Analisi Matematica II (Prof. Paolo Marcellini) 1 Esercizi tratti da temi d esame di anni precedenti

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Analisi Matematica II (Prof. Paolo Marcellini) 1 Esercizi tratti da temi d esame di anni precedenti"

Transcript

1 Analisi Matematica II (Prof. Paolo Marcellini) Università degli Studi di Firenze Corso di laurea in Matematica Esercitazione del 8// Michela Eleuteri web.math.unifi.it/users/eleuteri Nel seguito indichiamo con [MS] il testo: P. Marcellini, C. Sbordone : Esercitazioni di Matematica, volume, parte seconda, Liguori Editore, 995. Esercizi tratti da temi d esame di anni precedenti Esercizio.. tema d esame del maggio Sia il dominio delimitato dalla curva (cardioide) di equazione x(t) ( + cos t) cos t y(t) ( + cos t) sin t t [, π] Calcolare x + y dx dy Per la soluzione vedi la pagina Esercizio.. tema d esame del maggio Si consideri la regione (x, y) R : y x ( x )}. opo aver verificato che la curva ha come immagine, calcolare l area di. γ(t) (sin t, sin(t)) Per la soluzione vedi la pagina È vietata la diffusione e la riproduzione di questo materiale o parte di esso (particolarmente a fini commerciali) senza il consenso della sottoscritta. Queste note, che riprendono in parte gli esercizi svolti durante le ore di esercitazioni frontali, costituiscono parte integrante (ma non esclusiva!) del corso di Analisi II e pertanto, ai fini dell esame, devono essere adeguatamente integrate con il materiale indicato dal docente titolare del corso.

2 Esercizio.. tema d esame del luglio Calcolare l area del sottoinsieme di R delimitato dalla parabola di equazioni x y, x y e dalle iperboli di equazioni xy, xy. Per la soluzione vedi la pagina Esercizio.. tema d esame del luglio Calcolare l integrale doppio sul dominio dx dy x log y (x, y) R : x [, ], x y }. Per la soluzione vedi la pagina Esercizio.5. tema d esame del settembre Calcolare l area della regione formata dai punti (x, y) del piano che soddisfano le seguenti condizioni tan π x + y y x x + y Per la soluzione vedi la pagina Esercizio.6. tema d esame del 7 giugno 6 Si consideri il semicerchio (x, y) R : x + y, x }. (a) Calcolare il baricentro ( x, ȳ) di : x dx dy x m() ȳ y dx dy m() m() indica la misura del dominio. (b) Sia T : R R la mappa T (x, y) (x cos y, x sin y). Calcolare la misura dell insieme T (). Per la soluzione vedi la pagina

3 Esercizio.7. tema d esame del maggio 6 Calcolare l integrale doppio esteso al dominio y dx dy (x, y) R : x, y, x + y } Per la soluzione vedi la pagina Esercizio.8. tema d esame del giugno 6 Calcolare l integrale doppio esteso al dominio (x + y ) / dx dy (x, y) R : x + y, x + y } Hint: Passando a coordinate polari, si descrive il dominio nel seguente modo: } (ρ, θ) R + [, π) : θ π/, sin θ + cos θ ρ da cui Esercizio.9. (x + y ) / dx dy π/ π/ sin θ+cos θ ρ dρ dθ ρ π/ (sin θ + cos θ ) dθ π [ ] ρ sin θ+cos θ dθ tema d esame del 5 giugno 8 Calcolare l integrale doppio esteso al dominio x dx dy (x, y) R : x + y, x, y } Hint: Passando a coordinate polari, si descrive il dominio nel seguente modo: (ρ, θ) R + [, π) : θ π/, ρ }

4 da cui Esercizio.. x dx dy π/ [ ρ ρ cos θ dρ dθ ] [sin θ] π/ 5. tema d esame del maggio 8 Calcolare l area della regione di piano C (x, y) : y x, y x} (x, y) : x y, y x}. Calcolare inoltre l integrale C y x + x dx dy. + y Per la soluzione vedi la pagina Esercizio.. tema d esame del luglio 8 Calcolare gli integrali x dx dy sul dominio y dx dy (x, y) R : x + y, x }. Hint: Osserviamo che y x + y, quindi la condizione x + y è equivalente a y x y, e questo, unito alla condizione x permette di riscrivere come A questo punto altra parte C x dx dy C (x, y) R : x y }. y x dx dy y dx dy y y dx dy [ ] x y y y dy perché è l integrale di una funzione dispari su un dominio simmetrico. Esercizio.. tema d esame del settembre 8 Calcolare l area della regione piana R (x, y) R : x >, x + y arctan y } x y dy 5.

5 Hint: L idea è quella di passare in coordinate polari. Osserviamo innanzitutto che la condizione x > si traduce in ρ cos θ > e cioè < θ < π/ unito a /π < θ < π. Nel primo intervallo si ha ovviamente arctan(y/x) θ mentre nel secondo intervallo arctan(y/x) θ π perché per convenzione, la funzione arcotangente è invertibile solo nell intervallo ( π/, π/). Stando cosí le cose, la regione R si riscrive come R R R dove R (ρ, θ) R + [, π) : θ π/, ρ θ} R (ρ, θ) R + [, π) : /π θ π, ρ θ π} ma la regione R è descritta da una condizione vuota perché ρ mentre θ π nel secondo intervallo, da cui Esercizio.. Area(A) π/ θ ρ dρ dθ π/ θ π dθ 6. tema d esame del febbraio 9 imostrare che l insieme (x, y) R : x + y + xy } è limitato. Calcolare poi l integrale doppio x y dx dy. Hint: È facile vedere che è limitato, infatti non è restrittivo supporre che xy, altrimenti si cambia segno a una delle due variabili; a quel punto ci si riduce a dimostrare che x + y è limitato, che è vero, perché da questo si deduce x, y. Per calcolare l integrale, osserviamo che a questo punto poniamo (x, y) R : x + y + xy (x y ) + x y + xy } t : x y s : xy; siccome è difficile calcolare x e y in funzione di t, s semplicemente calcoliamo il determinante della matrice Jacobiana della relazione che esprime le nuove coordinate in funzione delle vecchie (noi dovremmo fare il contrario) e questo viene (x y ) t da cui prendendo il modulo e considerando la formula per il determinante della funzione inversa si ha x y dx dy t dx dy. t L insieme nelle nuove coordinate viene (t, s) : t + s + s } 5

6 cioè una circonferenza. Per cui tenendo conto del valore assoluto, si ha dove (t, s) : t + s + s }, t (t, s) : t + s + s }, t e per simmetria pertanto, visto che l area di è uguale all area di, l integrale cercato fa. Esercizio.. tema d esame del maggio Si consideri l insieme di R (x, y) R : x, x y + x + x }. (a) Verificare che (b) Calcolare l integrale doppio dx dy. (y + ) Hint: (a) L origine sta in (b) alla definizione di si ricavano immediatamente le limitazioni su x e y, cioè: da cui dx dy (y + ) x, x x y x x + x x dx + [ ] + log x + x + log. Esercizio.5. dx dy (y + ) [ ] y + dx + (x + )(x ) x x x + + x dx tema d esame del 7 giugno Calcolare per Q [, ] (x y) sin(xy) dx dy. Q Hint: Con considerazioni di simmetria si vede immediatamente (separando gli integrali e scambiando le variabili) che tale integrale fa. Con calcoli espliciti (x y) sin(xy) dx dy x sin(xy) dx dy y sin(xy) dx dy Q [ cos(xy)] dx [ sin x] + [sin y]. [ cos(xy)] dy ( cos(x)) dx ( cos(y)) dy 6

7 Esercizio.6. tema d esame del luglio Sia r un numero reale positivo. Calcolare l integrale doppio dx dy C x + y esteso al cerchio C del piano (x, y) di centro (, ) e raggio r. Hint: Come dice il testo dell esercizio -/ scritti/analisi appello 7.pdf si tratta di un integrale improprio ma il metodo di calcolo non ne risente. Passando dunque a coordinate polari si ha C (ρ, θ) R + [, π) : ρ r, θ π} da cui Esercizio.7. C r x + y dx dy π ρ dρ dθ πr. ρ tema d esame del 5 settembre Calcolare l integrale doppio y dx dy T x + y dove T è il triangolo (x, y) di vertici (, ), (, ), (, ). Hint: primo modo: usando le formule di riduzione per domini normali. Osserviamo che vedendo T (x, y) R : x, x y } si ottiene un integrale non facilmente riconducibile a integrali elementari y x + y dx dy y dx x + y dy log( + x ) dx T quindi conviene interpretare T come in questo modo si ottiene y x + y dx dy T x T (x, y) R : y, x y} arctan arctan dy π. y y dy 7 x + y dx [arctan(x/y)] y dy log(x ) dx

8 secondo modo: osserviamo che lo stesso risultato si ottiene passando in coordinate polari; in questo caso T (ρ, θ) : ρ sin θ, π θ π } e dunque T Esercizio.8. y π/ x + y dx dy π/ / sin θ ρ sin θ ρ ρ dρ dθ π/ / sin θ π/ sin θ dρ dθ π. tema d esame del 7 gennaio Calcolare l integrale doppio sin y y dx dy dove è il quadrilatero del piano (x, y) di vertici (±, ), (±, ). Stabilire inoltre il segno del risultato dell integrale doppio senza far uso di una calcolatrice. Hint: Osserviamo prima di tutto che la funzione è pari (perché sin y è dispari e cosí pure y) e il dominio è simmetrico rispetto all asse y, pertanto l integrale cercato (chiamiamolo I) è uguale a due volte l integrale su metà dominio (regolare rispetto all asse y), cioè I sin y y dx dy dy y sin y y dx sin y dy cos cos. Per determinare il segno dell integrale basta osservare che < π/ < < π e dalla monotonia del coseno (decrescenza) in questo intervallo si ha quindi cos cos >. Esercizio.9. cos > cos(π/) > cos cos(π) tema d esame del febbraio Calcolare l integrale doppio T x x dx dy + y dove T è il trapezio del piano (x, y) di vertici (, ±), (, ±). Hint: Passando in coordinate polari si ha T (ρ, θ) : cos θ ρ cos θ, θ π 7 } π θ π e per la periodicità delle funzioni trigonometriche questo è equivalente a considerare T (ρ, θ) : cos θ ρ cos θ, π θ π }. 8

9 Quindi si ottiene T x π x dx dy + y π cos θ cos θ ρ cos π θ ρ ρ dρ dθ cos θ π [ ρ ] cos θ cos θ dθ π π dθ π. Lo stesso risultato si ottiene usando le formule di riduzione per domini normali, per esempio T x x dx dy + y x x x x dy dx + y Esercizi proposti dal testo [MS] [ x arctan y ] x dx π x x [ x ] π. Gli esercizi del testo [MS] sono tutti fortemente consigliati; in particolare si raccomanda di svolgere tutti gli esercizi dei paragrafi A, B, C e, del Capitolo (pag. 6 e segg.) Altri esercizi tratti da temi d esame di altri corsi di laurea Esercizio.. Si calcoli l integrale doppio (x + ) dx dy, ove è la parte dell ellisse (x, y) R : x + y } contenuta nel primo quadrante. escriviamo l ellisse attraverso il seguente cambio di coordinate x ρ cos θ con le seguenti limitazioni per le variabili ρ e θ y ρ sin θ ρ θ [, π ]. Calcoliamo il determinante della matrice Jacobiana della trasformazione. Si ha x x J ρ θ cos θ ρ sin θ y y ρ θ sin θ ρ cos θ da cui, portando a primo membro det J ρ cos θ + ρ sin θ ρ. 9

10 Quindi + (x + ) dx dy ( d ρ π/ ) ( ) π/ ρ dρ d θ ρ dθ ρ (ρ cos θ + ) ( θ + ) sin θ cos θ ( π/ ) ( ) π/ ρ dρ cos θ dθ + ρ θ Come appendice ricordiamo due modi di calcolare la primitiva di cos θ. primo modo. cos θ dθ cos θ cos θ dθ cos θ sin θ + sin θ dθ cos θ sin θ + π/ π + π 8 5 π. ( cos θ) dθ da cui cos θ dθ θ + cos θ sin θ. secondo modo. + cos(θ) cos θ dθ dθ θ + cos(θ) dθ θ + sin(θ) θ + sin θ cos θ. Esercizio.. Si calcoli l integrale doppio: E x y dx dy dove E è il sottoinsieme di R delimitato dalle curve y x, y x, y x, y x, cioè E (x, y) R : < xy <, < x y < }. Si attua il seguente cambiamento di coordinate xy u x y v da cui si ricava che x v u y u v quindi la matrice Jacobiana della trasformazione è v u u u u v v

11 e pertanto il determinante della trasformazione è /v da cui il modulo del determinante è /v. A questo punto, essendo si ha Esercizio.. E E (u, v) R : < u <, < v < }, x y dx dy u du v dv u log v log. Calcolare ove A ( x y x )dxdy, A (x, y) R : x + y, y x, x }. Parametrizziamo l insieme A per mezzo delle coordinate polari. Si ha A (ρ, θ) [, + ) [, π) : ρ [ θ π/ 7/ π θ π]} ma data la periodicità delle funzioni sin θ e cos θ possiamo senz altro scrivere che A (ρ, θ) : ρ π/ θ π/}. Il determinante della matrice Jacobiana della trasformazione vale ρ. unque si ha (ricordando che in A si ha x dunque x x) π/ π/ ( x y x ) dx dy dθ dρ ρ ρ cos θ sin θ ρ cos θ dρ dθ ρ A π/ π/ ( ) ( ) π/ ( ) ( ) π/ ρ dρ cos θ sin θ dθ ρ dρ cos θdθ π/ π/ ρ5 5 sin θ π/ π/ Esercizio.. ρ sin θ π/ π/ [ 5 ] 5 eterminare il volume del solido delimitato dal grafico di dal piano z e dalle condizioni: f(x, y) x x + y, ( ) y, y x, y x [ 8 ] 7. 5 Vedi soluzione sul file corrispondente.

12 Esercizio.5. Si calcoli l integrale doppio 9 (x + y ) dx dy dove (x, y) R : x + y x, y }. Osserviamo che la disequazione si può scrivere come x + y x ( x ) + y 9 che quindi rappresenta il cerchio di centro (/, ) e raggio /. Il dominio rappresenta dunque il semicerchio situato nel semipiano y. Proviamo a passare in coordinate polari. Sostituendo x ρ cos θ y ρ sin θ nella precedente equazione si ottiene ρ ρ cos θ ρ cos θ quindi l insieme di integrazione diventa T (x, y) R : θ π }, ρ cos θ. Allora 9 (x + y ) dx dy 9 ρ ρ dρ, dθ Esercizio.6. π/ [ cos θ π/ 9 [ π/ π/ π/ cos θ [ 9 cos θ cos θ ρ ] 9 ρ dρ dθ ( ρ) ] 9 ρ dρ dθ [(9 ρ ) /] cos θ dθ [ (9 9 cos θ) / 9 /] dθ (sin θ ) dθ 9 ] π/ π/ T + 9 π π. ( cos θ) sin θ dθ + 9 π

13 Calcolare il volume del solido delimitato dal grafico di f(x, y) x, dal piano z e dalle condizioni x, y, x + y. La richiesta coincide con il calcolo dell integrale doppio x dx dy, dove A Osserviamo innanzitutto che se y e può essere descritto come A A (x, y) R : x, y (x, y) R : x, }, x + y. allora x ±. Il dominio A è, per esempio, y-semplice y x }. Quindi A x dx dy x dx x x dx ( ( 8 ) / ) x dy x dx + 8 x dx ( ) / ( x x + 8. x ) Alternativamente, risolviamo l esercizio usando le coordinate polari. problema usiamo il seguente cambio di coordinate ata la simmetria del x ρ cos θ y ρ sin θ. Allora il dominio A si trasforma nel seguente dominio T (ρ, θ) : π θ π }, sin θ ρ dove la limitazione su ρ si è ottenuta sostituendo y ρ sin θ.

14 A questo punto allora, ricordando che il modulo del determinante della matrice Jacobiana della trasformazione è ρ si ottiene che l integrale di partenza coincide con il seguente integrale doppio Esercizio.7. π/ π/ π/ π/ π/ sin θ [ 8 cos θ ρ cos θ(ρ) dρ dθ ρ ] sin θ [ ] 8 cos θ π/ 8 sin dθ θ 8 [sin θ]π/ π/ [ sin ] π/ θ π/ ( 8 ) [ + ] 8. dθ Calcolare dove f(x, y) x + y e E f(x, y)dxdy, E (x, y) R : x + y, y } (x, y) R : x + y, xy }. Osserviamo che E non è semplice, però è regolare. Infatti, detti E (x, y) R : x + y, x, y } E (x, y) R : x + y, y, x } E (x, y) R : x + y, x, y }, allora possiamo scrivere E E E E. Inoltre, E, E e E si intersecano vicendevolmente solo sul bordo, perciò, grazie a una proprietà dell integrale doppio, f(x, y)dxdy E f(x, y)dxdy + E f(x, y)dxdy + E f(x, y)dxdy. E Notiamo subito che, per simmetria, f(x, y)dxdy f(x, y)dxdy : E E infatti, E ed E sono simmetrici rispetto all origine, mentre f è dispari; ovvero: (x, y) E ( x, y) E f(x, y) f( x, y).

15 Ne consegue che i due integrali sono opposti. Perciò è sufficiente calcolare f(x, y)dxdy f(x, y)dxdy. E E Per calcolare l integrale su E scomponiamo ulteriormente questo dominio in E E E, dove E (x, y) R : x, y } x E (x, y) R : x, x y x }. A loro volta questi due insiemi sono semplici e si intersecano solo sul bordo; quindi f(x, y)dxdy f(x, y)dxdy + f(x, y)dxdy. E E E Ora, E f(x, y)dxdy x (x + y)dydx mentre E f(x, y)dxdy ) (xy + y x dx (x x + x ( ( x ) / + x x 6 5 6, x x (x + y)dydx ) dx ) ) (xy + y x dx x (x x x x + x + x ( ( x ) / + ( x ) / + ) x ) dx 5

16 Quindi E f(x, y)dxdy f(x, y)dxdy E E f(x, y)dxdy + E f(x, y)dxdy. Alternativamente proviamo a descrivere E attraverso le coordinate polari. Si ha π } E (ρ, θ) : ρ, θ π. unque (molto più brevemente!) si ha Esercizio.8. E f(x, y) dx dy π π/ [ ρ ρ dρ ] ρ (cos θ + sin θ) dρ dθ π π/ (cos θ + sin θ) dθ [(sin θ cos θ)] π π/. ati gli insiemi A, B, C R, definiti da A (x, y) R : x + (y ) 9, x }, B (x, y) R : x + (y ), y }, C A B, calcolare C x dx dy. L insieme A è la parte di cerchio di centro (, ) e raggio contenuto nel primo quadrante; l insieme B è la parte esterna al cerchio di centro (, ) e raggio contenuta nel semipiano y ; l insieme C dunque è un quarto di corona circolare. La cosa migliore è passare a coordinate polari. Si ha C (ρ, θ) [, + ) [, π) : ρ θ [/ π, π]}. Il determinante della matrice Jacobiana della trasformazione vale ρ. unque si ha C x dx dy ρ sin θ π π /π / π 9. ρ ρ cos θ dρ dθ ρ dρ π / π cos θ dθ 6

Analisi Matematica II (Prof. Paolo Marcellini)

Analisi Matematica II (Prof. Paolo Marcellini) Analisi Matematica II Prof. Paolo Marcellini) Università degli Studi di Firenze Corso di laurea in Matematica Esercitazione del 5//14 Michela Eleuteri 1 eleuteri@math.unifi.it web.math.unifi.it/users/eleuteri

Dettagli

Analisi Matematica II (Prof. Paolo Marcellini)

Analisi Matematica II (Prof. Paolo Marcellini) Analisi Matematica II (Prof. Paolo Marcellini) Università degli Studi di Firenze Corso di laurea in Matematica Esercitazioni del 04/03/014 e 06/03/014 Michela Eleuteri 1 eleuteri@math.unifi.it web.math.unifi.it/users/eleuteri

Dettagli

Analisi Matematica II (Prof. Paolo Marcellini)

Analisi Matematica II (Prof. Paolo Marcellini) Vero o falso? Analisi Matematica II (Prof. Paolo Marcellini) Università degli Studi di Firenze Corso di laurea in Matematica Esercitazione del 8//205 Michela Eleuteri eleuteri@math.unifi.it web.math.unifi.it/users/eleuteri

Dettagli

Analisi Matematica II (Prof. Paolo Marcellini)

Analisi Matematica II (Prof. Paolo Marcellini) Analisi Matematica II (Prof. Paolo Marcellini) Università degli Studi di Firenze Corso di laurea in Matematica Esercitazione del /3/4 Michela Eleuteri eleuteri@math.unifi.it web.math.unifi.it/users/eleuteri

Dettagli

5.1. Esercizio. Sia D il cerchio di centro l origine e raggio R, calcolare, servendosi delle coordinate polari l integrale doppio x + y D

5.1. Esercizio. Sia D il cerchio di centro l origine e raggio R, calcolare, servendosi delle coordinate polari l integrale doppio x + y D ANALISI VTTORIAL Soluzione esercizi 26 novembre 2 5.. sercizio. Sia D il cerchio di centro l origine e raggio R, calcolare, servendosi delle coordinate polari l integrale doppio x + y dx dy D + x 2 + y2

Dettagli

quando il limite delle somme di Riemann esiste. In tal caso diciamo che la funzione è integrabile sul rettangolo.

quando il limite delle somme di Riemann esiste. In tal caso diciamo che la funzione è integrabile sul rettangolo. Integrali multipli Consideriamo, inizialmente il caso degli integrali doppi. Il concetto di integrale doppio è l estensione della definizione di integrale per una funzione reale di una variabile reale

Dettagli

Esercizi svolti e assegnati su integrali doppi e tripli

Esercizi svolti e assegnati su integrali doppi e tripli Esercizi svolti e assegnati su integrali doppi e tripli Esercizio. ove Calcolare R = R xy x + y + x + y dxdy } x, y R : x, y, x x + y x Svolgimento. Passo : per disegnare R, studiamo C : x + y x =, C :

Dettagli

1. Calcolare, giustificandone l esistenza, il seguente integrale: y (1 + x) 2 dxdy, ydxdy. x 2 dxdy,

1. Calcolare, giustificandone l esistenza, il seguente integrale: y (1 + x) 2 dxdy, ydxdy. x 2 dxdy, . Calcolare, giustificandone l esistenza, il seguente integrale: ( + x dxd, = {(x, R :, x }.. isegnare il dominio = {(x, R : x, + x } e calcolare dxd. 3. Calcolare x dxd, è il triangolo di vertici ( 3,,

Dettagli

Politecnico di Bari - A.A. 2012/2013 Corso di Laurea in Ingegneria Elettrica Esame di ANALISI MATEMATICA - 3 Luglio 2013.

Politecnico di Bari - A.A. 2012/2013 Corso di Laurea in Ingegneria Elettrica Esame di ANALISI MATEMATICA - 3 Luglio 2013. Esame di ANALISI MATEMATICA - 3 Luglio 2013 (1) Studiare il carattere della serie numerica n 1( 1) n F 0 (n), dove F (x) = Z x 0 log(1 + e t2 ) dt (x 1). (6 punti) log(1 + e t2 ) (2) ata la funzione f(x,

Dettagli

Soluzioni dei problemi della maturità scientifica A.S. 2012/2013

Soluzioni dei problemi della maturità scientifica A.S. 2012/2013 Soluzioni dei problemi della maturità scientifica A.S. / Nicola Gigli Sun-Ra Mosconi June, Problema. Il teorema fondamentale del calcolo integrale garantisce che Quindi f (x) = cos x +. f (π) = cos π +

Dettagli

1 Integrali curvilinei

1 Integrali curvilinei Integrali curvilinei Richiamo: + x dx x + x + x log ) + + x. Exercise Verificare la formula precedente. Exercise Calcolare a + b x dx, con a, b qualsiasi. Exercise 3 Calcolare la lunghezza dell arco di

Dettagli

Integrali doppi - Esercizi svolti

Integrali doppi - Esercizi svolti Integrali doppi - Esercizi svolti Integrali doppi senza cambiamento di variabili Si disegni il dominio e quindi si calcolino gli integrali multipli seguenti:... xy dx dy, con (x, y R x, y x x }; x + y

Dettagli

Analisi Matematica II Corso di Ingegneria Gestionale Compito del f(x, y) = tan(2x 2 + 3y 2 )

Analisi Matematica II Corso di Ingegneria Gestionale Compito del f(x, y) = tan(2x 2 + 3y 2 ) Analisi Matematica II Corso di Ingegneria Gestionale Compito del 7-9- - È obbligatorio consegnare tutti i fogli, anche la brutta e il testo - Le risposte senza giustificazione sono considerate nulle Esercizio

Dettagli

Risposta La curva r è regolare a tratti per via di quanto succede della sua rappresentazione parametrica nel punto t = 1: pur riuscendo

Risposta La curva r è regolare a tratti per via di quanto succede della sua rappresentazione parametrica nel punto t = 1: pur riuscendo ANALISI VETTORIALE OMPITO PER LE VAANZE DI FINE D ANNO Esercizio Sia r(t) la curva regolare a tratti x = t, y = t, t [, ] e x = t, y = t, t [, ]. alcolare la lunghezza di r, calcolare, dove esistono, i

Dettagli

Analisi Matematica II Corso di Ingegneria Gestionale Compito del f(x, y) = e (x3 +x) y

Analisi Matematica II Corso di Ingegneria Gestionale Compito del f(x, y) = e (x3 +x) y Analisi Matematica II Corso di Ingegneria Gestionale Compito del 8--7 - È obbligatorio consegnare tutti i fogli, anche la brutta e il testo. - Le risposte senza giustificazione sono considerate nulle.

Dettagli

Corsi di laurea in ingegneria aerospaziale e ingegneria meccanica Prova scritta di Fondamenti di Analisi Matematica II. Padova, 19.9.

Corsi di laurea in ingegneria aerospaziale e ingegneria meccanica Prova scritta di Fondamenti di Analisi Matematica II. Padova, 19.9. Corsi di laurea in ingegneria aerospaziale e ingegneria meccanica Prova scritta di Fondamenti di Analisi Matematica II Padova, 19.9.2016 Si svolgano i seguenti esercizi facendo attenzione a giustificare

Dettagli

Esercizi. f(x, y, z) = exp(xz) + zy sin(xyz) + cos(xy 3 )

Esercizi. f(x, y, z) = exp(xz) + zy sin(xyz) + cos(xy 3 ) Esercizi 1. Determinare le derivate parziali di f(x, y, z) = exp(xz) + zy sin(xyz) + cos(xy 3 ) 2. Scrivere l equazione del piano tangente e della retta normale al grafico ln(xy) + cos(x + y) nel punto

Dettagli

ANALISI VETTORIALE ESERCIZI SULLE SUPERFICI

ANALISI VETTORIALE ESERCIZI SULLE SUPERFICI ANALII VETTORIALE EERCIZI ULLE UPERFICI Esercizio Calcolare l area della superficie dove Σ {(x, y, z) (x, y) E, z 2 + x 2 + y 2 } E {(x, y) x 2 + y 2 4}. Essendo la superficie Σ data come grafico di una

Dettagli

Esercizi di Analisi Matematica 3. Prima parte

Esercizi di Analisi Matematica 3. Prima parte Esercizi di Analisi Matematica 3 per le Facoltà di Ingegneria Prima parte Corrado Lattanzio e Bruno Rubino Versione preliminare L Aquila, ottobre 5 Indice 1 Curve, superfici e campi vettoriali 3 1.1 Curve

Dettagli

4. Calcolare il baricentro delle seguenti regioni del piano dotate di densità unitaria:

4. Calcolare il baricentro delle seguenti regioni del piano dotate di densità unitaria: INTEGRLI OPPI e TRIPLI Esercii risolti. Calcolare i seguenti integrali doppi: a b c d e f g h i j k y d dy,, y :, y }; d dy,, y :, y }; + y + y d dy,, y :, y }; y d dy,, y :, y }; y d dy,, y :, y + };

Dettagli

Soluzioni. 1. Calcolare la parte reale e immaginaria del numero complesso. z = i i. 3 (2 + i) = i i = i.

Soluzioni. 1. Calcolare la parte reale e immaginaria del numero complesso. z = i i. 3 (2 + i) = i i = i. 20 Roberto Tauraso - Analisi 2 Soluzioni 1. Calcolare la parte reale e immaginaria del numero complesso R. z = i + 3 2 i. z = i + 3 2 i 2 i = 6 5 + ( 1 + 3 5 3 (2 + i) = i + 2 4 + 1 ) i = 6 5 + 8 5 i.

Dettagli

ANALISI B alcuni esercizi proposti

ANALISI B alcuni esercizi proposti ANALISI B alcuni esercizi proposti G.P. Leonardi Parte II 1 Limiti e continuità per funzioni di 2 variabili Esercizio 1.1 Calcolare xy log(1 + x ) lim (x,y) (0,0) 2x 2 + 5y 2 Esercizio 1.2 Studiare la

Dettagli

Simmetrie e quadriche

Simmetrie e quadriche Appendice A Simmetrie e quadriche A.1 Rappresentazione e proprietà degli insiemi nel piano Una delle prime difficoltà che si incontrano nell impostare il calcolo di un integrale doppio consiste nel rappresentare

Dettagli

Esercizi di Complementi di Matematica (L-Z) a.a. 2015/2016

Esercizi di Complementi di Matematica (L-Z) a.a. 2015/2016 Esercizi di Complementi di Matematica (L-Z) a.a. 2015/2016 Prodotti scalari e forme bilineari simmetriche (1) Sia F : R 2 R 2 R un applicazione definita da F (x, y) = x 1 y 1 + 3x 1 y 2 5x 2 y 1 + 2x 2

Dettagli

Prima prova in itinere di Analisi Matematica 2 Ingegneria Elettronica. Politecnico di Milano. A.A. 2017/2018. Prof. M. Bramanti.

Prima prova in itinere di Analisi Matematica 2 Ingegneria Elettronica. Politecnico di Milano. A.A. 2017/2018. Prof. M. Bramanti. Prima prova in itinere di Analisi Matematica Ingegneria Elettronica. Politecnico di Milano Es. Punti A.A. 07/08. Prof. M. Bramanti Tema n 4 5 6 Tot. Cognome e nome (in stampatello) codice persona (o n

Dettagli

M557 - ESAME DI STATO DI LICEO SCIENTIFICO

M557 - ESAME DI STATO DI LICEO SCIENTIFICO M7 - ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO Tema di: MATEMATICA Il candidato risolva uno dei due problemi e cinque quesiti scelti nel questionario. PROBLEMA 1 Nel primo quadrante del

Dettagli

Corso di Metodi Matematici per l Ingegneria A.A. 2016/2017 Esercizi svolti sulle funzioni di variabile complessa (1)

Corso di Metodi Matematici per l Ingegneria A.A. 2016/2017 Esercizi svolti sulle funzioni di variabile complessa (1) Corso di Metodi Matematici per l Ingegneria A.A. 2016/2017 Esercizi svolti sulle funzioni di variabile complessa 1) Marco Bramanti Politecnico di Milano November 7, 2016 1 Funzioni olomorfe e campi di

Dettagli

Facoltà di Architettura Valle Giulia Corso di Laurea Specialistica Quinquennale U.E. 1 CALCOLO INTEGRALE PER LE FUNZIONI DI UNA VARIABILE

Facoltà di Architettura Valle Giulia Corso di Laurea Specialistica Quinquennale U.E. 1 CALCOLO INTEGRALE PER LE FUNZIONI DI UNA VARIABILE Facoltà di Architettura Valle Giulia Corso di Laurea Specialistica Quinquennale U.E. Istituzioni di Matematica 2 a.a. 2007-2008 http://www.dmmm.uniroma.it/persone/capitanelli CALCOLO INTEGRALE PER LE FUNZIONI

Dettagli

ESERCIZI DI ANALISI II Ingegneria Civile e dei Trasporti (M-Z) a.a. 2006/2007

ESERCIZI DI ANALISI II Ingegneria Civile e dei Trasporti (M-Z) a.a. 2006/2007 ESERCIZI I ANALISI II Ingegneria Civile e dei Trasporti (M-Z) a.a. 006/007 1 FUNZIONI IN UE VARIABILI (I parte) Insiemi di definizione eterminare gli insiemi di definizione delle seguenti funzioni in due

Dettagli

(a) Le derivate parziali f x. f y = x2 + 2xy + 3 si annullano contemporaneamente in (1, 2) e ( 1, 2). Le derivate seconde di f valgono.

(a) Le derivate parziali f x. f y = x2 + 2xy + 3 si annullano contemporaneamente in (1, 2) e ( 1, 2). Le derivate seconde di f valgono. Esercizio 1 Si consideri la funzione f(x, y) = x 2 y + xy 2 + y (a) Determinare i punti di massimo e minimo relativo e di sella del grafico di f. (b) Determinare i punti di massimo e minimo assoluto di

Dettagli

0.1 Arco di curva regolare

0.1 Arco di curva regolare .1. ARCO DI CURVA REGOLARE 1.1 Arco di curva regolare Se RC(O, i, j, k ) è un riferimento cartesiano fissato per lo spazio euclideo E, e se v (t) = x(t) i + y(t) j + z(t) k è una funzione a valori vettoriali

Dettagli

Capitolo 16 Esercizi sugli integrali doppi

Capitolo 16 Esercizi sugli integrali doppi Capitolo 6 sercizi sugli integrali doppi Brevi richiami di teoria Sia f : [a, b] [c, d] B IR una funzione limitata e non negativa, definita sul rettangolo R = [a, b] [c, d]. Dividiamo l intervallo [a,

Dettagli

Il Principio di Piero della Francesca e il volume della volta a padiglione

Il Principio di Piero della Francesca e il volume della volta a padiglione Il Principio di Piero della Francesca e il volume della volta a padiglione Flaviano Battelli Dipartimento di Scienze Matematiche Università Politecnica delle Marche Ancona La volta a padiglione è la regione

Dettagli

Scritto d esame di Analisi Matematica II

Scritto d esame di Analisi Matematica II Capitolo 2: Scritti d esame 145 Pisa, 1 Gennaio 2005 e gli insiemi f(x, y) = x 2 x 2 y + y, A = {(x, y) R 2 : x 2 + y 2 6, x 0, y 0}, B = {(x, y) R 2 : x 0, y 0}. (a) massimo e minimo di f(x, y) in A,

Dettagli

Università di Trieste Facoltà d Ingegneria. Esercizi sul calcolo integrale in IR N. Dott. Franco Obersnel

Università di Trieste Facoltà d Ingegneria. Esercizi sul calcolo integrale in IR N. Dott. Franco Obersnel Università di Trieste Facoltà d Ingegneria. Esercizi sul calcolo integrale in IR N. ott. Franco Obersnel Esercizio 1 Sia R = [a 1, b 1 ] [a, b ] [a 3, b 3 ] IR 3 un parallelepipedo di IR 3. Si diano le

Dettagli

Teoremi di Stokes, della divergenza e di Gauss Green.

Teoremi di Stokes, della divergenza e di Gauss Green. Matematica 3 Esercitazioni eoremi di tokes, della divergenza e di Gauss Green. Esercizio 1 : Calcolare l area del dominio avente per frontiera la linea chiusa γ di equazioni parametriche x (1 t) t γ :,

Dettagli

Analisi Matematica 2 Ingegneria Gestionale Docenti: B. Rubino e R. Sampalmieri L Aquila, 21 marzo 2005

Analisi Matematica 2 Ingegneria Gestionale Docenti: B. Rubino e R. Sampalmieri L Aquila, 21 marzo 2005 Analisi Matematica 2 Ingegneria Gestionale Docenti: B. Rubino e R. Sampalmieri L Aquila, 21 marzo 2005 Prova orale il: Docente: Determinare, se esistono, il massimo ed il minimo assoluto della funzione

Dettagli

UNIVERSITÀ DI ROMA TOR VERGATA. Analisi Matematica II per Ingegneria Prof. C. Sinestrari

UNIVERSITÀ DI ROMA TOR VERGATA. Analisi Matematica II per Ingegneria Prof. C. Sinestrari UNIVERSITÀ DI ROMA TOR VERGATA Analisi Matematica II per Ingegneria Prof. C. Sinestrari Risposte sintetiche) agli esercizi del 17.XI.17 1. Le curve hanno tutte parametrizzazioni di classe C. Per studiare

Dettagli

Forme differenziali e campi vettoriali: esercizi svolti

Forme differenziali e campi vettoriali: esercizi svolti Forme differenziali e campi vettoriali: esercizi svolti 1 Esercizi sul Teorema di Green......................... 2 2 Esercizi sul Teorema di Stokes......................... 4 3 Esercizi sul Teorema di

Dettagli

Corso di Laurea in Ingegneria Gestionale - Sede di Fermo Anno Accademico 2009/2010 Matematica 2 Esercizi d esame

Corso di Laurea in Ingegneria Gestionale - Sede di Fermo Anno Accademico 2009/2010 Matematica 2 Esercizi d esame Corso di Laurea in Ingegneria Gestionale - ede di Fermo Anno Accademico 2009/2010 Matematica 2 Esercizi d esame Nome... N. Matricola... Fermo, gg/mm/aaaa 1. tabilire l ordine di ciascuna delle seguenti

Dettagli

UNITÀ DIDATTICA 2 LE FUNZIONI

UNITÀ DIDATTICA 2 LE FUNZIONI UNITÀ DIDATTICA LE FUNZIONI. Le funzioni Definizione. Siano A e B due sottoinsiemi non vuoti di R. Si chiama funzione di A in B una qualsiasi legge che fa corrispondere a ogni elemento A uno ed un solo

Dettagli

R. Capone Analisi Matematica Integrali multipli

R. Capone Analisi Matematica Integrali multipli Integrali multipli Consideriamo, inizialmente il caso degli integrali doppi. Il concetto di integrale doppio è l estensione della definizione di integrale per una funzione reale di una variabile reale

Dettagli

Problema ( ) = 0,!

Problema ( ) = 0,! Domanda. Problema ( = sen! x ( è! Poiché la funzione seno è periodica di periodo π, il periodo di g x! = 4. Studio di f. La funzione è pari, quindi il grafico è simmetrico rispetto all asse y. È sufficiente

Dettagli

INTEGRALI TRIPLI Esercizi svolti

INTEGRALI TRIPLI Esercizi svolti INTEGRLI TRIPLI Esercizi svolti. Calcolare i seguenti integrali tripli: (a xye xz dx dy dz, [, ] [, ] [, ]; (b x dx dy dz, {(x, y, z : x, y, z, x + y + z }; (c (x + y + z dx dy dz, {(x, y, z : x, x y x

Dettagli

Un punto del piano può essere individuato dalle sue coordinate cartesiane o anche dalle sue coordinate polari:

Un punto del piano può essere individuato dalle sue coordinate cartesiane o anche dalle sue coordinate polari: Un punto del piano può essere individuato dalle sue coordinate cartesiane o anche dalle sue coordinate polari: Figura 1 Per passare da coordinate polari a quelle cartesiane usiamo { x = r cos θ y = r sin

Dettagli

Campi conservativi e forme esatte - Esercizi svolti

Campi conservativi e forme esatte - Esercizi svolti Campi conservativi e forme esatte - Esercizi svolti 1) Dire se la forma differenziale è esatta. ω = 2 2 (1 + 2 2 ) 2 d + 2 2 (1 + 2 2 ) 2 d 2) Individuare in quali regioni sono esatte le seguenti forme

Dettagli

Integrali multipli - Esercizi svolti

Integrali multipli - Esercizi svolti Integrali multipli - Esercizi svolti Integrali di superficie. Si calcoli l integrale di superficie Σ z +y +4(x +y ) dσ, dove Σ è la parte di superficie di equazione z = x y che si proietta in = {(x,y)

Dettagli

y (b) f(x, y) = y log x sin x (c) f(x, y) = tan y (d) f(x, y) = e x y (f) f(x, y) = cos(x 2 + y 2 )

y (b) f(x, y) = y log x sin x (c) f(x, y) = tan y (d) f(x, y) = e x y (f) f(x, y) = cos(x 2 + y 2 ) FUNZIONI DI PIÙ VARIABILI. Siano date le seguenti funzioni: (a) f(x, y) = 3x + y (c) h(x, y) = x y (b) g(x, y) = xy (d) k(x, y) = x + y Determinare e disegnare nel piano cartesiano il dominio delle funzioni

Dettagli

Estremi. 5. Determinare le dimensioni di una scatola rettangolare di volume v assegnato, che abbia la superficie minima.

Estremi. 5. Determinare le dimensioni di una scatola rettangolare di volume v assegnato, che abbia la superficie minima. Estremi 1. Determinare gli estremi relativi di f(x, y) = e x (x 1)(y 1) + (y 1).. Determinare gli estremi relativi di f(x, y) = y (y + 1) cos x. 3. Determinare gli estremi relativi di f(x, y) = xye x +y..

Dettagli

Soluzioni. 152 Roberto Tauraso - Analisi Risolvere il problema di Cauchy. { y (x) + 2y(x) = 3e 2x y(0) = 1

Soluzioni. 152 Roberto Tauraso - Analisi Risolvere il problema di Cauchy. { y (x) + 2y(x) = 3e 2x y(0) = 1 5 Roberto Tauraso - Analisi Soluzioni. Risolvere il problema di Cauchy y (x) + y(x) = 3e x y() = R. Troviamo la soluzione generale in I = R. Una primitiva di a(x) = è A(x) = a(x) dx = dx = x e il fattore

Dettagli

Integrali doppi / Esercizi svolti

Integrali doppi / Esercizi svolti M.Guida, S.Rolando, 4 Integrali doppi / Esercizi svolti L asterisco contrassegna gli esercizi più dicili. ESERCIZIO. Sia (x, y) R : x + y, x y

Dettagli

ESAME DI MATEMATICA I parte Vicenza, 05/06/2017. x log 2 x?

ESAME DI MATEMATICA I parte Vicenza, 05/06/2017. x log 2 x? A. Peretti Svolgimento dei temi d esame di Matematica A.A. 6/7 ESAME DI MATEMATICA I parte Vicenza, 5/6/7 log? Domanda. Per quali valori di è definita l espressione L espressione è definita se l argomento

Dettagli

SIMULAZIONE - 29 APRILE QUESITI

SIMULAZIONE - 29 APRILE QUESITI www.matefilia.it SIMULAZIONE - 29 APRILE 206 - QUESITI Q Determinare il volume del solido generato dalla rotazione attorno alla retta di equazione y= della regione di piano delimitata dalla curva di equazione

Dettagli

INTEGRALI Test di autovalutazione

INTEGRALI Test di autovalutazione INTEGRALI Test di autovalutazione. L integrale ln 6 è uguale a (a) vale 5 2 (b) (c) (d) 4 5 vale ln 256 2 è negativo 2 5 + 4 5 2 5 + 4 5 d d 2. È data la funzione = e 2. Allora: (a) se F() è una primitiva

Dettagli

Esercitazione n 6. Esercizio 1: Determinare i punti di massimo e minimo relativo delle seguenti funzioni: (b)f(x, y) = 4y 4 16x 2 y + x

Esercitazione n 6. Esercizio 1: Determinare i punti di massimo e minimo relativo delle seguenti funzioni: (b)f(x, y) = 4y 4 16x 2 y + x Esercitazione n 6 1 Massimi e minimi di funzioni di più variabili Esercizio 1: Determinare i punti di massimo e minimo relativo delle seguenti funzioni: (a)f(x, y) = x 3 + y 3 + xy (b)f(x, y) = 4y 4 16x

Dettagli

Funzioni implicite - Esercizi svolti

Funzioni implicite - Esercizi svolti Funzioni implicite - Esercizi svolti Esercizio. È data la funzione di due variabili F (x, y) = y(e y + x) log x. Verificare che esiste un intorno I in R del punto di ascissa x 0 = sul quale è definita

Dettagli

Soluzione. Il dominio E consiste nella parte di spazio contenuta nella sfera ma esterna al cono rappresentata in Figura 1. Infatti

Soluzione. Il dominio E consiste nella parte di spazio contenuta nella sfera ma esterna al cono rappresentata in Figura 1. Infatti Esercizio 1 (G. Ziglio). (6 punti) Calcolare il volume della porzione di spazio E interna alla sfera di equazione x 2 + y 2 + z 2 = 1 ed esterna al cono di equazione z 2 = x 2 + y 2 E = (x, y, z) R x 2

Dettagli

Università degli Studi di Bergamo Matematica II (5 e 7,5 crediti) 18 febbraio 2010 Tema A

Università degli Studi di Bergamo Matematica II (5 e 7,5 crediti) 18 febbraio 2010 Tema A Università degli Studi di Bergamo Matematica II (5 e 7,5 crediti) 18 febbraio 21 Tema A Tempo a disposizione: 2 ore. Calcolatrici, libri e appunti non sono ammessi. Ogni esercizio va iniziato all inizio

Dettagli

1 Cambiamenti di riferimento nel piano

1 Cambiamenti di riferimento nel piano 1 Cambiamenti di riferimento nel piano Siano date due basi ortonormali ordinate di V : B = ( i, j) e B = ( i, j ) e supponiamo che i = a i + b j j = c i + d j allora per un generico vettore v V abbiamo

Dettagli

Limiti di funzioni di due variabili

Limiti di funzioni di due variabili Limiti di funzioni di due variabili Definizione 1 Sia f : A R 2 R e x 0 = (x 0, y 0 ) punto di accumulazione di A. Diciamo che se e solo se Diciamo che se e solo se f(x) = f(x, y) = L x x 0 (x,y) (x 0,y

Dettagli

Corso di Laurea in Ingegneria Civile ed Ambientale Prova Scritta di Analisi Matematica 2 del 19/06/2010 A

Corso di Laurea in Ingegneria Civile ed Ambientale Prova Scritta di Analisi Matematica 2 del 19/06/2010 A Corso di Laurea in Ingegneria Civile ed Ambientale Prova Scritta di Analisi Matematica del 9/6/ A ) ata la funzione f(x, y) x y log( + x + y ), a) stabilire dove risulta derivabile parzialmente nel suo

Dettagli

Prima prova di verifica in itinere di ANALISI MATEMATICA II. 12 Marzo 2008 Compito A. 1 (punti 3)

Prima prova di verifica in itinere di ANALISI MATEMATICA II. 12 Marzo 2008 Compito A. 1 (punti 3) anno accademico 007-008 Prima prova di verifica in itinere di ANALISI MATEMATICA II Marzo 008 Compito A (punti ) y = x + xy + y x. (punti 4) y + y x = ln x x y. (punti ) y = y + y ln y. 4 (punti 6) Determinare

Dettagli

7. Integrazione delle funzioni di più variabili (II)

7. Integrazione delle funzioni di più variabili (II) 7. Integraione delle funioni di più variabili (II) http://eulero.ing.unibo.it/~baroi/scam/scam-tr.7b.pdf 7.5 Area del parallelogramma costruito su due vettori. Volume del parallelepipedo costruito su tre

Dettagli

A Analisi Matematica 1 (Corso di Laurea in Informatica e Bioinformatica) Simulazione compito d esame

A Analisi Matematica 1 (Corso di Laurea in Informatica e Bioinformatica) Simulazione compito d esame COGNOME NOME Matr. A Analisi Matematica (Corso di Laurea in Informatica e Bioinformatica) Firma dello studente Tempo: 3 ore. Prima parte: test a risposta multipla. Una ed una sola delle 4 affermazioni

Dettagli

a) Il denominatore dev essere diverso da zero. Studiamo il trinomio x 2 5x + 6. Si ha: x 1,2 = 5 ± se x ], 2[ ]3, + [;

a) Il denominatore dev essere diverso da zero. Studiamo il trinomio x 2 5x + 6. Si ha: x 1,2 = 5 ± se x ], 2[ ]3, + [; ESERCIZIO - Data la funzione f (x) + x2 2x x 2 5x + 6, si chiede di: a) calcolare il dominio di f ; (2 punti) b) studiare la positività e le intersezioni con gli assi; (3 punti) c) stabilire se f ha asintoti

Dettagli

Corso di Laurea in Matematica Geometria 2. Foglio di esercizi n. 5 a.a Soluzioni

Corso di Laurea in Matematica Geometria 2. Foglio di esercizi n. 5 a.a Soluzioni Corso di Laurea in Matematica Geometria 2 Foglio di esercizi n. 5 a.a. 2015-16 Soluzioni Gli esercizi sono presi dal libro di Manetti. Per svolgere questi esercizi, studiare con cura i paragrafi 10.1,

Dettagli

Analisi Matematica I per Ingegneria Gestionale, a.a Scritto del secondo appello, 1 febbraio 2017 Testi 1

Analisi Matematica I per Ingegneria Gestionale, a.a Scritto del secondo appello, 1 febbraio 2017 Testi 1 Analisi Matematica I per Ingegneria Gestionale, a.a. 206-7 Scritto del secondo appello, febbraio 207 Testi Prima parte, gruppo.. Trovare le [0, π] che risolvono la disequazione sin(2) 2. 2. Dire se esistono

Dettagli

Limite. Se D non è limitato si può fare il limite di f(x) per x che tende

Limite. Se D non è limitato si può fare il limite di f(x) per x che tende Appunti sul corso di Complementi di Matematica,mod.Analisi, prof. B.Bacchelli - a.a. 200/20. 05 - Limiti continuità: Riferimenti: R.Adams, Calcolo Differenziale 2. Capitoli 3., 3.2. - Esercizi 3., 3.2.

Dettagli

Analisi Matematica 2 per Matematica Esempi di compito, secondo semestre 2012/2013

Analisi Matematica 2 per Matematica Esempi di compito, secondo semestre 2012/2013 Analisi Matematica 2 per Matematica Esempi di compito, secondo semestre 2012/2013 Primo compito. Si consideri la regione stokiana E di R 3 definita dalle disuguaglianze: { + y 2 a 2 0 z tan α)x b) dove

Dettagli

Soluzione di Adriana Lanza

Soluzione di Adriana Lanza Soluzione Dimostriamo che f(x) è una funzione dispari Osserviamo che in quanto in quanto x è una funzione dispari è una funzione dispari in quanto prodotto di una funzione dispari per una pari Pertanto

Dettagli

Durata della prova: 3h. 2 +y 4. tan y sin y lim = 1. (x 4 +y 2 )y 3

Durata della prova: 3h. 2 +y 4. tan y sin y lim = 1. (x 4 +y 2 )y 3 Università degli Studi di Napoli Federico II Corso di Laurea in Matematica Analisi Matematica II (Gruppo ), A.A. 22/3 Prova scritta del 28 gennaio 23 Durata della prova: 3h. sercizio (8 punti). Si consideri

Dettagli

2.9 Esercizi e prove d esame

2.9 Esercizi e prove d esame 65 R. Tauraso - Analisi Matematica II.9 Esercizi e prove d esame Esercizio.. Calcolare la lunghezza dell arco di catenaria data dal grafico della funzione f e + e, con, ]. L arco si parametrizza ponendo

Dettagli

Analisi Matematica II - INGEGNERIA Gestionale - B 20 luglio 2017 Cognome: Nome: Matricola:

Analisi Matematica II - INGEGNERIA Gestionale - B 20 luglio 2017 Cognome: Nome: Matricola: Analisi Matematica II - INGEGNERIA Gestionale - B luglio 7 Cognome: Nome: Matricola: IMPORTANTE: Giustificare tutte le affermazioni e riportare i calcoli essenziali Esercizio [8 punti] Data la matrice

Dettagli

ESERCIZIO SVOLTO N 1 ESERCIZIO SVOLTO N 2. Determinare e rappresentare graficamente il dominio della funzione

ESERCIZIO SVOLTO N 1 ESERCIZIO SVOLTO N 2. Determinare e rappresentare graficamente il dominio della funzione ESERCIZIO SVOLTO N 1 Determinare e rappresentare graficamente il dominio della funzione f(x, y) = y 2 x 2 Trovare gli eventuali punti stazionari e gli estremi di f Il dominio della funzione è dato da dom

Dettagli

( ρ, θ + π ) sono le coordinate dello stesso punto. Pertanto un punto P può essere descritto come

( ρ, θ + π ) sono le coordinate dello stesso punto. Pertanto un punto P può essere descritto come Coordinate polari Il sistema delle coordinate cartesiane è uno dei possibili sistemi per individuare la posizione di un punto del piano, relativamente ad un punto fisso O, mediante una coppia ordinata

Dettagli

ESERCITAZIONE 9: INTEGRALI DEFINITI. CALCOLO DELLE AREE E ALTRE APPLICAZIONI

ESERCITAZIONE 9: INTEGRALI DEFINITI. CALCOLO DELLE AREE E ALTRE APPLICAZIONI ESERCITAZIONE 9: INTEGRALI DEFINITI. CALCOLO DELLE AREE E ALTRE APPLICAZIONI Tiziana Raparelli 5/5/9 CONOSCENZE PRELIMINARI Vogliamo calcolare f ( x, ax + bx + c ) dx. Se a =, allora basta porre bx + c

Dettagli

LUISS Laurea specialistica in Economia e Finanza Anno Accademico 2010/2011

LUISS Laurea specialistica in Economia e Finanza Anno Accademico 2010/2011 LUISS Laurea specialistica in Economia e Finanza Anno Accademico 1/11 Corso di Metodi Matematici per la Finanza Prof. Fausto Gozzi, Dr. Davide Vergni Soluzioni esercizi 4,5,6 esame scritto del 13/9/11

Dettagli

Prima parte: DOMINIO E INSIEMI DI LIVELLO

Prima parte: DOMINIO E INSIEMI DI LIVELLO FUNZIONI DI DUE VARIABILI 1 Prima parte: DOMINIO E INSIEMI DI LIVELLO Domini e disequazioni in due variabili. Insiemi di livello. Elementi di topologia insiemi aperti, chiusi, limitati, convessi, connessi

Dettagli

CORSO DI LAUREA IN INGEGNERIA EDILE/ARCHITETTURA

CORSO DI LAUREA IN INGEGNERIA EDILE/ARCHITETTURA CORSO DI LAUREA IN INGEGNERIA EDILE/ARCHITETTURA FOGLIO DI ESERCIZI 1 GEOMETRIA 2009/10 Esercizio 1.1 (2.2). Determinare l equazione parametrica e Cartesiana della retta dello spazio (a) Passante per i

Dettagli

INTEGRALI INDEFINITI e DEFINITI Esercizi risolti

INTEGRALI INDEFINITI e DEFINITI Esercizi risolti INTEGRALI INDEFINITI e DEFINITI Esercizi risolti E data la funzione f( = (a Provare che la funzione F ( = + arcsin è una primitiva di f( sull intervallo (, (b Provare che la funzione G( = + arcsin π è

Dettagli

TEOREMA DI GREEN ( ) D ; C è il contorno orientato del dominio D considerato

TEOREMA DI GREEN ( ) D ; C è il contorno orientato del dominio D considerato Le formule f d dy = f (, y ) dy TEOEMA I GEEN [] f d dy = f (, y ) d [] note come formule di Green sono due relazioni semplici ma molto importanti fra gli integrali estesi ad un dominio piano e gli integrali

Dettagli

Le soluzioni del foglio 3

Le soluzioni del foglio 3 Le soluzioni del foglio 3 1. Esercizio Consideriamo la famiglia di elicoidi, vedi Figura 1, x = u cos(v), y = u sin(v), z = kv, u 1, v π Quella proposta nell esercizio corrisponde alla scelta k = 1 Matrice

Dettagli

Forme differenziali lineari

Forme differenziali lineari Forme differenziali lineari Sia Ω R un insieme aperto e siano A, B, C: Ω R funzioni continue in Ω. Si definisce forma differenziale ω in Ω l espressione ω = A(x, y, z)dx + B(x, y, z)dy + C(x, y, z)dz Data

Dettagli

Funzioni e grafici. prof. Andres Manzini

Funzioni e grafici. prof. Andres Manzini Università degli studi di Modena e Reggio Emilia Dipartimento di Scienze e Metodi dell Ingegneria Corso MOOC Iscriversi a Ingegneria Reggio Emilia Introduzione Definizione Si dice funzione (o applicazione)

Dettagli

Svolgimento. f y (x, y) = 8 y 2 x. 1 x 2 y = 0. y 2 x = 0. (si poteva anche ricavare la x dalla seconda equazione e sostituire nella prima)

Svolgimento. f y (x, y) = 8 y 2 x. 1 x 2 y = 0. y 2 x = 0. (si poteva anche ricavare la x dalla seconda equazione e sostituire nella prima) Università degli Studi della Basilicata Corsi di Laurea in Chimica / Scienze Geologiche Matematica II A. A. 2013-2014 (dott.ssa Vita Leonessa) Esercizi svolti: Ricerca di massimi e minimi di funzioni a

Dettagli

Esercitazioni di Matematica

Esercitazioni di Matematica Università degli Studi di Udine Anno Accademico 009/00 Facoltà di Agraria Corsi di Laurea in VIT e STAL Esercitazioni di Matematica novembre 009 Trovare le soluzioni della seguente disequazione: x + +

Dettagli

Esercizi svolti. g(x) = sono una l inversa dell altra. Utilizzare la rappresentazione grafica di f e f 1 per risolvere l equazione f(x) = g(x).

Esercizi svolti. g(x) = sono una l inversa dell altra. Utilizzare la rappresentazione grafica di f e f 1 per risolvere l equazione f(x) = g(x). Esercizi svolti. Discutendo graficamente la disequazione > 3 +, verificare che l insieme delle soluzioni è un intervallo e trovarne gli estremi.. Descrivere in forma elementare l insieme { R : + > }. 3.

Dettagli

Introduciamo il sistema di riferimento indicato in figura b) con F 1 = ( f, 0) ed F 2 = (f, 0). Se P = (x, y) la condizione (1) fornisce

Introduciamo il sistema di riferimento indicato in figura b) con F 1 = ( f, 0) ed F 2 = (f, 0). Se P = (x, y) la condizione (1) fornisce 1 L ellisse 1.1 Definizione Consideriamo due punti F 1 ed F 2 e sia 2f la loro distanza. L ellisse è il luogo dei punti P tali che la somma delle distanze PF 1 e PF 2 da F 1 ed F 2 è costante. Se indichiamo

Dettagli

z = i 4 2i 3. a)z = (1 + i) 6 e b)w = i 17. 4) Scrivere in forma trigonometrica i seguenti numeri complessi: a)8 b)6i c)( cos( π 3 ) i sin(π 3 ))7.

z = i 4 2i 3. a)z = (1 + i) 6 e b)w = i 17. 4) Scrivere in forma trigonometrica i seguenti numeri complessi: a)8 b)6i c)( cos( π 3 ) i sin(π 3 ))7. NUMERI COMPLESSI Esercizi svolti. 1 Calcolare la parte reale e la parte immaginaria di z = i i. Determinare il valore assoluto e il coniugato di az = 1 + i 6 e bw = i 17. Scrivere in forma cartesiana i

Dettagli

Prove scritte dell esame di Analisi Matematica II a.a. 2011/2012

Prove scritte dell esame di Analisi Matematica II a.a. 2011/2012 Prove scritte dell esame di Analisi Matematica II a.a. / C.d.L. in Ingegneria Informatica ed Elettronica - Università degli Studi di Perugia Prova scritta del 7 giugno. ( punti) Disegnare l insieme E (x,

Dettagli

Risoluzione del problema 2

Risoluzione del problema 2 Esame di Stato Liceo Scientifico Prova di Matematica corso sperimentale PNI - giugno 007 Soluzione del PROBLEMA a cura di Luigi Tomasi (luigitomasi@liberoit) Risoluzione del problema Punto ) Consideriamo

Dettagli

a) Determinare il dominio, i limiti agli estremi del dominio e gli eventuali asintoti di f. Determinare inoltre gli zeri di f e studiarne il segno.

a) Determinare il dominio, i limiti agli estremi del dominio e gli eventuali asintoti di f. Determinare inoltre gli zeri di f e studiarne il segno. 1 ESERCIZI CON SOLUZIONE DETTAGLIATA Esercizio 1. Si consideri la funzione f(x) = e x 3e x +. a) Determinare il dominio, i limiti agli estremi del dominio e gli eventuali asintoti di f. Determinare inoltre

Dettagli

Soluzioni dei quesiti di matematica (3)

Soluzioni dei quesiti di matematica (3) Facoltà d Ingegneria - Università Roma Tre 1 Soluzioni dei quesiti di matematica (3) 1) Anche senza usare i criteri di classificazione delle curve del second ordine, è possibile rendersi conto che l equazione

Dettagli

Esercizi svolti. a 2 x + 3 se x 0; determinare a in modo che f risulti continua nel suo dominio.

Esercizi svolti. a 2 x + 3 se x 0; determinare a in modo che f risulti continua nel suo dominio. Esercizi svolti 1. Sia sin(x ) f(x) = x ( 1 + x 1 ) se x > 0 a x + 3 se x 0; determinare a in modo che f risulti continua nel suo dominio.. Scrivere l equazione della retta tangente nel punto di ascissa

Dettagli

CLASSIFICAZIONE DELLE CONICHE AFFINI

CLASSIFICAZIONE DELLE CONICHE AFFINI CLASSIFICAZIONE DELLE CONICHE AFFINI Pre-requisiti necessari. Elementi di geometria analitica punti e rette nel piano cartesiano, conoscenza delle coniche in forma canonica). Risoluzione di equazioni e

Dettagli

Prove scritte di Analisi I - Informatica

Prove scritte di Analisi I - Informatica Prove scritte di Analisi I - Informatica Prova scritta del 3 gennaio Esercizio Stabilire il comportamento delle seguenti serie: n= n + 3 sin n, n= ( ) n n + 3 sin n, n= (n)! (n!), n= n + n 9 n + n. Esercizio

Dettagli

Esercitazione sui numeri complessi

Esercitazione sui numeri complessi Esercitazione sui numeri complessi Davide Boscaini Queste sono le note da cui ho tratto le esercitazioni del giorno Ottobre 0. Come tali sono ben lungi dall essere esenti da errori, invito quindi chi ne

Dettagli

Le Funzioni. Modulo Esponenziali Logaritmiche. Prof.ssa Maddalena Dominijanni

Le Funzioni. Modulo Esponenziali Logaritmiche. Prof.ssa Maddalena Dominijanni Le Funzioni Modulo Esponenziali Logaritmiche Definizione di modulo o valore assoluto Se x è un generico numero reale, il suo modulo o valore assoluto è: x = x se x 0 -x se x

Dettagli

FUNZIONI ELEMENTARI, DISEQUAZIONI, NUMERI REALI, PRINCIPIO DI INDUZIONE Esercizi risolti

FUNZIONI ELEMENTARI, DISEQUAZIONI, NUMERI REALI, PRINCIPIO DI INDUZIONE Esercizi risolti FUNZIONI ELEMENTARI, DISEQUAZIONI, NUMERI REALI, PRINCIPIO DI INDUZIONE Esercizi risolti Discutendo graficamente la disequazione x > 3 + x, verificare che l insieme delle soluzioni è un intervallo e trovarne

Dettagli

Soluzione di Adriana Lanza

Soluzione di Adriana Lanza Soluzione Dimostriamo che f(x) è una funzione dispari Osserviamo che in quanto in quanto x è una funzione dispari è una funzione dispari in quanto prodotto di una funzione dispari per una pari Pertanto

Dettagli