
Analisi Matematica II per il corso di Laurea Triennale in Matematica Dipartimento di Matematica e Applicazioni, Università di Milano Bicocca Esercizi: estremi liberi e vincolati per funzioni in piú variabili.
Funzioni implicite - Esercizi svolti
Funzioni implicite - Esercizi svolti Esercizio. È data la funzione di due variabili F (x, y) = y(e y + x) log x. Verificare che esiste un intorno I in R del punto di ascissa x 0 = sul quale è definita
6. Calcolare le derivate parziali prime e seconde, verificando la validità del teorema di Schwarz:
FUNZIONI DI PIU VARIABILI Esercizi svolti. Determinare il dominio delle seguenti funzioni e rappresentarlo graficamente : (a) f log( x y ) (b) f log(x + y ) (c) f y x 4 (d) f sin(x + y ) (e) f log(xy +
1 Forme quadratiche 1. 2 Segno di una forma quadratica Il metodo dei minori principali Soluzioni degli esercizi 7.
1 FORME QUADRATICHE 1 Forme quadratiche Indice 1 Forme quadratiche 1 2 Segno di una forma quadratica 2 2.1 Il metodo dei minori principali........................................ 3 3 Soluzioni degli esercizi
Massimi e minimi vincolati
Massimi e minimi vincolati Data una funzione G C 1 (D), dove D è un aperto di R 2, sappiamo bene dove andare a cercare gli eventuali punti di massimo e minimo relativi. Una condizione necessaria affinché
IV-2 Forme quadratiche
1 FORME QUADRATICHE 1 IV-2 Forme quadratiche Indice 1 Forme quadratiche 1 2 Segno di una forma quadratica 2 2.1 Il metodo dei minori principali........................................ 3 3 Soluzioni degli
Programma delle lezioni svolte nel corso CLEM di Matematica Generale, Lettere M-Z, Prof. F. Manzini.
Programma delle lezioni svolte nel corso CLEM di Matematica Generale, Lettere M-Z, Prof. F. Manzini. 1. Generalità sul corso e sulle modalità di esame. Insiemi ed operazioni sugli insiemi. Applicazioni
Appunti sul corso di Complementi di Matematica mod.analisi prof. B.Bacchelli a.a. 2010/2011
Appunti sul corso di Complementi di Matematica mod.analisi prof. B.Bacchelli a.a. 2010/2011 08- Estremi: Riferimenti: R.Adams, Calcolo Differenziale 2. Capitoli 4.1. Esercizi 4.1 Estremi liberi: punti
Soluzioni degli esercizi sulle FUNZIONI DI DUE VARIABILI
Soluzioni degli esercizi sulle FUNZIONI DI DUE VARIABILI 1. Insiemididefinizione: (a) x + èdefinita se il denominatore è diverso da zero, cioè perx 6= : graficamente x significa rimuovere dal piano la
DIARIO DELLE LEZIONI DI ANALISI MATEMATICA II Corso di laurea in Ingegneria Gestionale Canale PZ Secondo codocente: Dott. Salvatore Fragapane
DIARIO DELLE LEZIONI DI ANALISI MATEMATICA II Corso di laurea in Ingegneria Gestionale Canale PZ Secondo codocente: Dott. Salvatore Fragapane Lezione 1-04/10/2016 - Serie Numeriche (1): definizione e successione
Analisi Matematica II Corso di Ingegneria Gestionale Compito del f(x, y) = tan(2x 2 + 3y 2 )
Analisi Matematica II Corso di Ingegneria Gestionale Compito del 7-9- - È obbligatorio consegnare tutti i fogli, anche la brutta e il testo - Le risposte senza giustificazione sono considerate nulle Esercizio
Esercizi 2. e xy x + y = 0. definisce una ed una unica funzione implicita x = φ(y) nell intorno di (0, 0), se ne calcoli
I seguenti quesiti ed il relativo svolgimento sono coperti dal diritto d autore, pertanto essi non possono essere sfruttati a fini commerciali o di pubblicazione editoriale senza autorizzazione esplicita
Analisi Matematica I Primo Appello ( ) - Fila 1
Analisi Matematica I Primo Appello (4-11-003) - Fila 1 1. Determinare la retta tangente alla funzione f() = (1 + ) 1+ in = 0. R. f(0) = 1, mentre la derivata è f () = ( e (1+) log(1+)) ( ) = e (1+) log(1+)
Soluzioni dello scritto di Analisi Matematica II - 10/07/09. C.L. in Matematica e Matematica per le Applicazioni
Soluzioni dello scritto di Analisi Matematica II - /7/9 C.L. in Matematica e Matematica per le Applicazioni Proff. K. Payne, C. Tarsi, M. Calanchi Esercizio. a La funzione f è limitata e essendo lim fx
Analisi Matematica II (Prof. Paolo Marcellini)
Vero o falso? Analisi Matematica II (Prof. Paolo Marcellini) Università degli Studi di Firenze Corso di laurea in Matematica Esercitazione del 8//205 Michela Eleuteri [email protected] web.math.unifi.it/users/eleuteri
SIMULAZIONE - 29 APRILE QUESITI
www.matefilia.it SIMULAZIONE - 29 APRILE 206 - QUESITI Q Determinare il volume del solido generato dalla rotazione attorno alla retta di equazione y= della regione di piano delimitata dalla curva di equazione
quando il limite delle somme di Riemann esiste. In tal caso diciamo che la funzione è integrabile sul rettangolo.
Integrali multipli Consideriamo, inizialmente il caso degli integrali doppi. Il concetto di integrale doppio è l estensione della definizione di integrale per una funzione reale di una variabile reale
Analisi Matematica 3 (Fisica) Prova scritta del 27 gennaio 2012 Uno svolgimento
Analisi Matematica 3 (Fisica) Prova scritta del 27 gennaio 22 Uno svolgimento Prima di tutto, eccovi alcuni commenti che potrebbero aiutarvi a svolgere meglio le prove scritte. Ad ogni domanda del testo
ULTERIORI ESERCIZI SUL CALCOLO DIFFERENZIALE
ULTERIORI ESERCIZI SUL CALCOLO DIFFERENZIALE 1 Scrivi l equazione della retta tangente al grafico di f(x) = (1 + 2x) 4 nel suo punto di intersezione con l asse y 2 Scrivi l equazione della retta tangente
Teorema delle Funzioni Implicite
Teorema delle Funzioni Implicite Sia F una funzione di due variabili definita in un opportuno dominio D di R 2. Consideriamo l equazione F (x, y) = 0, questa avrà come soluzioni coppie di valori (x, y)
COGNOME... NOME... Matricola... Corso Prof... Esame di ANALISI MATEMATICA II - 25 Giugno 2007
COGNOME... NOME... Matricola... Corso Prof.... Esame di ANALISI MATEMATICA II - 25 Giugno 2007 A ESERCIZIO 1. (6 punti) Data la funzione reale di due variabili reali f(x, y) = ln x 3y + 3y x 1 (a) determinare
Domande da 6 punti. Prima parte del programma
Domande da 6 punti Prima parte del programma Domanda. Dare la definizione di arco di curva continua, di sostegno di una curva, di curva chiusa, di curva semplice e di curva piana fornendo qualche esempio.
Circonferenze del piano
Circonferenze del piano 1 novembre 1 Circonferenze del piano 1.1 Definizione Una circonferenza è il luogo dei punti equidistanti da un punto fisso, detto centro. La distanza di un qualunque punto della
Esercizi per Geometria II Geometria euclidea e proiettiva
Esercizi per Geometria II Geometria euclidea e proiettiva Filippo F. Favale 8 aprile 014 Esercizio 1 Si consideri E dotato di un riferimento cartesiano ortonormale di coordinate (x, y) e origine O. Si
Calcolo differenziale per funzioni in più variabili.
Calcolo differenziale per funzioni in più variabili. Paola Mannucci e Alvise Sommariva Università degli Studi di Padova Dipartimento di Matematica 14 dicembre 2014 Paola Mannucci e Alvise Sommariva Calcolo
Scritto d esame di Analisi Matematica I
Capitolo 2: Scritti d esame 07 Pisa, 8 Gennaio 999. Studiare il comportamento della serie al variare del parametro α > /2. ( ) n n sin α n 2α 2. Sia ( ) f(x) = log + sin3 x. 2 (a) Determinare la derivata
Soluzioni. 152 Roberto Tauraso - Analisi Risolvere il problema di Cauchy. { y (x) + 2y(x) = 3e 2x y(0) = 1
5 Roberto Tauraso - Analisi Soluzioni. Risolvere il problema di Cauchy y (x) + y(x) = 3e x y() = R. Troviamo la soluzione generale in I = R. Una primitiva di a(x) = è A(x) = a(x) dx = dx = x e il fattore
Compito di Meccanica Razionale M-Z
Compito di Meccanica Razionale M-Z 11 giugno 213 1. Tre piastre piane omogenee di massa m aventi la forma di triangoli rettangoli con cateti 4l e 3l sono saldate lungo il cateto più lungo come in figura
INTEGRALI Test di autovalutazione
INTEGRALI Test di autovalutazione. L integrale ln 6 è uguale a (a) vale 5 2 (b) (c) (d) 4 5 vale ln 256 2 è negativo 2 5 + 4 5 2 5 + 4 5 d d 2. È data la funzione = e 2. Allora: (a) se F() è una primitiva
STUDIO DELLE RADICI DI UNA EQUAZIONE ALGEBRICA DI TERZO GRADO A COEFFICIENTI REALI
M. G. BUSATO STUDIO DELLE RADICI DI UNA EQUAZIONE ALGEBRICA DI TERZO GRADO A COEFFICIENTI REALI mgbstudio.net PAGINA INTENZIONALMENTE VUOTA SOMMARIO In questo scritto viene compiuto lo studio dettagliato
Similitudine (ortogonale) e congruenza (ortogonale) di matrici.
Lezione del 4 giugno. Il riferimento principale di questa lezione e costituito da parti di: 2 Forme bilineari, quadratiche e matrici simmetriche associate, 3 Congruenza di matrici simmetriche, 5 Forme
Mutue posizioni della parabola con gli assi cartesiani
Mutue posizioni della parabola con gli assi cartesiani L equazione di una parabola generica è data da: Consideriamo l equazione che definisce i punti di intersezione della parabola con l asse delle ascisse
L equazione generica della funzione costante è y=k, il grafico è una retta parallela all asse x (asse delle ascisse). retta parallela all'asse x y
La funzione costante L equazione generica della funzione costante è =k, il grafico è una retta parallela all asse (asse delle ascisse). Esempio di esercizio, dall equazione al grafico: =- retta parallela
Calcolo differenziale 2: Massimi e minimi. Studio di una funzione. (M.S.Bernabei & H. Thaler)
Calcolo differenziale 2: Massimi e minimi. Studio di una funzione. (M.S.Bernabei & H. Thaler) Studio di una funzione Funzioni crescenti e decrescenti Una funzione f è crescente nell intervallo (a, b) se
1 Definizione del problema 1
UNIVR Facoltà di Economia Corso di Matematica finanziaria 008/09 Massimi e minimi vincolati con vincoli di uguaglianza Indice Definizione del problema Caso con un solo vincolo. Il metodo delle curve di
Concavità verso il basso (funzione concava) Si dice che in x0 il grafico della funzione f(x) abbia la concavità rivolta verso il basso, se esiste
CONCAVITA E CONVESSITA DI UNA FUNZIONE. FLESSI. SCHEMA GENERALE PER LO STUDIO DI FUNZIONE. FUNZIONI RAZIONALI E IRRAZIONALI INTERE E FRATTE. TEOREMA DI DE L HOSPITAL CON APPLICAZIONI AI LIMITI. 1 Concavit{
Massimi e minimi assoluti vincolati: esercizi svolti
Massimi e minimi assoluti vincolati: esercizi svolti Gli esercizi contrassegnati con il simbolo * presentano un grado di difficoltà maggiore. Esercizio 1. Determinare i punti di massimo e minimo assoluti
