Esercizi su massimi e minimi
|
|
|
- Fabio Rizzo
- 9 anni fa
- Visualizzazioni
Transcript
1 Esercizi su massimi e minimi 1. Studiare massimi e minimi relativi della funzione f : R! R de nita onendo (x; y) R : f (x; y) = x + y + xy + x. Risoluzione La funzione f è derivabile in tutto R e er ogni (x; y) R si ha Cerco i unti stazionari di f ( (x; y) = x + y + 1 (x; y) = y + x. x + y + 1 = 0 y + x = 0 la cui unica soluzione è data dalla coia (x; y) = 1 ;, cioè dal unto P 1 ;. Studiamo ora la natura di tale unto. Anzitutto la funzione f è derivabile volte in tutto R. Calcoliamo er ogni (x; y) R (x; y) (x; y) =, (x; y) = 1, Quindi la matrice Hessiana della f nel unto P è data da 1 H f (P ) =. 1 f (x; y) = 1. Pertanto, essendo det H f (P ) > 0 f (P ) f (P ) > 0, si ha che P è un unto di minimo relativo er f.. Studiare massimi e minimi relativi della funzione f : R! R de nita onendo R : f = x z + yz + xy. 1
2 Risoluzione La funzione f è derivabile in tutto R e er ogni R si ha Cerco i unti stazionari di f = xz + y = z + = x + y. < xz + z + x = 0 x + la cui unica soluzione è data dalla terna = (0; 0; 0), cioè dal unto P (0; 0; 0). Studiamo ora la natura di tale unto. Anzitutto la funzione f è derivabile volte in tutto R. Calcoliamo er ogni R = f = f f = Quindi la matrice Hessiana della f nel unto P è data da 0 H f (P ) A Poichè det H f (P ) = 0, er studiare la natura del unto P devo rocedere er un altra strada. In un intorno sferico di O(0; 0; 0), se er esemio considero dei unti P con x > 0, y > 0, z > 0, avrò che f > 0 = f (0; 0; 0), invece er unti P con x < 0, y > 0, z < 0, avrò che f < 0 = f (0; 0; 0). Pertanto O(0; 0; 0) è un unto di sella.. Studiare massimi e minimi assoluti della funzione f(x; y) = x y (x ) nel triangolo A di vertici O(0; 0), P (; ) e Q (; ).
3 Risoluzione La funzione f è derivabile in tutto R e er ogni (x; y) R si ha Cerco i unti stazionari di f ( (x; y) = x (x ) + x y (x; y) = y (x ). x (x ) + x y = 0 y (x ) = 0 che equivale a risolvere due sistemi: x = (S 1 ) x = y e (S ) x 4x = 0. Il sistema (S 1 ) mi dà soluzioni non interne ad A. Invece il sistema (S ) si sdoia in altri due sistemi: (S) 0 e (S 00 x = 0 ) x = 4. Il sistema (S) 0 mi dà una soluzione non interna ad A. Invece il sistema (S 00 4 ) mi dà la soluzione P 0 ; 0. Calcolo f(p 0 ) = 7. Considero ora F r (A) = A 1 [ A [ A ove A 1 = (x; y) R j 0 x, y = x, A = (x; y) R j 0 x, y = x, A = (x; y) R j x =, y. Si vede che fj A1 0, fj A 0, fj A 0. Quindi P 0 è un unto di minimo assoluto er f in A e f(p 0 ) = 7 è il minimo assoluto er f in A e tutti i unti di F r (A) sono unti di massimo assoluto er f in A e 0 è il massimo assoluto er f in A. 4. Studiare massimi e minimi relativi ed assoluti della funzione f(x; y) = x + y + y 1 nell insieme A = (x; y) R j x + y 9. Risoluzione La funzione f è derivabile in tutto R n f(0; 0)g e er ogni (x; y) R n f(0; 0)g si ha (x; y) = x x + y (x; y) = y x + y + y.
4 Cerco i unti stazionari di f ( < : x = 0 x +y y + x +y che non dà soluzioni. Vediamo se f è derivabile in (0; 0). Calcoliamo f (t; 0) f (0; 0) lim lim t!0 f (0; t) f (0; 0) t t t t + t t!0 jtj t!0 jtj t + t. Poichè non esiste lim jtj, allora f non è derivabile in (0; 0). Ma f (0; 0) = 1. Ora vediamo cosa succede sulla frontiera di A, cioè su F r (A) : x = cos t y = sin t t [0; ]. Per ogni (x; y) F r (A) fj F r(a) (x; y) = f ( cos t; sin t) = F (t), cioè considero la funzione F : [0; ]! R così de nita t [0; ] : F (t) = f ( cos t; sin t) = + 9 sin t. Agli estremi: F (0) = F () =. Ora cerchiamo i unti di massimo e di minimo della funzione F. Per ogni t [0; ] la funzione F è derivabile e si ha F 0 (t) = 1 sin t cos t. Quindi F 0 (t) = 0, t = oure t = oure t =. In tali unti: F () =, F = 11 e F = 11. Pertanto in corrisondenza di questi unti ho P 0 (0; 0) con f (P 0 ) = 1, P 1 (; 0) con f (P 1 ) =, P ( ; 0) con f (P ) =, P (0; ) con f (P ) = 11 e P 4 (0; ) con f (P 4 ) = 11. Quindi P e P 4 sono unti di massimo assoluto er f, mentre P 0 è unto di minimo assoluto er f. 5. Studiare massimi e minimi relativi ed assoluti della funzione f = x +y +z x 1 nell insieme A = R j x + y + z 0. 4
5 Risoluzione La funzione f è derivabile in tutto R e er ogni R si ha Cerco i unti stazionari di f = x = = z. : x = 0 z = 0 la cui unica soluzione è data dalla terna = (1; 0; 0), cioè dal unto P (1; 0; 0) che è interno ad A oichè le sue coordinate veri cano x + y + z < 0. Studiamo ora la natura di tale unto. Anzitutto la funzione f è derivabile volte in tutto R. Inoltre si ha (P ) f (P ) f (P ) (P ) f (P ) = (P ) f (P ) (P ) f (P ) = Quindi la matrice Hessiana della f nel unto P è data da 0 H f (P ) A. 0 0 Pertanto, essendo det H f (P ) = > 0, H ;f (P ) = 0 0 = 4 > 0 e (P ) = > 0, si ha che P è un unto di minimo relativo er f. Inoltre f(p ) = è un minimo relativo er f. Ora studiamo i massimi e i minimi sulla frontiera di A, cioè su F r (A) = R j x + y + z = 0. 5
6 Cercare massimi e minimi su F r (A) equivale a cercare massimi e minimi vincolati della funzione f di vincolo g = x +y +z. Pertanto devo cercare i massimi e minimi relativi della funzione F (x; y; z; ) = x + y + z x 1 + x + y + z. I unti stazionari di F si ottengono imonendo che = 0 = = = 0 ovvero che > < Tale sistema equivale a sistemi: z = 0 (S 1 ) x =, (S ) (1 + ) = 1 x + x = 0 y + z + 4z = 0 x + y + z = 0 z = 0 x = e (S ) (1 + ) = 1. x = = z = 0. I rimi sistemi ci danno come soluzioni i unti P 1 ; 0; 0 e P ; 0; 0, mentre il terzo non ha soluzioni. Per tali unti f (P 1 ) = 1 e f (P ) = 1 +. Quindi P è unto di minimo assoluto er f, mentre P è unto di massimo assoluto er f. 6
Massimi e minimi assoluti vincolati: esercizi svolti
Massimi e minimi assoluti vincolati: esercizi svolti Gli esercizi contrassegnati con il simbolo * presentano un grado di difficoltà maggiore. Esercizio 1. Determinare i punti di massimo e minimo assoluti
Esercizi su massimi e minimi locali
Esercizi su massimi e minimi locali Determinare i punti di massimo locale, di minimo locale o di sella delle seguenti funzioni: 1. f(x, y = (x 1 2 + y 2 2. f(x, y = (x 1 2 y 2 3. f(x, y = x 2 + xy + y
Esercitazione n 6. Esercizio 1: Determinare i punti di massimo e minimo relativo delle seguenti funzioni: (b)f(x, y) = 4y 4 16x 2 y + x
Esercitazione n 6 1 Massimi e minimi di funzioni di più variabili Esercizio 1: Determinare i punti di massimo e minimo relativo delle seguenti funzioni: (a)f(x, y) = x 3 + y 3 + xy (b)f(x, y) = 4y 4 16x
Massimi e minimi relativi in R n
Massimi e minimi relativi in R n Si consideri una funzione f : A R, con A R n, e sia x A un punto interno ad A. Definizione: si dice che x è un punto di massimo relativo per f se B(x, r) A tale che f(y)
Estremi. 5. Determinare le dimensioni di una scatola rettangolare di volume v assegnato, che abbia la superficie minima.
Estremi 1. Determinare gli estremi relativi di f(x, y) = e x (x 1)(y 1) + (y 1).. Determinare gli estremi relativi di f(x, y) = y (y + 1) cos x. 3. Determinare gli estremi relativi di f(x, y) = xye x +y..
ESERCIZI DI METODI QUANTITATIVI PER L ECONOMIA DIP. DI ECONOMIA E MANAGEMENT DI FERRARA A.A. 2016/2017. Ottimizzazione libera
ESERCIZI DI METODI QUANTITATIVI PER L ECONOMIA DIP. DI ECONOMIA E MANAGEMENT DI FERRARA A.A. 2016/2017 Ottimizzazione libera Esercizio 1. Si determinino, se esistono, gli estremi delle seguenti funzioni
ESERCIZIO SVOLTO N 1 ESERCIZIO SVOLTO N 2. Determinare e rappresentare graficamente il dominio della funzione
ESERCIZIO SVOLTO N 1 Determinare e rappresentare graficamente il dominio della funzione f(x, y) = y 2 x 2 Trovare gli eventuali punti stazionari e gli estremi di f Il dominio della funzione è dato da dom
La ricerca di punti di estremo assoluto
La ricerca di punti di estremo assoluto Riccarda Rossi Università di Brescia Analisi Matematica B Riccarda Rossi (Università di Brescia) Estremi assoluti (I) Analisi Matematica B 1 / 29 Richiami di teoria
ESAME DI MATEMATICA I parte Vicenza, 05/06/2017. x log 2 x?
A. Peretti Svolgimento dei temi d esame di Matematica A.A. 6/7 ESAME DI MATEMATICA I parte Vicenza, 5/6/7 log? Domanda. Per quali valori di è definita l espressione L espressione è definita se l argomento
I fasci di circonferenze
A I fasci di circonferenze Se combiniamo linearmente le equazioni di due circonferenze otteniamo un fascio di circonferenze. Per esemio, date le circonferenze di equazioni la loro combinazione lineare
ANALISI B alcuni esercizi proposti
ANALISI B alcuni esercizi proposti G.P. Leonardi Parte II 1 Limiti e continuità per funzioni di 2 variabili Esercizio 1.1 Calcolare xy log(1 + x ) lim (x,y) (0,0) 2x 2 + 5y 2 Esercizio 1.2 Studiare la
TEMI D ESAME DI ANALISI MATEMATICA I
TEMI D ESAME DI ANALISI MATEMATICA I Corso di laurea quadriennale) in Fisica a.a. 003/04 Prova scritta del 3 aprile 003 ] Siano a, c parametri reali. Studiare l esistenza e, in caso affermativo, calcolare
Compito di Meccanica Razionale M-Z
Compito di Meccanica Razionale M-Z 11 giugno 213 1. Tre piastre piane omogenee di massa m aventi la forma di triangoli rettangoli con cateti 4l e 3l sono saldate lungo il cateto più lungo come in figura
1 Punti di massimo o di minimo e punti stazionari 1
UNIVR Facoltà di Economia Corso di Matematica finanziaria 2008/09 1 Massimi e minimi liberi Indice 1 Punti di massimo o di minimo e punti stazionari 1 2 Condizioni di ottimalità 2 21 Condizione necessaria
Esercizi su massimi e minimi assoluti e moltiplicatori di Lagrange. 1. Determinare il massimo ed il minimo assoluto della funzione
Esercizi su massimi e minimi assoluti e moltiplicatori di Lagrange 1. Determinare il massimo ed il minimo assoluto della funzione f(x,y) = x 2 +y 2 xy +x+y A := {(x,y) R 2, x 0,y 0,x+y 3} 2. Determinare
(a) Le derivate parziali f x. f y = x2 + 2xy + 3 si annullano contemporaneamente in (1, 2) e ( 1, 2). Le derivate seconde di f valgono.
Esercizio 1 Si consideri la funzione f(x, y) = x 2 y + xy 2 + y (a) Determinare i punti di massimo e minimo relativo e di sella del grafico di f. (b) Determinare i punti di massimo e minimo assoluto di
Esercizi su massimi e minimi assoluti e moltiplicatori di Lagrange. 1. Determinare i punti di massimo e di minimo assoluto della funzione
Esercizi su massimi e minimi assoluti e moltiplicatori di Lagrange 1. Determinare i punti di massimo e di minimo assoluto della funzione f(x,y) = x 2 +y 2 xy +x+y A := {(x,y) R 2, x 0,y 0,x+y 3} 2. Determinare
Analisi Matematica 2 Ingegneria Gestionale Docenti: B. Rubino e R. Sampalmieri L Aquila, 21 marzo 2005
Analisi Matematica 2 Ingegneria Gestionale Docenti: B. Rubino e R. Sampalmieri L Aquila, 21 marzo 2005 Prova orale il: Docente: Determinare, se esistono, il massimo ed il minimo assoluto della funzione
Esercizi sui sistemi di equazioni lineari.
Esercizi sui sistemi di equazioni lineari Risolvere il sistema di equazioni lineari x y + z 6 x + y z x y z Si tratta di un sistema di tre equazioni lineari nelle tre incognite x, y e z Poichè m n, la
Estremi vincolati, Teorema del Dini.
Estremi vincolati, Teorema del Dini. 1. Da un cartone di 1m si deve ricavare una scatola rettangolare senza coperchio. Trovare il massimo volume possibile della scatola.. Trovare gli estremi assoluti di
Scritto d esame di Analisi Matematica II
Capitolo 2: Scritti d esame 145 Pisa, 1 Gennaio 2005 e gli insiemi f(x, y) = x 2 x 2 y + y, A = {(x, y) R 2 : x 2 + y 2 6, x 0, y 0}, B = {(x, y) R 2 : x 0, y 0}. (a) massimo e minimo di f(x, y) in A,
Analisi Matematica II Corso di Ingegneria Gestionale Compito del f(x, y) = e (x3 +x) y
Analisi Matematica II Corso di Ingegneria Gestionale Compito del 8--7 - È obbligatorio consegnare tutti i fogli, anche la brutta e il testo. - Le risposte senza giustificazione sono considerate nulle.
DERIVATE SUCCESSIVE E MATRICE HESSIANA
FUNZIONI DI DUE VARIABILI 1 DERIVATE SUCCESSIVE E MATRICE HESSIANA Derivate parziali seconde e matrice hessiana. Sviluppo di Taylor del secondo ordine. Punti stazionari. Punti di massimo o minimo (locale
4.11 Massimi e minimi relativi per funzioni di più variabili
5. Determinare, al variare del parametro a R, la natura delle seguenti forme quadratiche: (i) Φ(x, y, z) = x 2 + 2axy + y 2 + 2axz + z 2, (ii) Φ(x, y, z, t) = 2x 2 + ay 2 z 2 t 2 + 2xz + 4yt + 2azt. 4.11
Alcuni esercizi: funzioni di due variabili e superfici
ANALISI MATEMATICA T- (C.d.L. Ing. per l ambiente e il territorio) - COMPL. DI ANALISI MATEMATICA (A-K) (C.d.L. Ing. Civile) A.A.008-009 - Prof. G.Cupini Alcuni esercizi: funzioni di due variabili e superfici
Appunti sul corso di Complementi di Matematica mod.analisi prof. B.Bacchelli a.a. 2010/2011
Appunti sul corso di Complementi di Matematica mod.analisi prof. B.Bacchelli a.a. 2010/2011 08- Estremi: Riferimenti: R.Adams, Calcolo Differenziale 2. Capitoli 4.1. Esercizi 4.1 Estremi liberi: punti
Massimi e minimi vincolati
Massimi e minimi vincolati Data una funzione G C 1 (D), dove D è un aperto di R 2, sappiamo bene dove andare a cercare gli eventuali punti di massimo e minimo relativi. Una condizione necessaria affinché
Esercizi di Analisi Matematica L-B
Esercii di Analisi Matematica L-B Marco Alessandrini Gennaio-Maro 7 Indice Funioni di più variabili reali. Calcolo differeniale........................................... Ricerca di massimi e minimi.......................................
Prima parte: DOMINIO E INSIEMI DI LIVELLO
FUNZIONI DI DUE VARIABILI 1 Prima parte: DOMINIO E INSIEMI DI LIVELLO Domini e disequazioni in due variabili. Insiemi di livello. Elementi di topologia insiemi aperti, chiusi, limitati, convessi, connessi
f(x) = 1 x 2 Per determinare il dominio di f(x) dobbiamo imporre che il determinante sia diverso da zero
. Data la funzione approssimarne il grafico. f() = 2 Per determinare il dominio di f() dobbiamo imporre che il determinante sia diverso da zero 2 0 = 2 = ± perciò il dominio ` D = R \ {, } =], [ ], [ ],
Primi esercizi sulla ricerca di punti di estremo assoluto
Primi esercizi sulla ricerca di punti di estremo assoluto Riccarda Rossi Università di Brescia Analisi II Riccarda Rossi (Università di Brescia) Esercizi su estremi assoluti (I) Analisi II 1 / 42 Richiami
10 - Applicazioni del calcolo differenziale
Università degli Studi di Palermo Facoltà di Economia CdS Sviuppo Economico e Cooperazione Internazionale Appunti del corso di Matematica 10 - Applicazioni del calcolo differenziale Anno Accademico 2015/2016
a) Il denominatore dev essere diverso da zero. Studiamo il trinomio x 2 5x + 6. Si ha: x 1,2 = 5 ± se x ], 2[ ]3, + [;
ESERCIZIO - Data la funzione f (x) + x2 2x x 2 5x + 6, si chiede di: a) calcolare il dominio di f ; (2 punti) b) studiare la positività e le intersezioni con gli assi; (3 punti) c) stabilire se f ha asintoti
TRASFORMAZIONI LINEARI SUL PIANO
TRASFORMAZIONI LINEARI SUL PIANO Sono trasformazioni lineari tutte le trasformazioni del tio: a b c d in forma matriciale: X A X B, cioè a c b d Dove a A c b d è la matrice della trasformazione. Se il
Soluzioni dello scritto di Analisi Matematica II - 10/07/09. C.L. in Matematica e Matematica per le Applicazioni
Soluzioni dello scritto di Analisi Matematica II - /7/9 C.L. in Matematica e Matematica per le Applicazioni Proff. K. Payne, C. Tarsi, M. Calanchi Esercizio. a La funzione f è limitata e essendo lim fx
ESERCITAZIONE 4: MONOPOLIO E CONCORRENZA PERFETTA
ESERCITAZIONE 4: MONOPOLIO E CONCORRENZA PERFETTA Esercizio : Scelta ottimale di un monoolista e imoste Si consideri un monoolista con la seguente funzione di costo totale: C ( ) = 400 + + 0 0 La domanda
Massimi e minimi vincolati in R 2 - Esercizi svolti
Massimi e minimi vincolati in R 2 - Esercizi svolti Esercizio 1. Determinare i massimi e minimi assoluti della funzione f(x, y) = 2x + 3y vincolati alla curva di equazione x 4 + y 4 = 1. Esercizio 2. Determinare
Esercizi sulle funzioni di due variabili: parte II
ANALISI MATEMATICA T- (C.d.L. Ing. per l ambiente e il territorio) A.A.009-00 - Università di Bologna - Prof. G.Cupini Esercizi sulle funzioni di due variabili: parte II (Grazie agli studenti del corso
CAPITOLO 14. Quadriche. Alcuni esercizi di questo capitolo sono ripetuti in quanto risolti in maniera differente.
CAPITOLO 4 Quadriche Alcuni esercizi di questo capitolo sono ripetuti in quanto risolti in maniera differente. Esercizio 4.. Stabilire il tipo di quadrica corrispondente alle seguenti equazioni. Se si
1 Forme quadratiche 1. 2 Segno di una forma quadratica Il metodo dei minori principali Soluzioni degli esercizi 7.
1 FORME QUADRATICHE 1 Forme quadratiche Indice 1 Forme quadratiche 1 2 Segno di una forma quadratica 2 2.1 Il metodo dei minori principali........................................ 3 3 Soluzioni degli esercizi
ESERCIZI SULLA DINAMICA DI CORPI RIGIDI.
ESERCIZI SULL DINMIC DI CRPI RIIDI. Risoluzione mediante equazioni di Lagrange, equilibrio relativo (forze aarenti), stazionarietà del otenziale U; stabilità dell equilibrio e analisi delle iccole oscillazioni.
GEOMETRIA /2009 II
Universita degli Studi di Roma - "Tor Vergata" - Facolta Ingegneria Esercizi GEOMETRIA Edile e Edile-Architettura - a.a. 008/009 II Emisemestre - Settimana - Foglio 0 Docente: Prof. F. Flamini - Tutore:
Esercizi di GEOMETRIA e ALGEBRA LINEARE (Ingegneria Ambientale e Civile - Curriculum Ambientale)
Esercizi di GEOMETRIA e ALGEBRA LINEARE (Ingegneria Ambientale e Civile - Curriculum Ambientale). Tra le seguenti matrici, eseguire tutti i prodotti possibili: 2 ( ) A = 0 3 4 B = C = 2 2 0 0 2 D = ( 0
IV-2 Forme quadratiche
1 FORME QUADRATICHE 1 IV-2 Forme quadratiche Indice 1 Forme quadratiche 1 2 Segno di una forma quadratica 2 2.1 Il metodo dei minori principali........................................ 3 3 Soluzioni degli
DIARIO DELLE LEZIONI DI ANALISI MATEMATICA II Corso di laurea in Ingegneria Gestionale Canale PZ Secondo codocente: Dott. Salvatore Fragapane
DIARIO DELLE LEZIONI DI ANALISI MATEMATICA II Corso di laurea in Ingegneria Gestionale Canale PZ Secondo codocente: Dott. Salvatore Fragapane Lezione 1-04/10/2016 - Serie Numeriche (1): definizione e successione
Le Coniche dalle origini ai giorni nostri. Prof. Ivano Coccorullo
Le Coniche dalle origini ai giorni nostri Prof. Ivano Coccorullo Generalità Menecmo, Archita da Taranto, Aristeo il vecchio,euclide sono i primi grandi precursori degli studi sulle coniche. Le coniche
Matematica e Statistica
Matematica e Statistica Prova d esame (0/07/03) Università di Verona - Laurea in Biotecnologie - A.A. 0/3 Matematica e Statistica Prova di MATEMATICA (0/07/03) Università di Verona - Laurea in Biotecnologie
Esercitazioni di Geometria A: curve algebriche
Esercitazioni di Geometria A: curve algebriche 24-25 maggio 2016 Esercizio 1 Sia P 2 il piano proiettivo complesso munito delle coordinate proiettive (x 0 : x 1 : x 2 ). Sia r la retta proiettiva di equazione
I teoremi della funzione inversa e della funzione implicita
I teoremi della funzione inversa e della funzione implicita Appunti per il corso di Analisi Matematica 4 G. Mauceri Indice 1 Il teorema della funzione inversa 1 Il teorema della funzione implicita 3 1
Compito Parziale di Algebra lineare e Geometria analitica. 2x + 3y + 2z = 0 x y z = 0
Compito Parziale di Algebra lineare e Geometria analitica ) Dire se il seguente sottoinsieme di R 3 H = (x; y; z) R 3 : x + 3y + z = x y z = è o non un sottospazio vettoriale di R 3 e eventualmente calcolarne
6. Calcolare le derivate parziali prime e seconde, verificando la validità del teorema di Schwarz:
FUNZIONI DI PIU VARIABILI Esercizi svolti. Determinare il dominio delle seguenti funzioni e rappresentarlo graficamente : (a) f log( x y ) (b) f log(x + y ) (c) f y x 4 (d) f sin(x + y ) (e) f log(xy +
Cinematica grafica C.R P 2
inematica grafica ome già evidenziato in recedenza, in alternativa alla formulazione analitica e limitatamente ai roblemi iani, è ossibile dare del roblema cinematico una formulazione grafica, che in qualche
ESERCIZI DI METODI MATEMATICI PER L ECONOMIA FACOLTÀ DI ECONOMIA DI FERRARA A.A. 2011/2012
ESERCIZI DI METODI MATEMATICI PER L ECONOMIA FACOLTÀ DI ECONOMIA DI FERRARA A.A. 2011/2012 1. Esercizi 3 1. Studiare la seguente funzione FINO alla derivata prima, con tracciamento di grafico ed indicazione
Funzioni in più variabili
Funzioni in più variabili Corso di Analisi 1 di Andrea Centomo 27 gennaio 2011 Indichiamo con R n, n 1, l insieme delle n-uple ordinate di numeri reali R n4{(x 1, x 2,,x n ), x i R, i =1,,n}. Dato X R
Soluzioni degli esercizi proposti nella sessione estiva Terni Perugia. F NdS. div F = 2 div F dxdydz = 2volume (V ) = 36π.
Soluzioni degli esercizi proposti nella sessione estiva 2-2 Terni Perugia ) Sia F = (2x, y, z) e V il volume delimitato dalle superfici: la semisfera S := z = 9 x 2 y 2 ed il disco S 2 di equazione z =,
DERIVATE E LORO APPLICAZIONE
DERIVATE E LORO APPLICAZIONE SIMONE ALGHISI 1. Applicazione del calcolo differenziale 1 Abbiamo visto a lezione che esiste un importante legame tra la continuità di una funzione y = f(x) in un punto x
Funzioni di più variabili. Ottimizzazione libera e vincolata
libera e vincolata Generalità. Limiti e continuità per funzioni di 2 o Piano tangente. Derivate successive Formula di Taylor libera vincolata Lo ordinario è in corrispondenza biunivoca con i vettori di
Compiti d Esame A.A. 2005/2006
Compiti d Esame A.A. 25/26 UNIVERSITÀ DEGLI STUDI DI PERUGIA A.A. 25/26 I Esercitazione 21 Aprile 26 { y = xy ln(xy) si chiede di dimostrare che: y(1) = 1, (a) ammette un unica soluzione massimale y =
COMPLEMENTI di MATEMATICA (Docente: Luca Guerrini)
COMPLEMENTI di MATEMATICA (Docente: Luca Guerrini) Alcuni esercizi assegnati in appelli precedenti, comprendenti anche quesiti a risposta multipla ed esercizi nei quali veri care se l a ermazione fatta
Esercizi di Analisi Matematica B. Massimo Cicognani
Esercizi di Analisi Matematica B Massimo Cicognani ii Indice Testi. Serie numeriche e serie di potenze.................2 Funzioni di più variabili reali.................. 5.3 Equazioni differenziali......................
in forma matriciale: X = A X + B, cioè Se il det A = ad - bc è diverso da zero, la trasformazione è invertibile e quindi biunivoca; in tal caso la
TRASFORMAZIONI LINEARI SUL PIANO Sono trasformazioni lineari tutte le trasformazioni del tio: a b c d q in forma matriciale: X A X B, cioè a c b d q Dove a A c b d è la matrice della trasformazione. Se
FUNZIONI REALI DI DUE VARIABILI REALI
FUNZIONI REALI DI DUE VARIABILI REALI Sommario FUNZIONI REALI DI DUE VARIABILI REALI: GENERALITÀ... Numero reale... Prodotto cartesiano RR... Definizione di funzione reale di due variabili reali... Grafico
1 Ampliamento del piano e coordinate omogenee
1 Ampliamento del piano e coordinate omogenee Vogliamo dare una idea, senza molte pretese, dei concetti che stanno alla base di alcuni calcoli svolti nella classificazione delle coniche. Supponiamo di
2. FUNZIONI REALI DI n VARIABILI REALI
FUNZIONI REALI DI n VARIABILI REALI Determinaione del dominio Y Sia D un sottoinsieme dell insieme R R indicato anche con R Graficamente possiamo pensare a D come ad una ona del piano cartesiano secondo
1) Applicando la definizione di derivata, calcolare la derivata in x = 0 delle funzioni: c) x + 1 d)x sin x.
Funzioni derivabili Esercizi svolti 1) Applicando la definizione di derivata, calcolare la derivata in x = 0 delle funzioni: a)2x 5 b) x 3 x 4 c) x + 1 d)x sin x. 2) Scrivere l equazione della retta tangente
Le equazioni di alcune superfici dello spazio
A Le equazioni di acune suerfici deo sazio L equazione di una suerficie ciindrica In geometria anaitica si dice suerficie ciindrica una quaunque suerficie ce a come direttrice una curva aartenente ad un
Funzioni derivabili (V. Casarino)
Funzioni derivabili (V. Casarino) Esercizi svolti 1) Applicando la definizione di derivata, calcolare la derivata in = 0 delle funzioni: a) 5 b) 3 4 c) + 1 d) sin. ) Scrivere l equazione della retta tangente
Compito del 14 giugno 2004
Compito del 14 giugno 004 Un disco omogeneo di raggio R e massa m rotola senza strisciare lungo l asse delle ascisse di un piano verticale. Il centro C del disco è collegato da una molla di costante elastica
Capitolo 2. Funzioni
Caitolo 2 Funzioni 2.1. De nizioni Un concetto di fondamentale imortanza è quello di funzione. roosito la seguente de nizione: Vale a questo De nizione 10 Dati due insiemi (non vuoti) X e Y, si chiama
Funzioni elementari: funzioni potenza
Funzioni elementari: funzioni potenza Lezione per Studenti di Agraria Università di Bologna (Università di Bologna) Funzioni elementari: funzioni potenza 1 / 36 Funzioni lineari Come abbiamo già visto,
Note sulle funzioni convesse/concave
Note sulle funzioni convesse/concave 4th December 2008 1 Definizioni e proprietà delle funzioni convesse/concave. Definizione 1.1 Un insieme A IR n è detto convesso se per ogni x 1 e x 2 punti di A, il
FUNZIONI DI PIÙ VARIABILI E SUPERFICI: esercizi proposti
FUNZIONI DI PIÙ VARIABILI E SUPERFICI: esercizi proposti 1. Trovare le dimensioni del parallelepipedo di volume massimo tra quelli appartenenti al primo ottante, con tre facce sui piani coordinati e un
