Esercizi di Analisi Matematica L-B
|
|
|
- Adriano Blasi
- 9 anni fa
- Visualizzazioni
Transcript
1 Esercii di Analisi Matematica L-B Marco Alessandrini Gennaio-Maro 7 Indice Funioni di più variabili reali. Calcolo differeniale Ricerca di massimi e minimi Ricerca di massimi e minimi, anche vincolati Integrali curvilinei. Integrali di campi vettoriali Integrali multipli 5. Integrali tripli Integrali tripli in coordinate cilindriche Funioni di più variabili reali. Calcolo differeniale Derivare la funione g(t) f( t, t), definita tramite f : R R, f(x, y) x y. x(t) t Le componenti di f sono y(t) t. Se si esplicita g(t): g(t) ( t ) t t 4 t g (t) 4t t altrimenti, con la regola della catena: fx (x, y) x f y (x, y) y fx ( t, t) t f y ( t, t) t e Allora: x (t) t y (t) g (t) ( t, t), ( t, ) 4t t. Ricerca di massimi e minimi Determinare i punti critici della funione f : R R, f(x, y) log(x x + y ). Il dominio della funione è D (x, y) R x x + y > }. f x x x + y ( x ) x f y x x + y y y I candidati sono P (, ) e P (, ). Per P : x x + y > > x ± y
2 che è vero, dunque P appartiene al dominio. P invece non appartiene al dominio, perché + > è falso. Dunque l unico candidato è (, ) in esso calcolo le derivate seconde pariali. f xx 6x(x x + y ) ( x )( x ) (x x + y ) x4 6xy 9 (x x + y ) f xx (, ) 4 da cui l hessiana è: f yy (x x + y ) y y (x x + y ) f yy (, ) f xy y(x x ) (x x + y ) f xy (, ) H(, ) ( ) per cui, studiando i minori principali, quello di ordine è negativo e H(, ) < : quindi la matrice è indefinita, e (, ) è punto di sella.. Ricerca di massimi e minimi, anche vincolati Determinare i punti critici della funione: f : R R, f(x, y, ) x + y 4x y Calcolo le derivate pariali: f x x 4 f y y f 4x y x y x y 8 x y 6 6 quindi i candidati sono (,, ) e (, 6, 6). Dopo aver calcolato le derivate seconde pariali costruisco le matrici hessiane, una per ciascun punto candidato: 4 4 H(,, ), H(, 6, 6) 4 4 Studiando i minori principali: l hessiana del punto (,, ) è indefinita (l ordine dei minori è, 4, -48), quindi il punto è di sella l hessiana del punto (, 6, 6) è definita positiva (l ordine dei minori è, 4, 48), quindi il punto è di minimo. Determinare i punti di massimo e minimo della funione: f : A R R, f(x, y) x + xy xy A (x, y) R x y } Calcolo le derivate pariali: fx x + y y f y xy x x + y y x(y ) x x y y x x y y x + y x ± quindi i candidati sono (, ), (, ) (punti di frontiera, che quindi non considero perché l annullamento del gradiente mi consente di studiare i soli punti interni se, alla fine, saranno punti critici, ciò verrà ugualmente
3 ( ) ( ) scoperto studiando la frontiera al passo successivo),, e, (punti interni). A questi bisogna aggiungere (poiché il dominio è un quadrato definito da A) i quattro vertici e i punti ricavati dalla varietà, definita come unione delle 4 varietà costituenti i lati del quadrato. Nei punti interni calcolo f(x, y): f ( ), ( ) e f 7, 7 Vista la semplicità delle equaioni della frontiera, invece di applicare i moltiplicatori di Lagrange si riduce la funione f(x, y) a funione di una sola variabile (una funione per ogni lato di frontiera) per ognuna di queste si applica la condiione necessaria di punto di massimo o di minimo, cioè si pone la derivata uguale a. Sul lato di ascissa x : f(, y) y + y f (, y) y + y quindi nel punto f(, ) la funione di questo lato ha un massimo o un minimo (o un flesso a tangente oriontale, visto è che funione di una sola variabile). Sulla ascissa x : f(, y) + y y f (, y) y y quindi nel punto f(, ) la funione di questo lato ha un massimo o un minimo (o un flesso a tangente oriontale). Sull ordinata y : f(x, ) x f (x, ) x x quindi nel punto f(, ) (che avevamo già trovato prima) la funione di questo lato ha un massimo o un minimo (o un flesso a tangente oriontale). Sull ordinata y : f(x, ) x f (x, ) x x quindi nel punto f(, ) (che avevamo già trovato prima) la funione di questo lato ha un massimo o un minimo (o un flesso a tangente oriontale). Nei quattro vertici del quadrato: f(, ) f(, ) f(, ) f(, ) Visto che i vertici assumono valori superiori o inferiori a tutti gli altri, tra essi ci sono i minimi e i massimi. Ciò consente di risparmiarci la verifica sui punti critici di ogni lato (sono presenti un massimo, un minimo e due flessi) e di dichiarare i punti (, ) e (, ) massimi relativi, mentre (, ) e (, ) sono minimi relativi. Integrali curvilinei. Integrali di campi vettoriali Determinare l integrale di lavoro F ds, relativo alla poligonale orientata ABC di cui sono fornite le coordinate dei punti, della funione F (x, y). F (x, y) ( log( + y ) y ) x, x + y A (, ), : B (4, ) C (4, 4)
4 Il dominio è x >. Se il campo è esatto, allora esiste l integrale di lavoro calcolabile come differena di poteniale agli estremi di integraione: allora verifico (tramite le derivate pariali miste) se il campo ha poteniale. F y F x x + y y? y + y x che è falso, dunque il campo non è esatto. Calcoliamo l integrale di lavoro con la definiione. Scomponendo la curva in due parti ottengo +, AB, BC. Parametriando: Allora, separatamente: F ds (t) (t, ), t 4 e (t) (4, t), t 4 F ds Per concludere, poiché (t) (t) log() t dt log (t) (t) t ( log( + ), t) (, ) dt t + dt log [ t ( log( + t ), ] 4 t + t log ) (, ) dt t + t dt [ log( + t ) ] 4 log 7 log F ds F ds + F ds: F ds log + log 7 log log + log 7 log 4 Dato il campo F (x, y), dopo aver determinato se è esatto sul dominio assegnato H calcolarne F ds sulla poligonale ABC dell eserciio precedente. ( ) F (x, y) y +, x (y + ), H x R, y > } Se il campo è chiuso, allora è esatto. Con le derivate pariali: F y F x? (y + ) (y + ) che è vero, dunque il campo è esatto e possiamo calcolare il lavoro come differena di poteniale tra i due punti estremi. È necessario trovare un poteniale generico. U x F e U y F Usando la prima relaione, che è più semplice da integrare: U F dx y + dx y + x + h(y) che è l espressione incompleta di U. Derivandola, e confrontandola con F si ricava h(y) con cui definire completamente il poteniale: du dy x (y + ) + h (y)? x (y + ) h (y) h(y) dy + c c da cui U y + x + c Il lavoro tra i punti (, ) e (4, 4) è: F ds U(4, 4) U(, ) 5 4 4
5 Integrali multipli. Integrali tripli Determinare l integrale (x + y + ) dxdyd, in cui il dominio di integraione I è il cubo di lato unitario. I I (x, y, ) x, y, } Col metodo di Cavalieri, tutte le funioni sono costanti, quindi: [ y + y + y [ x ] (x + y + ) dxdyd ] + xy + x dyd ( d + ) + d ( ) + y + dyd [ + ] +. Integrali tripli in coordinate cilindriche x Dato il dominio di integraione A, integrare x + y dxdyd. A (x, y, ) x, y,, x + y } A + La forma del dominio si presta alla conversione in coordinate cilindriche. x r cos ϑ y r sin ϑ Visto che x e y, allora: cos ϑ sin ϑ Le condiione su si scrivono come: ϑ π r r Allora, ricordando che passando da coordinate cartesiane a polari si ha dxdyd r drddϑ: π π r cos ϑ r r drddϑ cos ϑ [ π r ] ddϑ cos ϑ π cos ϑ 6 dϑ 6 π ( ) ddϑ r cos ϑ drddϑ π [sin ϑ] π 6 ( ) 6 [ ] cos ϑ dϑ 5
ANALISI B alcuni esercizi proposti
ANALISI B alcuni esercizi proposti G.P. Leonardi Parte II 1 Limiti e continuità per funzioni di 2 variabili Esercizio 1.1 Calcolare xy log(1 + x ) lim (x,y) (0,0) 2x 2 + 5y 2 Esercizio 1.2 Studiare la
(a) Le derivate parziali f x. f y = x2 + 2xy + 3 si annullano contemporaneamente in (1, 2) e ( 1, 2). Le derivate seconde di f valgono.
Esercizio 1 Si consideri la funzione f(x, y) = x 2 y + xy 2 + y (a) Determinare i punti di massimo e minimo relativo e di sella del grafico di f. (b) Determinare i punti di massimo e minimo assoluto di
Alcuni esercizi: funzioni di due variabili e superfici
ANALISI MATEMATICA T- (C.d.L. Ing. per l ambiente e il territorio) - COMPL. DI ANALISI MATEMATICA (A-K) (C.d.L. Ing. Civile) A.A.008-009 - Prof. G.Cupini Alcuni esercizi: funzioni di due variabili e superfici
Analisi Matematica II Corso di Ingegneria Gestionale Compito del f(x, y) = e (x3 +x) y
Analisi Matematica II Corso di Ingegneria Gestionale Compito del 8--7 - È obbligatorio consegnare tutti i fogli, anche la brutta e il testo. - Le risposte senza giustificazione sono considerate nulle.
Esercizi sulle funzioni di due variabili: parte II
ANALISI MATEMATICA T- (C.d.L. Ing. per l ambiente e il territorio) A.A.009-00 - Università di Bologna - Prof. G.Cupini Esercizi sulle funzioni di due variabili: parte II (Grazie agli studenti del corso
Prof. R. Capone Esercitazioni di Matematica IV Corso di studi in Matematica
Forme differeniali lineari in tre variabili Sia Ω R 3 un insieme aperto e siano, B, C: Ω R funioni continue in Ω. Consideriamo la forma differeniale ω in Ω ω = (, y, )d + B(, y, )dy + C(, y, )d Si dice
Esercitazione n 6. Esercizio 1: Determinare i punti di massimo e minimo relativo delle seguenti funzioni: (b)f(x, y) = 4y 4 16x 2 y + x
Esercitazione n 6 1 Massimi e minimi di funzioni di più variabili Esercizio 1: Determinare i punti di massimo e minimo relativo delle seguenti funzioni: (a)f(x, y) = x 3 + y 3 + xy (b)f(x, y) = 4y 4 16x
Teoremi di Stokes, della divergenza e di Gauss Green.
Matematica 3 Esercitazioni eoremi di tokes, della divergenza e di Gauss Green. Esercizio 1 : Calcolare l area del dominio avente per frontiera la linea chiusa γ di equazioni parametriche x (1 t) t γ :,
Estremi. 5. Determinare le dimensioni di una scatola rettangolare di volume v assegnato, che abbia la superficie minima.
Estremi 1. Determinare gli estremi relativi di f(x, y) = e x (x 1)(y 1) + (y 1).. Determinare gli estremi relativi di f(x, y) = y (y + 1) cos x. 3. Determinare gli estremi relativi di f(x, y) = xye x +y..
ELETTROMAGNETISMO APPLICATO ALL'INGEGNERIA ELETTRICA ED ENERGETICA_3d (ultima modifica 01/10/2012)
ELETTROMAGNETISMO APPLICATO ALL'INGEGNERIA ELETTRICA ED ENERGETICA_3d (ultima modifica 01/10/01) Soluioni di problemi elettrostatici I problemi elettrostatici riguardano lo studio degli effetti delle cariche
2. FUNZIONI REALI DI n VARIABILI REALI
FUNZIONI REALI DI n VARIABILI REALI Determinaione del dominio Y Sia D un sottoinsieme dell insieme R R indicato anche con R Graficamente possiamo pensare a D come ad una ona del piano cartesiano secondo
Esercizi di Complementi di Matematica (L-Z) a.a. 2015/2016
Esercizi di Complementi di Matematica (L-Z) a.a. 2015/2016 Prodotti scalari e forme bilineari simmetriche (1) Sia F : R 2 R 2 R un applicazione definita da F (x, y) = x 1 y 1 + 3x 1 y 2 5x 2 y 1 + 2x 2
ESERCIZIO SVOLTO N 1 ESERCIZIO SVOLTO N 2. Determinare e rappresentare graficamente il dominio della funzione
ESERCIZIO SVOLTO N 1 Determinare e rappresentare graficamente il dominio della funzione f(x, y) = y 2 x 2 Trovare gli eventuali punti stazionari e gli estremi di f Il dominio della funzione è dato da dom
a) Il denominatore dev essere diverso da zero. Studiamo il trinomio x 2 5x + 6. Si ha: x 1,2 = 5 ± se x ], 2[ ]3, + [;
ESERCIZIO - Data la funzione f (x) + x2 2x x 2 5x + 6, si chiede di: a) calcolare il dominio di f ; (2 punti) b) studiare la positività e le intersezioni con gli assi; (3 punti) c) stabilire se f ha asintoti
ESERCIZI DI ANALISI II Ingegneria Civile e dei Trasporti (M-Z) a.a. 2006/2007
ESERCIZI I ANALISI II Ingegneria Civile e dei Trasporti (M-Z) a.a. 006/007 1 FUNZIONI IN UE VARIABILI (I parte) Insiemi di definizione eterminare gli insiemi di definizione delle seguenti funzioni in due
Esercizi su massimi e minimi locali
Esercizi su massimi e minimi locali Determinare i punti di massimo locale, di minimo locale o di sella delle seguenti funzioni: 1. f(x, y = (x 1 2 + y 2 2. f(x, y = (x 1 2 y 2 3. f(x, y = x 2 + xy + y
Analisi Matematica 2 Ingegneria Gestionale Docenti: B. Rubino e R. Sampalmieri L Aquila, 21 marzo 2005
Analisi Matematica 2 Ingegneria Gestionale Docenti: B. Rubino e R. Sampalmieri L Aquila, 21 marzo 2005 Prova orale il: Docente: Determinare, se esistono, il massimo ed il minimo assoluto della funzione
Soluzioni dello scritto di Analisi Matematica II - 10/07/09. C.L. in Matematica e Matematica per le Applicazioni
Soluzioni dello scritto di Analisi Matematica II - /7/9 C.L. in Matematica e Matematica per le Applicazioni Proff. K. Payne, C. Tarsi, M. Calanchi Esercizio. a La funzione f è limitata e essendo lim fx
Istituzioni di Matematiche, Integrali fratti. corso di laurea in Scienze geologiche. Mauro Costantini
Istituzioni di Matematiche, Integrali fratti corso di laurea in Scienze geologiche. Mauro Costantini tipo: Il nostro obiettivo è studiare gli integrali (indefiniti e definiti delle funzioni razionali,
Integrali doppi - Esercizi svolti
Integrali doppi - Esercizi svolti Integrali doppi senza cambiamento di variabili Si disegni il dominio e quindi si calcolino gli integrali multipli seguenti:... xy dx dy, con (x, y R x, y x x }; x + y
ESERCIZI DI METODI QUANTITATIVI PER L ECONOMIA DIP. DI ECONOMIA E MANAGEMENT DI FERRARA A.A. 2016/2017. Ottimizzazione libera
ESERCIZI DI METODI QUANTITATIVI PER L ECONOMIA DIP. DI ECONOMIA E MANAGEMENT DI FERRARA A.A. 2016/2017 Ottimizzazione libera Esercizio 1. Si determinino, se esistono, gli estremi delle seguenti funzioni
Esercizi di Analisi Matematica 3. Prima parte
Esercizi di Analisi Matematica 3 per le Facoltà di Ingegneria Prima parte Corrado Lattanzio e Bruno Rubino Versione preliminare L Aquila, ottobre 5 Indice 1 Curve, superfici e campi vettoriali 3 1.1 Curve
Compito del 27 Gennaio Esercizio 1 Sono dati i vettori u = (2, 1, 3) e v = ( 1, 4, 2), nonché le matrici
Compito del 27 Gennaio 2015 Sono dati i vettori u = (2, 1, 3) e v = ( 1, 4, 2), nonché le matrici 0 1 2 0 1 1, B = 1 0 1 2 0 2. 1 2 0 0 3 1 a) Calcolare det(a B T ) b) Calcolare un vettore perpendicolare
Le derivate parziali
Sia f(x, y) una funzione definita in un insieme aperto A R 2 e sia P 0 = x 0, y 0 un punto di A. Essendo A un aperto, esiste un intorno I(P 0, δ) A. Preso un punto P(x, y) I(P 0, δ), P P 0, possiamo definire
ESERCIZI DA SVOLGERE PER MAGGIO (la parte in verde, il resto lo dovreste avere già svolto).
ESERCIZI DA SVOLGERE PER MAGGIO (la parte in verde, il resto lo dovreste avere già svolto). 1. Data la funzione : x 2 e x minimo e di massimo. Determinare inoltre gli eventuali flessi e gli intervalli
0.1 Arco di curva regolare
.1. ARCO DI CURVA REGOLARE 1.1 Arco di curva regolare Se RC(O, i, j, k ) è un riferimento cartesiano fissato per lo spazio euclideo E, e se v (t) = x(t) i + y(t) j + z(t) k è una funzione a valori vettoriali
DERIVATE SUCCESSIVE E MATRICE HESSIANA
FUNZIONI DI DUE VARIABILI 1 DERIVATE SUCCESSIVE E MATRICE HESSIANA Derivate parziali seconde e matrice hessiana. Sviluppo di Taylor del secondo ordine. Punti stazionari. Punti di massimo o minimo (locale
Forme differenziali lineari
Forme differenziali lineari Sia Ω R un insieme aperto e siano A, B, C: Ω R funzioni continue in Ω. Si definisce forma differenziale ω in Ω l espressione ω = A(x, y, z)dx + B(x, y, z)dy + C(x, y, z)dz Data
Soluzioni dei problemi della maturità scientifica A.S. 2007/2008
Soluzioni dei problemi della maturità scientifica A.S. 007/008 Nicola Gigli Sunra J.N. Mosconi 19 giugno 008 Problema 1 (a) Determiniamo in funzione di a i lati del triangolo. Essendo l angolo BĈA retto
Tutorato di Complementi di Analisi Matematica e Statistica Parte di Analisi 6 e 10 aprile 2017
Tutorato di Complementi di Analisi Matematica e Statistica Parte di Analisi 6 e 10 aprile 2017 Esercizi: serie di potenze e serie di Taylor 1 Date le serie di potenze a.) n=2 ln(n) n 3 (x 5)n b.) n=2 ln(n)
Esercizi di Analisi Matematica B. Massimo Cicognani
Esercizi di Analisi Matematica B Massimo Cicognani ii Indice Testi. Serie numeriche e serie di potenze.................2 Funzioni di più variabili reali.................. 5.3 Equazioni differenziali......................
Appunti sul corso di Complementi di Matematica mod. Analisi prof. B.Bacchelli - a.a. 2010/2011.
Appunti sul corso di Complementi di Matematica mod. Analisi prof. B.Baccelli - a.a. 2010/2011. 06 - Derivate, differenziabilità, piano tangente, derivate di ordine superiore. Riferimenti: R.Adams, Calcolo
Massimi e minimi vincolati
Massimi e minimi vincolati Data una funzione G C 1 (D), dove D è un aperto di R 2, sappiamo bene dove andare a cercare gli eventuali punti di massimo e minimo relativi. Una condizione necessaria affinché
COMPLEMENTI di MATEMATICA (Docente: Luca Guerrini)
COMPLEMENTI di MATEMATICA (Docente: Luca Guerrini) Alcuni esercizi assegnati in appelli precedenti, comprendenti anche quesiti a risposta multipla ed esercizi nei quali veri care se l a ermazione fatta
La ricerca di punti di estremo assoluto
La ricerca di punti di estremo assoluto Riccarda Rossi Università di Brescia Analisi Matematica B Riccarda Rossi (Università di Brescia) Estremi assoluti (I) Analisi Matematica B 1 / 29 Richiami di teoria
Esercizi. f(x, y, z) = exp(xz) + zy sin(xyz) + cos(xy 3 )
Esercizi 1. Determinare le derivate parziali di f(x, y, z) = exp(xz) + zy sin(xyz) + cos(xy 3 ) 2. Scrivere l equazione del piano tangente e della retta normale al grafico ln(xy) + cos(x + y) nel punto
Estremi vincolati, Teorema del Dini.
Estremi vincolati, Teorema del Dini. 1. Da un cartone di 1m si deve ricavare una scatola rettangolare senza coperchio. Trovare il massimo volume possibile della scatola.. Trovare gli estremi assoluti di
Primi esercizi sulla ricerca di punti di estremo assoluto
Primi esercizi sulla ricerca di punti di estremo assoluto Riccarda Rossi Università di Brescia Analisi II Riccarda Rossi (Università di Brescia) Esercizi su estremi assoluti (I) Analisi II 1 / 42 Richiami
Curve e lunghezza di una curva
Curve e lunghezza di una curva Definizione 1 Si chiama curva il luogo geometrico dello spazio di equazioni parametriche descritto da punto p, chiuso e limitato. Definizione 2 Si dice che il luogo C è una
SIMULAZIONE - 29 APRILE QUESITI
www.matefilia.it SIMULAZIONE - 29 APRILE 206 - QUESITI Q Determinare il volume del solido generato dalla rotazione attorno alla retta di equazione y= della regione di piano delimitata dalla curva di equazione
Derivate parziali, derivate direzionali, differenziabilità. a) Calcolare le derivate direzionali e le derivate parziali in (0, 1) di f(x, y) =
Derivate parziali, derivate direzionali, differenziabilità 1. a) Calcolare le derivate direzionali e le derivate parziali in (0, 1) di f(x, y) = 3 x (y 1) + 1. b) Calcolare D v f(0, 1), dove v è il versore
Massimi e minimi relativi in R n
Massimi e minimi relativi in R n Si consideri una funzione f : A R, con A R n, e sia x A un punto interno ad A. Definizione: si dice che x è un punto di massimo relativo per f se B(x, r) A tale che f(y)
Compito del 14 giugno 2004
Compito del 14 giugno 004 Un disco omogeneo di raggio R e massa m rotola senza strisciare lungo l asse delle ascisse di un piano verticale. Il centro C del disco è collegato da una molla di costante elastica
Soluzioni dei quesiti della maturità scientifica A.S. 2009/2010
Soluzioni dei quesiti della maturità scientifica AS 009/010 Nicola Gigli Sun-Ra Mosconi giugno 010 Quesito 1 Un generico polinomio di grado n si può scrivere nella forma p(x) a 0 + a 1 x + + a n x n dove
Prima parte: DOMINIO E INSIEMI DI LIVELLO
FUNZIONI DI DUE VARIABILI 1 Prima parte: DOMINIO E INSIEMI DI LIVELLO Domini e disequazioni in due variabili. Insiemi di livello. Elementi di topologia insiemi aperti, chiusi, limitati, convessi, connessi
Soluzione esercizi sulle funzioni - 5 a E Liceo Scientifico - 04/11/ 13
Soluzione esercizi sulle funzioni - 5 a E Liceo Scientifico - 04// 3 Esercizio. Si consideri la funzione ) se 0 f) e se 0. e si verifichi che non è continua in 0. Che tipo di discontinuità presenta in
Capitolo 1. Integrali multipli. 1.1 Integrali doppi su domini normali. Definizione 1.1.1 Si definisce dominio normale rispetto all asse
Contenuti 1 Integrali multipli 2 1.1 Integralidoppisudomininormali... 2 1.2 Cambiamento di variabili in un integrale doppio. 6 1.3 Formula di Gauss-Green nel piano e conseguenze. 7 1.4 Integralitripli...
1 Rette e piani nello spazio
1 Rette e piani nello spazio Esercizio 1.1 È assegnato un riferimento cartesiano 0xyz. Sono assegnati la retta x = t, r : y = t, z = t, il piano π : x + y + z = 0 ed il punto P = (1, 1, 1). Scrivere le
4.11 Massimi e minimi relativi per funzioni di più variabili
5. Determinare, al variare del parametro a R, la natura delle seguenti forme quadratiche: (i) Φ(x, y, z) = x 2 + 2axy + y 2 + 2axz + z 2, (ii) Φ(x, y, z, t) = 2x 2 + ay 2 z 2 t 2 + 2xz + 4yt + 2azt. 4.11
Fasci di Coniche. Salvino Giuffrida. 2. Determinare e studiare il fascio Φ delle coniche che passano per A (1, 0) con tangente
1 Fasci di Coniche Salvino Giuffrida 1. Determinare e studiare il fascio Φ delle coniche che passano per O = (0, 0), con tangente l asse y, e per i punti (1, 0), (1, ). Determinare vertice e asse della
Forme differenziali e campi vettoriali: esercizi svolti
Forme differenziali e campi vettoriali: esercizi svolti 1 Esercizi sul Teorema di Green......................... 2 2 Esercizi sul Teorema di Stokes......................... 4 3 Esercizi sul Teorema di
Matematica e Statistica
Matematica e Statistica Prova d esame (0/0/03) Università di Verona - Laurea in Biotecnologie - A.A. 0/3 Matematica e Statistica Prova di MATEMATICA (0/0/03) Università di Verona - Laurea in Biotecnologie
CALENDARIO BOREALE 1 EUROPA 2015 QUESITO 1
www.matefilia.it Indirizzi: LI0, EA0 SCIENTIFICO; LI0 - SCIENTIFICO - OPZIONE SCIENZE APPLICATE CALENDARIO BOREALE EUROPA 05 QUESITO La funzione f(x) è continua per x [ 4; 4] il suo grafico è la spezzata
Argomento 6: Derivate Esercizi. I Parte - Derivate
6: Derivate Esercizi I Parte - Derivate E. 6.1 Calcolare le derivate delle seguenti funzioni: 1) log 5 3 + cos ) + 3 + 4 + 3 3) 5 tan 4) ( + 3e ) sin 5) arctan( + 1) 6) log 7) 10) + + 3 8) 3 3 1 + 16 11)
Riferimenti: R.Adams, Calcolo Differenziale 2. Capitoli 3.4, 3.9. Esercizi 3.4, 3.9.
Appunti sul corso di Complementi di Matematica - mod Analisi prof. B.Baccelli 200/ 07 - Funzioni vettoriali, derivata della funzione composta, formula di Taylor. Riferimenti: R.Adams, Calcolo Differenziale
R. Capone Analisi Matematica Integrali multipli
Integrali multipli Consideriamo, inizialmente il caso degli integrali doppi. Il concetto di integrale doppio è l estensione della definizione di integrale per una funzione reale di una variabile reale
1) Applicando la definizione di derivata, calcolare la derivata in x = 0 delle funzioni: c) x + 1 d)x sin x.
Funzioni derivabili Esercizi svolti 1) Applicando la definizione di derivata, calcolare la derivata in x = 0 delle funzioni: a)2x 5 b) x 3 x 4 c) x + 1 d)x sin x. 2) Scrivere l equazione della retta tangente
Le soluzioni del foglio 3
Le soluzioni del foglio 3 1. Esercizio Consideriamo la famiglia di elicoidi, vedi Figura 1, x = u cos(v), y = u sin(v), z = kv, u 1, v π Quella proposta nell esercizio corrisponde alla scelta k = 1 Matrice
x 1 Fig.1 Il punto P = P =
Geometria di R 2 In questo paragrafo discutiamo le proprietà geometriche elementari del piano Per avere a disposizione delle coordinate nel piano, fissiamo un punto, che chiamiamo l origine Scegliamo poi
Funzioni implicite - Esercizi svolti
Funzioni implicite - Esercizi svolti Esercizio. È data la funzione di due variabili F (x, y) = y(e y + x) log x. Verificare che esiste un intorno I in R del punto di ascissa x 0 = sul quale è definita
ESERCIZI INTRODUTTIVI
ESERCIZI INTRODUTTIVI () Data la proposizione p: Tutti gli uomini hanno la coda, discutere la validità delle seguenti proposte di negazione di p: (i) non tutti gli uomini hanno la coda; (ii) nessun uomo
NOME:... MATRICOLA:... Corso di Laurea in Fisica, A.A. 2009/2010 Calcolo 1, Esame scritto del 19.01.2010
NOME:... MATRICOLA:.... Corso di Laurea in Fisica, A.A. 009/00 Calcolo, Esame scritto del 9.0.00 Data la funzione fx = e /x x x +, a determinare il dominio massimale di f ; b trovare tutti gli asintoti
Soluzioni dei problemi della maturità scientifica A.S. 2012/2013
Soluzioni dei problemi della maturità scientifica A.S. / Nicola Gigli Sun-Ra Mosconi June, Problema. Il teorema fondamentale del calcolo integrale garantisce che Quindi f (x) = cos x +. f (π) = cos π +
quando il limite delle somme di Riemann esiste. In tal caso diciamo che la funzione è integrabile sul rettangolo.
Integrali multipli Consideriamo, inizialmente il caso degli integrali doppi. Il concetto di integrale doppio è l estensione della definizione di integrale per una funzione reale di una variabile reale
M557 - ESAME DI STATO DI LICEO SCIENTIFICO
M7 - ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO Tema di: MATEMATICA Il candidato risolva uno dei due problemi e cinque quesiti scelti nel questionario. PROBLEMA 1 Nel primo quadrante del
Esercitazioni di Matematica
Università degli Studi di Udine Anno Accademico 009/00 Facoltà di Agraria Corsi di Laurea in VIT e STAL Esercitazioni di Matematica novembre 009 Trovare le soluzioni della seguente disequazione: x + +
CORSO DI ANALISI MATEMATICA 2 ESERCIZI. Carlo Ravaglia
CORSO DI ANALISI MATEMATICA ESERCIZI Carlo Ravaglia 8 febbraio 6 iv Indice 4 Calcolo differenziale 4 Derivate parziali 4 Derivate parziali 4 Massimi e minimi 4 Massimi e minimi di funzioni 43 Derivate
Analisi Matematica II (Prof. Paolo Marcellini)
Analisi Matematica II Prof. Paolo Marcellini) Università degli Studi di Firenze Corso di laurea in Matematica Esercitazione del 5//14 Michela Eleuteri 1 [email protected] web.math.unifi.it/users/eleuteri
By Fabriziomax. Storia del concetto di derivata:
By Fabriziomax Storia del concetto di derivata: Introduzione: La derivata fu inventata da Newton per risolvere il problema pratico di come definire una velocita e un accelerazione istantanea a partire
{ x + 2y = 3 αx + 2y = 1 αx + y = 0. f(x) = e x 2 +3x+4 x 5. f(x) = x 3 e 7x.
0 Gennaio 006 Teoria: Definizione di derivata puntuale e suo significato geometrico Esercizio Determinare l equazione del piano contenente i vettori u = (,, 3 e v = (,, e passante per P o = (,, Scrivere
Raccolta degli Scritti d Esame di ANALISI MATEMATICA U.D. 2 assegnati nei Corsi di Laurea di Fisica, Fisica Applicata, Matematica
DIPARTIMENTO DI MATEMATICA Università degli Studi di Trento Via Sommarive - Povo (TRENTO) Raccolta degli Scritti d Esame di ANALISI MATEMATICA U.D. 2 assegnati nei Corsi di Laurea di Fisica, Fisica Applicata,
TEMI D ESAME DI ANALISI MATEMATICA I
TEMI D ESAME DI ANALISI MATEMATICA I Corso di laurea quadriennale) in Fisica a.a. 003/04 Prova scritta del 3 aprile 003 ] Siano a, c parametri reali. Studiare l esistenza e, in caso affermativo, calcolare
Analisi Matematica II (Prof. Paolo Marcellini) 1 Esercizi tratti da temi d esame di anni precedenti
Analisi Matematica II (Prof. Paolo Marcellini) Università degli Studi di Firenze Corso di laurea in Matematica Esercitazione del 8// Michela Eleuteri [email protected] web.math.unifi.it/users/eleuteri
Meccanica. 3. Elementi di Analisi Vettoriale. Domenico Galli. Dipartimento di Fisica e Astronomia.
Meccanica 3. Elementi di Analisi Vettoriale http://campus.cib.unibo.it/246981/ Domenico Galli Dipartimento di Fisica e Astronomia 5 maggio 2017 Traccia 1. Vettori Variabili 2. Derivate e Integrali 3. Derivate
ESERCIZI DI ANALISI II Ingegneria per l Ambiente e il Territorio a.a. 2006/2007
ESERCIZI I ANALISI II Ingegneria per l Ambiente e il Territorio a.a. 006/007 FUNZIONI IN UE VARIABILI Insiemi di definizione eterminare gli insiemi di definizione delle seguenti funzioni in due variabili
Massimi e minimi vincolati
Massimi e minimi vincolati Vedremo tra breve un metodo per studiare il problema di trovare il minimo e il massimo di una funzione su di un sottoinsieme dello spazio ambiente che non sia un aperto. Abbiamo
3 ) (5) Determinare la proiezione ortogonale del punto (2, 1, 2) sul piano x + 2y + 3z + 4 = 0.
1 Calcolo vettoriale 1 Scrivere il vettore w =, 6 sotto forma di combinazione lineare dei vettori u = 1, e v = 3, 1 R w = v 4u Determinare la lunghezza o il modulo del vettore, 6, 3 R 7 3 Determinare la
