Come si eç visto, esistono numerosi sistemi di coordinate celesti che diæeriscono

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Come si eç visto, esistono numerosi sistemi di coordinate celesti che diæeriscono"

Transcript

1 G6. Trasformazioni di coordinate Generalitaç Come si eç visto, esistono numerosi sistemi di coordinate celesti che diæeriscono o per la diversa posizione dell'origine, o per il diverso orientamento, o per entrambe le cose. Ognuno di questi ha una sua speciæca utilitaç a seconda del problema in esame, ma solo raramente si puoç trattare il problema utilizzando un solo SC. Per fare un esempio, si voglia determinare se, a un certo istante, un pianeta sia ben visibile da una data localitaç. Tralasciando per ora molti dettagli pure importanti, per prima cosa occorreraç determinare la posizione del pianeta nel sistema solare: per questo scopo il SC piuç naturale eç quello eclittico eliocentrico. Successivamente si dovraç passare a un SC geocentrico e poi topocentrico; inæne, per rispondere alla domanda che ci siamo posti, le coordinate da usare saranno quelle orizzontali. Vedremo poi che la trasformazione da coordinate eclittiche a orizzontali richiede, almeno concettualmente, di passare per le coordinate equatoriali. In un contesto del tutto diverso, ci si puoç porre il problema di come siano distribuiti nello spazio gli ammassi globulari che si osservano sulla sfera celeste e di cui, per qualche via, si sia potuta determinare la distanza. In questo caso il dato osservativo eç riferito in modo naturale al SC di catalogo delle stelle di campo ètipicamente equatoriali equinoziali a un'epoca standardè, mentre la distribuzione che interessa saraç meglio riferita a un SC galattiche e galattocentriche. Bastano questi pochi accenni per capire che il problema delle trasformazioni di coordinate eç essenziale in astronomia: senza voler essere del tutto esaurienti, aæronteremo questo problema nella sua generalitaç, mostreremo qualche trasformazione rilevante e concluderemo con qualche applicazione pratica. Nella presente trattazione non si faraç alcun uso della trigonometria sferica cioeç della trigonometria che si applica ai triangoli costruiti su una superæcie sferica com'eç tradizionale nell'astronomia classica. Preferiremo l'uso di strumenti piuç consueti nella æsica èvettori, traslazioni, rotazioniè, anche in considerazione del fatto che in questo modo la traduzione in algoritmi per un calcolatore eç di gran lunga sempliæcata. In ogni caso, per comoditaç del lettore, alla æne del capitolo riportiamo le piuç utili relazioni della trigonometria sferica. Fissato un certo punto di osservazione,æ O èorigine del SCè la posizione P di un oggetto eç individuata dal vettore ~r = OP, eventualmente descritto in termini delle sue componenti cartesiane x, y, z, quando si siano deænite le direzioni di una terna di assi ortogonali, ovvero dei tre versori di base. Se ci limitiamo alla descrizione della sfera celeste, ogni posizione, riferita al punto di osservazione ècentro della sferaè, eç individuata da un versore; come si eç detto al Cap. G, G6í

2 in questo caso la distanza dell'oggetto considerato non eç nota, o comunque non interessa. E ç per noi interessante la relazione tra le coordinate sferiche del punto P e le componenti del vettore ~r; anche percheç, come si eç visto sopra, i vari SC diæeriscono per l'orientamento. Per ogni SC verranno dunque æssati gli assi x e z; l'asse y risulteraç deænito di conseguenza, trattandosi in ogni caso di terne destrorse. Nota: Nelle espressioni seguenti ci limiteremo ai punti della sfera celeste èdi raggio unitarioè, cioeç alle componenti dei versori. A. Coordinate Altazimutali èod Orizzontaliè: A; h Assi: x verso Sud, z verso lo Zenit è y verso Est èsi noti che l'asse x punta in verso opposto all'origine degli azimutè. x =, cos h cos A y = cos h sin A z = sin h: èg6.è M. Coordinate Equatoriali Meridiane: H; æ Assi: x verso il Mezzocielo superiore, z verso il Polo Nord Celeste è y verso Est. x = cos æ cos H y =, cos æ sin H èg6.2è z = sin æ: E. Coordinate Equatoriali Equinoziali: æ; æ Assi: x verso V, z verso il Polo Nord Celeste. x = cos æ cos æ y = cos æ sin æ z = sin æ: C. Coordinate Eclittiche: ç; æ Assi: x verso V, z verso il Polo Nord Eclittico. x = cos æ cos ç y = cos æ sin ç z = sin æ: G6í2

3 G. Coordinate Galattiche: l; b Assi: x verso il centro della Galassia, z verso il polo Nord galattico. x = cos b cos l y = cos b sin l z = sin b: Abbiamo giaç accennato al fatto che le scelte dell'origine delle coordinate e dell'orientazione di queste sono indipendenti. Parlando di trasformazioni di coordinate manteniamo questa distinzione, dal momento che un cambiamento di origine, nell'ambito dello stesso SC, si realizza mediante una traslazione, mentre la trasformazione da un SC a un altro avente lo stesso centro corrisponde a una rotazione. Traslazioni Ci limiteremo a trattare brevemente due situazioni frequenti: la trasformazione da coordinate eliocentriche a geocentriche e quella da coordinate geocentriche a topocentriche èoltre che, naturalmente, le rispettive inverseè. Detti ~r e e ~r g ivettori che individuano la posizione di un oggetto nei due riferimenti, eliocentrico e geocentrico rispettivamente, occorre ancora conoscere la posizione della Terra rispetto al Sole, descritta dal vettore ~è. La trasformazione saraç allora: ~r e = ~è +~r g : èg6.3è Si vede che il calcolo di ~r g richiede di conoscere dell'orbita della Terra; di conseguenza ~r g dipende dal tempo attraverso ~è. In modo assolutamente analogo si passa dal sistema geocentrico a quello topocentrico, quando sia noto il vettore ~è 0 che deænisce la posizione della localitaç considerata rispetto al centro della Terra: ~r g = ~è 0 +~r t : èg6.4è Qui ~r t dipende ancora dal tempo, a causa della rotazione terrestre, a meno che non si lavori in un SC solidale alla Terra èaltazimutali o equatoriali meridianeè. Inoltre il calcolo di ~r t richiede la conoscenza della forma della Terra, delle coordinate geograæche del luogo, e della sua altitudine. Rotazioni Fissiamo adesso il centro di osservazione, scegliendo ad esempio sistemi geocentrici, e vediamo come si trasformano le coordinate da un sistema all'altro. In tutti i casi si tratta di una rotazione e dunque puoç essere descritta mediante una matrice 3 æ 3, ma non sempre eç ovvio individuare l'asse e l'angolo G6í3

4 di rotazione. E ç peroç sempre possibile ridurre una trasformazione alla composizione di piuç trasformazioni successive: se per queste eç possibile scrivere le corrispondenti matrici, la trasformazione richiesta saraç data dal prodotto di quelle matrici. Ci limiteremo ai tre casi piuç frequenti di trasformazione di coordinate: è A! M èda Altazimutali a Equatoriali Meridianeè: Rotazione attorno all'asse y di un angolo pari alla colatitudine del luogo ' 0 = ç=2, '. M MA = sin ' 0 cos ' 0 0, cos ' 0 sin ' 2è M! E èda Equatoriali Meridiane a Equatoriali Equinozialiè: A : èg6.5è Rotazione attorno all'asse z di un angolo æ pari a Hèæè èangolo orario del punto æè, dipendente dall'istante cui ci si riferisce. Si tratta del tempo siderale giaç introdotto nel cap. prec. M EM = cos æ, sin æ 0 sin æ cos æ 0A : 0 0 3è E! C èda Equatoriali Equinoziali a Eclitticheè: Rotazione attorno all'asse x di un angolo pari all'obliquitaç dell'eclittica ". 0 M CE cos " sin " A : 0, sin " cos " Come esempio si consideri una stella di cui si siano misurate le coordinate altazimutali A, h e di cui si vogliano determinare le coordinate equatoriali meridiane H, æ. Dette x A, y A, z A le componenti del versore che individua la direzione della stella nel sistema altazimutale, basta applicare ad esse la matrice èg6.5è per ottenere le componenti x M, y M, z M del medesimo versore nel SC equatoriale meridiano: sin ' 0 cos ' A 0 0 A@ x A y A A : z A x M y M z M x M = y M =, cos ' 0 sin ' x A sin ' + z A cos ' y A z M =,x A cos ' + z A sin ':

5 ha: Esplicitando in termini delle coordinate polari tramite le èg6.è, èg6.2è si ricavando inæne: cos æ cos H =, cos h cos A sin ' + sin h cos ' cos æ sin H =, cos h sin A sin æ = cos h cos A cos ' + sin h sin ' æ = arcsinècos h cos A cos ' + sin h sin 'è ç ç H = arcsin, cos h sin A : cos æ èg6.6è Si noti che nell'inversione delle funzioni trigonometriche relative alla coordinata ciclica èh in questo casoè sorge sempre il problema della corretta determinazione del quadrante; questo eç uno motivi che inducono a preferire l'uso delle coordinate cartesiane, in modo da dover passare a coordinate polari solo alla æne del calcolo. Prendendo ad esempio le coordinate eclittiche, mostriamo in dettaglio come si opera a partire dalle componenti cartesiane x C, y C, z C. Detta è la lunghezza della proiezione del versore sul piano dell'eclittica, potremo scrivere q è = x 2 C + y2 C æ = arcsin z C è ç = arctg y C x C : Nella determinazione di ç il quadrante verraç poi æssato analizzando i segni di x C e y C. Negli altri casi si procede in modo analogo, facendo attenzione all'origine e al verso della coordinata ciclica: ad esempio, nelle coordinate orizzontali l'origine eç æssata a Nord èverso negativo del corrispondente asse xè e il verso eç orario. Le relazioni fondamentali della trigonometria sferica Invertendo l'ordine storico e la tradizione, possiamo usare le formule di trasformazione viste sopra, per es. quelle da altazimutali a equatoriali meridiane, per ricavare le relazioni base della trigonometria sferica. Consideriamo infatti la æg. G6í, dove sivedono: una stella S, lo zenit Z e il polo nord celeste P. Questi tre punti costituiscono il cosiddetto triangolo fondamentale. Nella ægura sono anche indicati i lati del triangolo èarchi della sfera celesteè e due degli angoli: come si puoç vedere, i lati sono rispettivamente i complementi ' 0, æ 0, h 0 della latitudine del luogo, della declinazione della stella e della sua altezza; l'angolo in Z vale A 0 =2ç,A, e quello in P coincide con H. G6í5

6 Tenendo conto di tutto cioç, le èg6.6è si scrivono: sin æ 0 cos H =, sin h 0 cos A 0 cos ' 0 + cos h 0 sin ' 0 sin æ 0 sin H = sin h 0 sin A 0 cos æ 0 = sin h 0 cos A 0 sin ' 0 + cos h 0 cos ' 0 : èg6.7è Ovviamente la validitaç delle èg6.7è non dipende dal signiæcato di lati e angoli come coordinate celesti; se quindi sostituiamo i nomi P, S, Z con dei generici A, B, C, designiamo i lati opposti con le corrispondenti lettere minuscole, e gli angoli con æ, æ, æ, otteniamo: N P ϕ δ O Z h S h M c S ^ P=H δ S sin c cos æ = cos a sin b, sin a cos b cos æ sin c sin æ = sin a sin æ cos c = cos a cos b + sin a sin b cos æ: èg6.8è Fig. G6- Le èg6.8è esprimono i tre teoremi base della trigonometria sferica: la prima eç il teorema delle proiezioni, la seconda il teorema dei seni e la terza il teorema del coseno. Non eç diæcile veriæcare che se a; b; c ç, ossia se il triangolo sferico puoç essere confuso con un triangolo piano, le èg6.8è divengono le omonime formule della trigonometria piana, il che giustiæca i nomi. E ç spesso utile avere presente il caso particolare di un triangolo rettangolo. Sia ad es. æ = ç=2 èæg. G6í2è: si ha allora sin c cos æ = cos a sin b sin c sin æ = sin a cos c = cos a cos b e dividendo la prima per la terza: a β c γ α b γ =π/2 tg b =tgccos æ èg6.9è mentre dividendo la seconda per la prima: Fig. G6-2 tg a = sin b tg æ: èg6.0è G6í6

1.1 Trasformazioni DI COORDINATE.

1.1 Trasformazioni DI COORDINATE. 1.1 Trasformazioni DI COORDINATE. Facendo passare per l'astro A il rispettivo verticale e il circolo orario otteniamo un triangolo sferico, detto triangolo di posizione. Detto triangolo ha per vertici

Dettagli

Geometria analitica del piano pag 32 Adolfo Scimone

Geometria analitica del piano pag 32 Adolfo Scimone Geometria analitica del piano pag 32 Adolfo Scimone CAMBIAMENTI DI SISTEMA DI RIFERIMENTO Consideriamo il piano cartesiano R 2 con un sistema di riferimento (O,U). Se introduciamo in R 2 un secondo sistema

Dettagli

La sfera celeste. Coordinate locali altazimutali Coordinate universali equatoriali

La sfera celeste. Coordinate locali altazimutali Coordinate universali equatoriali La sfera celeste Coordinate locali altazimutali Coordinate universali equatoriali Volta celeste Volta parte della sfera visibile al di sopra dell orizzonte celeste (intersezione del piano tangente all

Dettagli

SISTEMI DI COORDINATE SULLA SUPERFICIE SFERICA (di mortola carlo)

SISTEMI DI COORDINATE SULLA SUPERFICIE SFERICA (di mortola carlo) SISTEMI DI COORDINATE SULLA SUPERFICIE SFERICA (di mortola carlo) Per individuare univocamente un punto di una superficie sferica si possono utilizzare due sistemi di coordinate sferiche, e precisamente:

Dettagli

PREREQUISITI ASPETTI TEORICI

PREREQUISITI ASPETTI TEORICI .- 1 - PREREQUISITI ASPETTI TEORICI LA SFERA CELESTE ED I SUOI ELEMENTI VOLTA E SFERA CELESTE LE PRINCIPALI COORDINATE ASTRONOMICHE COORDINATE ORIZZONTALI E COORDINATE EQUATORIALI pag. 2 pag. 3 CORRISPONDENZA

Dettagli

sfera celeste e coordinate astronomiche

sfera celeste e coordinate astronomiche sfera celeste e coordinate astronomiche sfera celeste La sfera celeste appare come una grande sfera che ruota su se stessa, al cui centro sta la Terra immobile, e sulla cui superficie stanno le stelle

Dettagli

Le Coordinate Astronomiche

Le Coordinate Astronomiche Le Stelle vanno a scuola Le Coordinate Astronomiche Valentina Alberti Novembre 2003 1 2 INDICE Indice 1 Coordinate astronomiche 3 1.1 Sistema dell orizzonte o sistema altazimutale.......... 3 1.2 Sistema

Dettagli

Lo scopo del posizionamento

Lo scopo del posizionamento Lo scopo del posizionamento Stimare posizioni di punti con le osservazioni disponibili: il problema è intrinsecamente deficiente di rango per stimare posizioni è necessario vincolare i gradi di libertà

Dettagli

1. LA SFERA CELESTE I SUOI PUNTI E LINEE FONDAMENTALI.

1. LA SFERA CELESTE I SUOI PUNTI E LINEE FONDAMENTALI. 1. LA SFERA CELESTE I SUOI PUNTI E LINEE FONDAMENTALI. In una notte: di cielo sereno, se alziamo gli occhi in alto vediamo il cielo trapuntato di astri lucenti. Essi ci appaiano tutti alla stessa distanza,

Dettagli

misura. Adesso, ad un arbitrario punto P dello spazio associamo una terna di numeri reali x

misura. Adesso, ad un arbitrario punto P dello spazio associamo una terna di numeri reali x 4. Geometria di R 3. Questo paragrafo è molto simile al paragrafo : tratta infatti delle proprietà geometriche elementari dello spazio R 3. Per assegnare delle coordinate nello spazio, fissiamo innanzitutto

Dettagli

Elementi di Astronomia di posizione. Sabina Sabatini INAF Istituto di Astrofisica e Planetologia Spaziale

Elementi di Astronomia di posizione. Sabina Sabatini INAF Istituto di Astrofisica e Planetologia Spaziale Elementi di Astronomia di posizione Sabina Sabatini INAF Istituto di Astrofisica e Planetologia Spaziale sabina.sabatini@iaps.inaf.it 5 Febbraio 2016 Le coordinate astronomiche Definiscono le posizioni

Dettagli

Corso di Fisica. Lezione 2 Scalari e vettori Parte 1

Corso di Fisica. Lezione 2 Scalari e vettori Parte 1 Corso di Fisica Lezione 2 Scalari e vettori Parte 1 Scalari e vettori Consideriamo una libreria. Per determinare quanti libri ci sono su uno scaffale basta individuare lo scaffale in questione e contare

Dettagli

How to compute the sun vector for path planning

How to compute the sun vector for path planning How to compute the sun vector for path planning 1 Calcolo dell illuminazione delle celle solari Si consideri la Fig. 1. Il rover si sposta sulla mappa, variando nel tempo la sua posizione p = ( x y z )

Dettagli

3. Le coordinate geografiche: latitudine e longitudine

3. Le coordinate geografiche: latitudine e longitudine Introduzione 3. Le coordinate geografiche: latitudine e longitudine Ogni volta che vogliamo individuare un punto sulla superficie terrestre gli associamo due numeri, le coordinate geografiche: la latitudine

Dettagli

Punti nel piano cartesiano

Punti nel piano cartesiano Punti nel piano cartesiano In un piano consideriamo due rette perpendicolari che chiamiamo x e. Solitamente, disegniamo la retta x (ascisse) orizzontalmente e orientata da sinistra a destra, la retta e

Dettagli

TRIGONOMETRIA E COORDINATE

TRIGONOMETRIA E COORDINATE Y Y () X O (Y Y ) - α X (X X ) 200 c TRIGONOMETRI E OORDINTE ngoli e sistemi di misura angolare Funzioni trigonometriche Risoluzione dei triangoli rettangoli Risoluzione dei poligoni Risoluzione dei triangoli

Dettagli

Sfera Celeste e Coordinate Astronomiche. A. Stabile Dipartimento di Ingegneria Università degli Studi del Sannio Benevento Atripalda, 9 Maggio 2011

Sfera Celeste e Coordinate Astronomiche. A. Stabile Dipartimento di Ingegneria Università degli Studi del Sannio Benevento Atripalda, 9 Maggio 2011 Astronomiche A. Stabile Dipartimento di Ingegneria Università degli Studi del Sannio Benevento Atripalda, 9 Maggio 2011 Unità di lunghezza e distanze tipiche 1. Sistema Solare: 1 UA = 149,5 milioni di

Dettagli

ˆ b, si usa la convenzione di prendere. come verso positivo quello antiorario e come verso negativo quello orario.

ˆ b, si usa la convenzione di prendere. come verso positivo quello antiorario e come verso negativo quello orario. Capitolo 4 Le rotazioni 4.1 Richiami di teoria E' opportuno ricordare che, dato un angolo orientato ao ˆ b, si usa la convenzione di prendere come verso positivo quello antiorario e come verso negativo

Dettagli

Prodotto scalare e prodotto vettoriale. Elisabetta Colombo

Prodotto scalare e prodotto vettoriale. Elisabetta Colombo Corso di Approfondimenti di Matematica Biotecnologie, Anno Accademico 2010-2011, http://users.mat.unimi.it/users/colombo/programmabio.html Vettori Vettori 1 2 3 4 di di Ricordiamo il in R n Dati a = (a

Dettagli

Vettori e geometria analitica in R 3 1 / 25

Vettori e geometria analitica in R 3 1 / 25 Vettori e geometria analitica in R 3 1 / 25 Sistemi di riferimento in R 3 e vettori 2 / 25 In fisica, grandezze fondamentali come forze, velocità, campi elettrici e magnetici vengono convenientemente descritte

Dettagli

CORSO DI TECNOLOGIE E TECNICHE DI RAPPRESENTAZIONI GRAFICHE

CORSO DI TECNOLOGIE E TECNICHE DI RAPPRESENTAZIONI GRAFICHE CORSO DI TECNOLOGIE E TECNICHE DI RARESENTAZIONI GRAFICHE ER L ISTITUTO TECNICO SETTORE TECNOLOGICO Agraria, Agroalimentare e Agroindustria classe seconda ARTE RIMA Disegno del rilievo Unità Didattica:

Dettagli

1 I solidi a superficie curva

1 I solidi a superficie curva 1 I solidi a superficie curva PROPRIETÀ. Un punto che ruota attorno ad un asse determina una circonferenza. PROPRIETÀ. Una linea, un segmento o una retta che ruotano attorno ad un asse determinano una

Dettagli

PIANO CARTESIANO. NB: attenzione ai punti con una coordinata nulla: si trovano sugli assi

PIANO CARTESIANO. NB: attenzione ai punti con una coordinata nulla: si trovano sugli assi PIANO CARTESIANO Il piano cartesiano è individuato da due rette perpendicolari (ortogonali) che si incontrano in un punto O detto origine del piano cartesiano. Si fissa sulla retta orizzontale il verso

Dettagli

Ricordiamo brevemente come possono essere rappresentate le rette nel piano: 1) mediante un'equazione cartesiana. = ( p 1

Ricordiamo brevemente come possono essere rappresentate le rette nel piano: 1) mediante un'equazione cartesiana. = ( p 1 Introduzione Nella computer grafica, gli oggetti geometrici sono definiti a partire da un certo numero di elementi di base chiamati primitive grafiche Possono essere punti, rette e segmenti, curve, superfici

Dettagli

1 Sistemi di riferimento

1 Sistemi di riferimento Università di Bologna - Corsi di Laurea Triennale in Ingegneria, II Facoltà - Cesena Esercitazioni del corso di Fisica Generale L-A Anno accademico 2006-2007 1 Sistemi di riferimento Le grandezze usate

Dettagli

Meccanica. 5. Moti Relativi. Domenico Galli. Dipartimento di Fisica e Astronomia

Meccanica. 5. Moti Relativi.  Domenico Galli. Dipartimento di Fisica e Astronomia Meccanica 5. Moti Relativi http://campus.cib.unibo.it/2423/ Domenico Galli Dipartimento di Fisica e Astronomia 22 febbraio 2017 Traccia 1. Cambiamento del Sistema di Riferimento 2. Trasformazione del Vettore

Dettagli

Principi di trigonometria sferica

Principi di trigonometria sferica Appendice B Principi di trigonometria sferica B.1 La Sfera Celeste Per determinare la posizione di un astro in cielo in un certo istante si ricorre alla proiezione di questo su un ideale Sfera Celeste

Dettagli

che ci permette di passare da un sistema di misura all'altro con le:

che ci permette di passare da un sistema di misura all'altro con le: Goniometria Misura degli angoli Gli angoli vengono spesso misurati in gradi sessagesimali (1 = 1/360 dell'angolo giro), anche se una Legge dello Stato italiano del 1960 impone di esprimerli in radianti.

Dettagli

( ρ, θ + π ) sono le coordinate dello stesso punto. Pertanto un punto P può essere descritto come

( ρ, θ + π ) sono le coordinate dello stesso punto. Pertanto un punto P può essere descritto come Coordinate polari Il sistema delle coordinate cartesiane è uno dei possibili sistemi per individuare la posizione di un punto del piano, relativamente ad un punto fisso O, mediante una coppia ordinata

Dettagli

x 1 Fig.1 Il punto P = P =

x 1 Fig.1 Il punto P = P = Geometria di R 2 In questo paragrafo discutiamo le proprietà geometriche elementari del piano Per avere a disposizione delle coordinate nel piano, fissiamo un punto, che chiamiamo l origine Scegliamo poi

Dettagli

Corso di Analisi: Algebra di Base. 7^ Lezione

Corso di Analisi: Algebra di Base. 7^ Lezione Corso di Analisi: Algebra di Base 7^ Lezione Goniometria.Elementi di trigonometria piana. Unità di misura degli angoli. Misura di angoli orientati. Circonferenza goniometrica. Angoli e archi noti. Le funzioni,

Dettagli

Geometria analitica del piano pag 12 Adolfo Scimone

Geometria analitica del piano pag 12 Adolfo Scimone Geometria analitica del piano pag 12 Adolfo Scimone Fasci di rette Siano r e r' due rette distinte di equazioni r: ax + by + c r': a' x + b' y + c' Consideriamo la retta combinazione lineare delle due

Dettagli

Risoluzione dei triangoli rettangoli

Risoluzione dei triangoli rettangoli Risoluzione dei triangoli rettangoli In questa dispensa esamineremo il problema della risoluzione dei triangoli rettangoli. Riprendendo la definizione di seno e coseno, mostreremo come questi si possano

Dettagli

Funzioni goniometriche

Funzioni goniometriche Funzioni goniometriche In questa dispensa vengono introdotte le definizioni delle funzioni goniometriche. Preliminarmente si introducono le convenzioni sull orientazione degli angoli e sulla loro rappresentazione

Dettagli

3. Coordinate omogenee e trasformazioni dello spazio

3. Coordinate omogenee e trasformazioni dello spazio 3. Coordinate omogenee e trasformazioni dello spazio Passiamo ora a considerare le trasformazioni dello spazio tridimensionale. Lo spazio sarà identificato, mediante l'introduzione di un sistema di riferimento

Dettagli

NAVIGAZIONE ASTRONOMICA. Circolo Astrofili di Mestre Guido Ruggieri

NAVIGAZIONE ASTRONOMICA. Circolo Astrofili di Mestre Guido Ruggieri 3 Novembre 2008, ore 21:00 Introduzione. Orientamento sulla Terra. Coordinate orizzontali degli astri, azimuth e altezza. Coordinate equatoriali degli astri, Ascensione Retta e Declinazione. 17 Novembre

Dettagli

Calcolo dell altezza di un rilievo lunare: l esempio di Arzachel

Calcolo dell altezza di un rilievo lunare: l esempio di Arzachel Calcolo dell altezza di un rilievo lunare: l esempio di Arzachel Lo scopo della suddetta esperienza è il calcolo dell altezza di un particolare rilievo lunare, scelto appositamente per la conformazione

Dettagli

Lezione 2 Richiami sui sistemi di riferimento Richiami di trigonometria Vettori Calcolo vettoriale

Lezione 2 Richiami sui sistemi di riferimento Richiami di trigonometria Vettori Calcolo vettoriale Dr. Andrea Malizia Prof. Maria Guerrisi 1 Richiami sui sistemi di riferimento Richiami di trigonometria Vettori Calcolo vettoriale Sistemi di riferimento e spostamento 2 Sistemi di riferimento e spostamento

Dettagli

Scopo della trigonometria è la risoluzione di un triangolo a partire da un numero minimo di informazioni sul triangolo steso che come sappiamo è 3.

Scopo della trigonometria è la risoluzione di un triangolo a partire da un numero minimo di informazioni sul triangolo steso che come sappiamo è 3. MODULO 3 LEZIONE 3 parte 2 Trigonometria: La risoluzione dei triangoli. Scopo della trigonometria è la risoluzione di un triangolo a partire da un numero minimo di informazioni sul triangolo steso che

Dettagli

2. Coordinate omogenee e trasformazioni del piano

2. Coordinate omogenee e trasformazioni del piano . Coordinate omogenee e trasformazioni del piano Nella prima sezione si è visto come la composizione di applicazioni lineari e di traslazioni porta ad una scomoda combinazione di prodotti matriciali e

Dettagli

1 Cambiamenti di riferimento nel piano

1 Cambiamenti di riferimento nel piano 1 Cambiamenti di riferimento nel piano Siano date due basi ortonormali ordinate di V : B = ( i, j) e B = ( i, j ) e supponiamo che i = a i + b j j = c i + d j allora per un generico vettore v V abbiamo

Dettagli

PROGRAMMA 30/05/2012. Laurea triennale in Fisica a.a Lezioni teoriche: 39 ore. Attività presso l Osservatorio Astronomico: 8 ore CFU = 6

PROGRAMMA 30/05/2012. Laurea triennale in Fisica a.a Lezioni teoriche: 39 ore. Attività presso l Osservatorio Astronomico: 8 ore CFU = 6 Laurea triennale in Fisica a.a. 2011-2012 CORSO DI ASTRONOMIA Prof. Angelo Angeletti PROGRAMMA Lezioni teoriche: 39 ore Attività presso l Osservatorio Astronomico: 8 ore CFU = 6 1 PROGRAMMA Lezioni teoriche

Dettagli

ANGOLI E DISTANZE. Capitolo GENERALITÀ

ANGOLI E DISTANZE. Capitolo GENERALITÀ Capitolo 3 NGOLI E DISTNZE 3.0 GENERLITÀ Come si é già accennato, in Topografia, la descrizione del territorio sulla carta avviene mediante la proiezione ortogonale dei punti caratteristici della superficie

Dettagli

VETTORI E SCALARI DEFINIZIONI. Si definisce scalare una grandezza definita interamente da un solo numero, affiancato dalla sua unità di misura.

VETTORI E SCALARI DEFINIZIONI. Si definisce scalare una grandezza definita interamente da un solo numero, affiancato dalla sua unità di misura. VETTORI E SCALARI DEFINIZIONI Si definisce scalare una grandezza definita interamente da un solo numero, affiancato dalla sua unità di misura. Un vettore è invece una grandezza caratterizzata da 3 entità:

Dettagli

LABORATORIO DI MATEMATICA: COORDINATE POLARI ESTENSIONE DELLE FUNZIONI TRIGONOMETRICHE

LABORATORIO DI MATEMATICA: COORDINATE POLARI ESTENSIONE DELLE FUNZIONI TRIGONOMETRICHE LABORATORIO DI MATEMATICA: COORDINATE POLARI ESTENSIONE DELLE FUNZIONI TRIGONOMETRICHE Uno strumento, che ci suggerisce come ampliare le nostre conoscenze, è il radar, strumento fondamentale nella navigazione

Dettagli

Un punto del piano può essere individuato dalle sue coordinate cartesiane o anche dalle sue coordinate polari:

Un punto del piano può essere individuato dalle sue coordinate cartesiane o anche dalle sue coordinate polari: Un punto del piano può essere individuato dalle sue coordinate cartesiane o anche dalle sue coordinate polari: Figura 1 Per passare da coordinate polari a quelle cartesiane usiamo { x = r cos θ y = r sin

Dettagli

1 Distanza di un punto da una retta (nel piano)

1 Distanza di un punto da una retta (nel piano) Esercizi 26/10/2007 1 Distanza di un punto da una retta (nel piano) Sia r = {ax + by + c = 0} una retta. Sia P = (p 1, p 2 ) R 2 un punto che non sta sulla retta r. Vogliamo vedere se si può parlare di

Dettagli

CAPITOLO 1. Archi e Angoli. 1. Gradi sessaggesimali. 2. Angoli radianti. 3. Formule di trasformazione

CAPITOLO 1. Archi e Angoli. 1. Gradi sessaggesimali. 2. Angoli radianti. 3. Formule di trasformazione TRIGONOMETRIA CAPITOLO 1 Archi e Angoli 1. Gradi sessaggesimali La misura dell'ampiezza di un angolo è ottenuta solitamente ponendo l'ampiezza di un angolo giro uguale a 360, e quindi l'unità, 1 grado,

Dettagli

LA GEOMETRIA CON L EQ. PARAMETRICA DI VAG La Retta Cap. II Pag. 1

LA GEOMETRIA CON L EQ. PARAMETRICA DI VAG La Retta Cap. II Pag. 1 II. LA RETTA La Retta Cap. II Pag. 1 LA RETTA In un riferimento cartesiano ortogonale una qualunque retta si può orientare stabilendo la sua direzione e verso, secondo l angolo che essa forma con il verso

Dettagli

Prodotto scalare e norma

Prodotto scalare e norma Capitolo 7 Prodotto scalare e norma Riprendiamo ora lo studio dei vettori da un punto di vista più geometrico. È noto, per esempio dalla Fisica, che spesso è comodo visualizzare un vettore del piano o

Dettagli

La correzione dell amplitudine per il lembo superiore del Sole

La correzione dell amplitudine per il lembo superiore del Sole La correzione dell amplitudine per il lembo superiore del Sole di Antonio Adduci docente di Scienze della navigazione presso l ITTL C. Colombo di Camogli anno 2016 Generalità Com è noto l osservazione

Dettagli

sen ; e sul teorema del coseno. 2

sen ; e sul teorema del coseno. 2 Esercizi sul grafico di funzioni: Lunghezza di una corda ( ) sen e sul teorema del coseno Esercizi sulla equazione della circonferenza centrata in un generico punto (, ) R Il prodotto di una funzione pari

Dettagli

L Astrolabio. di Alberto Nicelli. GAE Gruppo Astrofili Eporediesi

L Astrolabio. di Alberto Nicelli. GAE Gruppo Astrofili Eporediesi L Astrolabio di Alberto Nicelli GAE Gruppo Astrofili Eporediesi L Astrolabio (vedi kit allegato) è così costituito: Il Piatto, che riproduce in proiezione stereografica: o l Orizzonte Locale, relativo

Dettagli

Esercizi di Elementi di Matematica Corso di laurea in Farmacia

Esercizi di Elementi di Matematica Corso di laurea in Farmacia Esercizi di Elementi di Matematica Corso di laurea in Farmacia dott.ssa Marilena Ligabò November 24, 2015 1 Esercizi sulla notazione scientifica Esercizio 1.1. Eseguire il seguente calcolo utilizzando

Dettagli

Vettori applicati. Capitolo Richiami teorici. Definizione 1.1 Un sistema di vettori applicati Σ è un insieme

Vettori applicati. Capitolo Richiami teorici. Definizione 1.1 Un sistema di vettori applicati Σ è un insieme Capitolo 1 Vettori applicati 1.1 Richiami teorici Definizione 1.1 Un sistema di vettori applicati Σ è un insieme {(P i,v i ), P i E, v i V, i = 1,...,N}, (1.1) dove P i è detto punto di applicazione del

Dettagli

GEOMETRIA ANALITICA. Il Piano cartesiano

GEOMETRIA ANALITICA. Il Piano cartesiano GEOMETRIA ANALITICA La geometria analitica consente di studiare e rappresentare per via algebrica informazioni di tipo geometrico. Lo studio favorisce una più immediata visualizzazione di informazioni,

Dettagli

LEZIONE 8. k e w = wx ı + w y j + w z. k di R 3 definiamo prodotto scalare di v e w il numero

LEZIONE 8. k e w = wx ı + w y j + w z. k di R 3 definiamo prodotto scalare di v e w il numero LEZINE 8 8.1. Prodotto scalare. Dati i vettori geometrici v = v x ı + v y j + v z k e w = wx ı + j + k di R 3 definiamo prodotto scalare di v e w il numero v, w = ( v x v y v z ) w x = v x + v y + v z.

Dettagli

Fissiamo nel piano un sistema di riferimento cartesiano ortogonale O, x, y, u.

Fissiamo nel piano un sistema di riferimento cartesiano ortogonale O, x, y, u. Fissiamo nel piano un sistema di riferimento cartesiano ortogonale O, x, y, u. Definizione Una conica è il luogo dei punti, propri o impropri, reali o immaginari, che con le loro coordinate omogenee (x,

Dettagli

fenomeni celesti quali appaiono dalla Terra èpunto di vista geocentricoè eç prevalsa

fenomeni celesti quali appaiono dalla Terra èpunto di vista geocentricoè eç prevalsa G1. La sfera celeste Il moto diurno Com'eç noto, l'astronomia eç la piuç antica delle scienze. La descrizione dei fenomeni celesti quali appaiono dalla Terra èpunto di vista geocentricoè eç prevalsa æno

Dettagli

TRIGONOMETRIA. Un angolo si misura in gradi. Un grado è la novantesima parte di un angolo retto.

TRIGONOMETRIA. Un angolo si misura in gradi. Un grado è la novantesima parte di un angolo retto. TRIGONOMETRIA DA RICORDARE: Due angoli si dicono supplementari quando la loro somma è pari a 80 Due angoli si dicono complementari quando la loro somma è pari a 90 Due angoli si dicono opposti quando la

Dettagli

Grandezze geometriche e fisiche. In topografia si studiano le grandezze geometriche: superfici angoli

Grandezze geometriche e fisiche. In topografia si studiano le grandezze geometriche: superfici angoli Topografia la scienza che studia i mezzi e i procedimenti operativi per il rilevamento e la rappresentazione grafica, su superficie piana (un foglio di carta) di una porzione limitata di terreno.... è

Dettagli

e la lunghezza della proiezione del vettore B sul vettore A. s = A B =A b

e la lunghezza della proiezione del vettore B sul vettore A. s = A B =A b 8) Prodotto scalare o prodotto interno Si definisce prodotto scalare s di due vettori A e B, l area del rettangolo che ha per lati il modulo del vettore A e la lunghezza della proiezione del vettore B

Dettagli

Calcolo vettoriale. Versore: vettore u adimensionale di modulo unitario (rapporto tra un vettore e il suo modulo)

Calcolo vettoriale. Versore: vettore u adimensionale di modulo unitario (rapporto tra un vettore e il suo modulo) Grandezze scalari: caratterizzate da un valore numerico in una unità di misura scelta (ex: massa, temperatura, ecc) Grandezze vettoriali: oltre al valore numerico necessitano della definizione di una direzione

Dettagli

Determinazione degli Elementi Orbitali di un Corpo Celeste noti i Vettori r e V all istante t. Giuseppe Matarazzo

Determinazione degli Elementi Orbitali di un Corpo Celeste noti i Vettori r e V all istante t. Giuseppe Matarazzo Determinazione degli Elementi Orbitali di un Corpo Celeste noti i Vettori r e V all istante t Giuseppe Matarazzo Febbraio 2003 Dicembre 2008 2 I vettori Posizione e Velocità I vettori r, V assegnati La

Dettagli

Robotica I. M. Gabiccini

Robotica I. M. Gabiccini Descrizione i dei moti rigidi idi Robotica I M. Gabiccini AA A.A. 2009/2010 LS Ing. Meccanica ed Automazione Descrizione di moti rigidi Consideriamo uno spazio a 3 dimensioni Euclideo, cioè lo spazio delle

Dettagli

R. Capone Analisi Matematica Integrali multipli

R. Capone Analisi Matematica Integrali multipli Integrali multipli Consideriamo, inizialmente il caso degli integrali doppi. Il concetto di integrale doppio è l estensione della definizione di integrale per una funzione reale di una variabile reale

Dettagli

COORDINATE. DOWNLOAD Il pdf di questa lezione (0227a.pdf) è scaricabile dal sito calvini/scamb/ 27/02/2012

COORDINATE. DOWNLOAD Il pdf di questa lezione (0227a.pdf) è scaricabile dal sito  calvini/scamb/ 27/02/2012 COORDINATE DOWNLOAD Il pdf di questa lezione (0227a.pdf) è scaricabile dal sito http://www.ge.infn.it/ calvini/scamb/ 27/02/2012 LIBRO DI TESTO CONSIGLIATO D. Halliday, R. Resnick, J. Walker FONDAMENTI

Dettagli

1 Geometria analitica nel piano

1 Geometria analitica nel piano Lezioni di Geometria a.a. 2007-2008 cdl SIE prof. C. Franchetti 1 Geometria analitica nel piano 1.1 Distanza di due punti Siano P 1 = (x 1, y 1 ), P 2 = (x 2, y 2 ) due punti del piano, se d(p 1, P 2 )

Dettagli

Corso di Geometria BIAR, BSIR Esercizi 10: soluzioni

Corso di Geometria BIAR, BSIR Esercizi 10: soluzioni Corso di Geometria 2010-11 BIAR, BSIR Esercizi 10: soluzioni 1 Geometria dello spazio Esercizio 1. Dato il punto P 0 = ( 1, 0, 1) e il piano π : x + y + z 2 = 0, determinare: a) Le equazioni parametriche

Dettagli

Funzioni goniometriche di angoli notevoli

Funzioni goniometriche di angoli notevoli Funzioni goniometriche di angoli notevoli In questa dispensa calcoleremo il valore delle funzioni goniometriche per gli angoli notevoli di 30, 45 e 60. Dopo aver richiamato il concetto di sezione aurea

Dettagli

Grandezze scalari e vettoriali

Grandezze scalari e vettoriali VETTORI Grandezze scalari e vettoriali Tra le grandezze misurabili alcune sono completamente definite da un numero e da un unità di misura, altre invece sono completamente definite solo quando, oltre ad

Dettagli

Istituzioni di Matematiche Modulo B (SG)

Istituzioni di Matematiche Modulo B (SG) Istituzioni di Matematiche Modulo B (SG) II foglio di esercizi ESERCIZIO 1. Per ciascuna funzione f(, ) calcolare le derivate parziali f (, ) e f (, ) e determinare il relativo dominio di definizione.

Dettagli

Problemi sulla circonferenza verso l esame di stato

Problemi sulla circonferenza verso l esame di stato Problemi sulla circonferenza verso l esame di stato * * * n. 0 pag. 06 a) Scrivi l equazione della circonferenza γ 1 di centro P ; ) e passante per il punto A0; 1). b) Scrivi l equazione della circonferenza

Dettagli

Risoluzioni di alcuni esercizi

Risoluzioni di alcuni esercizi Risoluzioni di alcuni esercizi Reti topografiche, trasformazioni di coordinate piane In una poligonale piana il punto è nell origine delle coordinate, l angolo (in verso orario fra il semiasse positivo

Dettagli

LE MATRICI NEL PIANO

LE MATRICI NEL PIANO LE MATRICI NEL PIANO A cura di Buon Laura, Carniel Chiara, Lucchetta Jessica, Spadetto Luca Realizzato nell'ambito del Progetto Archimede con la supervisione del Prof FZampieri ISISS MCasagrande, Pieve

Dettagli

Condizione di allineamento di tre punti

Condizione di allineamento di tre punti LA RETTA L equazione lineare in x e y L equazione: 0 con,,, e non contemporaneamente nulli, si dice equazione lineare nelle due variabili e. Ogni coppia ; tale che: 0 si dice soluzione dell equazione.

Dettagli

C C B B. Fig. C4.1 Isometria.

C C B B. Fig. C4.1 Isometria. 4. Isometrie 4.1 Definizione di isometria Date due figure congruenti è possibile passare da una all altra con una trasformazione. Una trasformazione geometrica in un piano è una funzione biunivoca che

Dettagli

Appunti di Trigonometria per il corso di Matematica di base

Appunti di Trigonometria per il corso di Matematica di base Appunti di Trigonometria per il corso di Matematica di base di Giovanna Neve Diploma accademico di primo livello per il corso di Tecnico di Sala di Registrazione Conservatorio C. Pollini Padova Indice

Dettagli

Stabilire se il punto di coordinate (1,1) appartiene alla circonferenza centrata nell origine e di raggio 1.

Stabilire se il punto di coordinate (1,1) appartiene alla circonferenza centrata nell origine e di raggio 1. Definizione di circonferenza e cerchio. Equazione della circonferenza centrata in O e di raggio R. Esercizi. La circonferenza e il cerchio Definizioni: dato un punto C nel piano cartesiano e dato un numero

Dettagli

Distanza tra punti e punto medio di un segmento. x1 + x 2

Distanza tra punti e punto medio di un segmento. x1 + x 2 Distanza tra punti e punto medio di un segmento Siano P = (x 1, y 1 ) e Q = (x 2, y 2 ) due punti del piano cartesiano. La distanza di P da Q vale: P Q = (x 1 x 2 ) 2 + (y 1 y 2 ) 2 (si utilizza il Teorema

Dettagli

La matematica del CAD. Vettori e Matrici

La matematica del CAD. Vettori e Matrici La matematica del CAD Vettori e Matrici IUAV Disegno Digitale Camillo Trevisan I programmi CAD riducono tutti i problemi geometrici in problemi analitici: la proiezione di un punto su un piano viene, ad

Dettagli

Kangourou della Matematica 2012 finale nazionale italiana Mirabilandia, 7 maggio 2012

Kangourou della Matematica 2012 finale nazionale italiana Mirabilandia, 7 maggio 2012 Kangourou della Matematica 2012 finale nazionale italiana Mirabilandia, 7 maggio 2012 LIVELLO STUDENT S1. (5 punti ) Assegnati tre punti non allineati nello spazio, quante sfere passano per questi tre

Dettagli

Lezione 6 Richiami di Geometria Analitica

Lezione 6 Richiami di Geometria Analitica 1 Piano cartesiano Lezione 6 Richiami di Geometria Analitica Consideriamo nel piano due rette perpendicolari che si intersecano in un punto O Consideriamo ciascuna di queste rette come retta orientata

Dettagli

y 5z = 7 y +8z = 10 +3z = 3

y 5z = 7 y +8z = 10 +3z = 3 Sistemi lineari Sistemi lineari in tre incognite; esempi tipici Tre equazioni incognite x, y, z Consideriamo il seguente sistema di tre equazioni lineari nelle tre x 2y +6z = 11 x +3y 11z = 18 2x 5y +20z

Dettagli

TRIGONOMETRIA E RISOLUZIONE DI TRIANGOLI

TRIGONOMETRIA E RISOLUZIONE DI TRIANGOLI TRIGONOMETRIA E RISOLUZIONE DI TRIANGOLI I 3 lati ed i 3 lati di un triangolo si dicono ELEMENTI del triangolo (e ricordiamo che un lato ed un angolo si dicono opposti quando il vertice di un angolo non

Dettagli

Verifica di Topografia

Verifica di Topografia ISTITUTO TECNICO STATALE COMMERCIALE E PER GEOMETRI " In Memoria dei Morti per la Patria " * CHIAVARI * ANNO SCOLASTICO 2010-2011 Verifica di Topografia classe 3^ Geometri 1) In un appezzamento a forma

Dettagli

29/10/2017. luminescenza.

29/10/2017. luminescenza. Orientarsi significa determinare la propria posizione rispetto a dei punti di riferimento. In passato il riferimento era il punto da cui sorge il sole (dal latino oriri, sorgere). Per orientarsi la prima

Dettagli

, c di modulo uguale sono disposti in modo da formare un triangolo equilatero come mostrato in fig. 15. Si chiarisca quanto vale l angolo formato da

, c di modulo uguale sono disposti in modo da formare un triangolo equilatero come mostrato in fig. 15. Si chiarisca quanto vale l angolo formato da 22 Tonzig Fondamenti di Meccanica classica ta) Un esempio di terna destra è la terna cartesiana x, y, z [34] Per il prodotto vettoriale vale la proprietà distributiva: a ( b c) = a b a c, ma non vale la

Dettagli

FORMULARIO DEI TRIANGOLI

FORMULARIO DEI TRIANGOLI RISOLUZIONE TRIANGOLI GENERICI Pagina 1 di 15 FORMULARIO DEI TRIANGOLI Teorema di Pitagora OP= 1 PP = sen OP = cos QQ = tan = Definizione seno Definizione coseno Definizione tangente TT = cotan = Consideriano

Dettagli

Trigonometria angoli e misure

Trigonometria angoli e misure Trigonometria angoli e misure ITIS Feltrinelli anno scolastico 27-28 R. Folgieri 27-28 1 Angoli e gradi Due semirette che condividono la stessa origine danno luogo ad un angolo. Le due semirette (che si

Dettagli

Risolvere i seguenti esercizi (le soluzioni sono alla fine di tutti gli esercizi).

Risolvere i seguenti esercizi (le soluzioni sono alla fine di tutti gli esercizi). La geometria analitica nello spazio: punti, vettori, rette e piani esercizi 1 prof D Benetti Risolvere i seguenti esercizi (le soluzioni sono alla fine di tutti gli esercizi) Esercizio 1 Determina due

Dettagli

Triangolo rettangolo

Triangolo rettangolo Dato il triangolo rettangolo Possiamo perciò utilizzare angoli). Progetto Matematica in Rete Triangolo rettangolo OPA sappiamo che: PA cateto senα OP OA cateto cos α OP PA cateto tgα OA cateto opposto

Dettagli

1 La traslazione. 2 La composizione di traslazioni. 3 La rotazione

1 La traslazione. 2 La composizione di traslazioni. 3 La rotazione 1 La traslazione Per poter applicare una traslazione ad una generica figura geometrica si deve: ± creare il vettore di traslazione AB mediante il comando Vettore tra due punti; ± cliccare con il mouse

Dettagli

ax 1 + bx 2 + c = 0, r : 2x 1 3x 2 + 1 = 0.

ax 1 + bx 2 + c = 0, r : 2x 1 3x 2 + 1 = 0. . Rette in R ; circonferenze. In questo paragrafo studiamo le rette e le circonferenze in R. Ci sono due modi per descrivere una retta in R : mediante una equazione cartesiana oppure mediante una equazione

Dettagli

Argomenti Capitolo 1 Richiami

Argomenti Capitolo 1 Richiami Argomenti Capitolo 1 Richiami L insieme dei numeri reali R si rappresenta geometricamente con l insieme dei punti di una retta orientata su cui sia stato fissato un punto 0 e un segmento unitario. L insieme

Dettagli

LEZIONE 23. ax 2 + bxy + cy 2 + dx + ey + f

LEZIONE 23. ax 2 + bxy + cy 2 + dx + ey + f LEZIONE 23 23.1. Riduzione delle coniche a forma canonica. Fissiamo nel piano un sistema di riferimento Oxy e consideriamo un polinomio di grado 2 in x, y a meno di costanti moltiplicative non nulle, diciamo

Dettagli

ANGOLI. ANGOLO OTTUSO ( β > 90 ) ANGOLO ACUTO ( β < 90 )

ANGOLI. ANGOLO OTTUSO ( β > 90 ) ANGOLO ACUTO ( β < 90 ) ANGOLI Angolo è ciascuna delle due parti nelle quali un piano viene diviso da due semirette aventi la stessa origine. Le due semirette sono dette lati dei due angoli e l'origine comune il loro vertice.

Dettagli

Svolgimento prova di esame anno 2004

Svolgimento prova di esame anno 2004 Svolgimento prova di esame anno 2004 Calcolo delle coordinate cartesiane (x,y) dei punti del rilievo rispetto a sistema di riferimento locale avente origine nella stazione 100 In prima analisi occorre

Dettagli

UNIVERSITA' DEGLI STUDI DI CATANIA Facoltà di Scienze Matematiche, Fisiche, Naturali Corso di Laurea Specialistica in Fisica

UNIVERSITA' DEGLI STUDI DI CATANIA Facoltà di Scienze Matematiche, Fisiche, Naturali Corso di Laurea Specialistica in Fisica UNIVERSITA' DEGLI STUDI DI CATANIA Facoltà di Scienze Matematiche, Fisiche, Naturali Corso di Laurea Specialistica in Fisica CURRICULUM ASTROFISICA E FISICA DELLO SPAZIO Anno Accademico 2011-2012 PROGRAMMA

Dettagli

(x B x A, y B y A ) = (4, 2) ha modulo

(x B x A, y B y A ) = (4, 2) ha modulo GEOMETRIA PIANA 1. Esercizi Esercizio 1. Dati i punti A(0, 4), e B(4, ) trovarne la distanza e trovare poi i punti C allineati con A e con B che verificano: (1) AC = CB (punto medio del segmento AB); ()

Dettagli