Il problema di Dirichlet

Documenti analoghi
Funzione derivabile. La derivata.

Generalizzazioni del Teorema di Weierstrass

Il Teorema di Mountain-Pass

Il metodo diretto del Calcolo delle Variazioni

CORSO DI ANALISI MATEMATICA 2 SOLUZIONI ESERCIZI PROPOSTI 18/03/2013

1 x2 (u (x)) 2 dx in X = {u C 1 ([ 1, 1]) : u( 1) = 1, u(1) = 1} (esempio di Weierstrass). Non-esistenza del minimo (e del massimo): F (u) = 1 1

ANALISI DI FOURIER. 2πk. è periodica di periodo T. Più precisamente, essendo. T x + 2π = cos. s(x) = s x + T ) T +α. f(x) dx

PROGRAMMA DEL CORSO DI ANALISI (CANALE PF-Z) (versione del 18/01/2014)

Studio qualitativo. Emanuele Paolini 2 luglio 2002

non solo otteniamo il valore cercato per la validità della (1.4), ma anche che tale valore non dipende da

Definizione 1.1. Dato un insieme non vuoto X, si dice distanza una funzione d : X X R tale che

5.3 Alcune classi di funzioni integrabili

1 x2 (u (x)) 2 dx in X = {u C 1 ([ 1, 1]) : u( 1) = 1, u(1) = 1} (esempio di Weierstrass). Non-esistenza del minimo (e del massimo): F (u) = 1 1

ANALISI 1 - Teoremi e dimostrazioni vari

Facoltà di Scienze MFN, Università di Cagliari Analisi Matematica 1 (Informatica), a.a. 2007/08. Insiemi numerici: sup A, inf A

Analisi II. Foglio di esercizi n.1 26/9/2018

Definizione (Derivata come limite del rapporto incrementale) Se esiste finito (cioè, non + o ) il limite del rapporto incrementale

SPAZI METRICI COMPLETI

Esonero di Analisi Matematica II (A)

Analisi 2. Roberto Monti. Appunti del Corso - Versione 5 Ottobre 2012

I teoremi della funzione inversa e della funzione implicita

Analisi IV - esercizi. G.P.Leonardi 2008

Canale Basile - Programma completo

Si dimostri che la (*) possiede un unica soluzione (u n ) limitata.

SPAZI COMPATTI. Proposizione 2 Sia (X, d) uno spazio metrico. Se esso è sequenzialmente compatto allora è completo.

3. Successioni di insiemi.

ANALISI UNO (A.A. 2008/2009, Docente: S. Finzi Vita) Programma svolto settimanalmente

Calcolo differenziale II

ENDOMORFISMI. NOTE DI ALGEBRA LINEARE

NOTE SULLE FUNZIONI CONVESSE DI UNA VARIABILE REALE

Soluzione della Prova Scritta di Analisi Matematica 4-25/06/13. C.L. in Matematica e Matematica per le Applicazioni. Proff. K. R. Payne e E.

2 Introduzione ai numeri reali e alle funzioni

Analisi Matematica 3 (Fisica) Prova scritta del 17 febbraio 2012 Un breve svolgimento delle versioni A

Retta Tangente. y retta tangente. retta secante y = f(x) f(x )

Retta Tangente. y retta tangente. retta secante y = f(x) f(x )

Successioni numeriche

Metodi diretti e teoria dei punti critici nel Calcolo delle Variazioni

Funzioni derivabili (V. Casarino)

Serie trigonometriche e di Fourier Ci occuperemo di serie le cui ridotte N-esime sono polinomi trigonometrici di grado (o ordine) N:

Canale Basile - Programma minimo

Analisi II. Foglio di esercizi n.2 10/10/2017 (Aggiornamento del 17/10/2017)

Esercizi del Corso di Istituzioni di Analisi Superiore, I modulo

3 Terza lezione. Il metodo diretto del Calcolo delle Variazioni

Un intervallo di numeri reali è un sottoinsieme I R tale che. è l estremità superiore. Si vede facilmente che I contiene x R ; a(i) < x < b(i)

Integrali doppi impropri per funzioni positive

Consideriamo il seguente sistema di equazioni differenziali ordinarie (ODE) ai valori iniziali:

Il teorema di Ascoli-Arzelà

Università degli Studi di Udine Anno Accademico 2016/2017

Primi elementi di topologia dell asse reale. Intorni

Analisi II. Foglio di esercizi n.1 30/09/ , tan 3) e w = ( 7, 2, e 2 )?

f(x) := lim f n (x) Se introduciamo la norma uniforme di una funzione f (sull insieme A) mediante := sup f(x)

Esistenza ed unicità per equazioni differenziali

Esercitazione di Analisi Matematica I Esercizi e soluzioni 19/04/2013 TOPOLOGIA

Funzioni di n variabili a valori vettoriali

Massimo limite e minimo limite di una funzione

A =, c d. d = ad cb. c d A =

NOTE DI ALGEBRA LINEARE v = a 1 v a n v n, w = b 1 v b n v n

Analisi Matematica 3 (Fisica), , M. Peloso e L. Vesely Prova scritta del 14 luglio 2009 Breve svolgimento (con alcuni conti omessi)

Analisi Matematica 1 (prof. G. Cupini) (CdS Astronomia - Univ. Bologna) REGISTRO DELLE LEZIONI A.A

Funzioni implicite e teorema del Dini

Misure e loro proprietà (appunti per il corso di Complementi di Analisi Matematica per Fisici, a.a )

1. Generalità sulle equazioni differenziali ordinarie

1 Successioni di funzioni

Il Metodo di Newton, o delle Tangenti Federico Lastaria, Analisi e Geometria 1. Politecnico di Milano Corso di Analisi e Geometria 1

Dimostrazione. Indichiamo con α e β (finiti o infiniti) gli estremi dell intervallo I. Poniamo

(x) = F 1 x 1. (x)+ F 2. cioè è la traccia (cioè la somma degli elementi della diagonale principale) della matrice jacobiana J F (x).

Equazione di Laplace

Il teorema di Stone Weierstrass

PRINCIPI DEL MASSIMO 3.1 PRINCIPI DEL MASSIMO IN FORMA DEBOLE CAPITOLO 3

Corso di Analisi Matematica

Esercizi per il corso di Analisi 6.

Analisi Matematica 2 - a.a. 2009/2010

y retta tangente retta secante y = f(x)

Programma del corso di Analisi Matematica 1 Corso di Laurea in Matematica Prof. A. Garroni - Canale Dl-Pa

Anno accademico

Le funzioni continue

Analisi a più variabili: Integrale di Lebesgue

Equazioni differenziali

Analisi Matematica 3 (Fisica), , M. Peloso e L. Vesely Secondo compitino ( ) Svolgimento della Versione B

CORSO DI ANALISI MATEMATICA 2 SOLUZIONI ESERCIZI PROPOSTI 15/04/2013

Convergenza puntuale ed uniforme delle serie di Fourier

Analisi Matematica 3 (Fisica) Prova scritta del 27 gennaio 2012 Uno svolgimento

Analisi Matematica 2. Michele Campiti. Prove scritte di. Ingegneria Industriale a.a

Proprietà globali delle funzioni continue

Funzioni continue. Hynek Kovarik. Università di Brescia. Analisi Matematica 1

Analisi II, a.a Soluzioni 1. j j + 1 ; ( 1)j

Analisi Matematica 2 - A

Limiti di funzioni. Hynek Kovarik. Università di Brescia. Analisi Matematica 1

Esercizi scelti di Analisi matematica elementare

Università degli Studi di Firenze Anno Accademico 2006/2007 Ingegneria per la Tutela dell Ambiente e del Territorio (Laurea Specialistica)

Calcolo delle Differenze

Esprimendo il vettore (u, v) in coordinate polari (u = r cos θ, v = r sin θ), si ha. = u2 v 0 0 u 0 v

26 - Funzioni di più Variabili Limiti e Derivate

y = f(t, y) y = y y(0) = 0,

11. Misure con segno.

Completezza e compattezza

COMPATTEZZA. i) X è compatto, cioè ogni ricoprimento aperto ammette un sottoricoprimento finito.

2. Fra tutti i rettangoli inscritti in una circonferenza, determinare quello di area massima.

Funzioni di più variabli: dominio, limiti, continuità

Transcript:

CAPITOLO 1 Il problema di Dirichlet Qui si parla dell equazione di Pierre Simon de Laplace (1749 1827), dell equazione di Leonhard Euler (1707 1783) e della proprietà della media. Proprietà riguardanti funzioni di regolarità decrescente: C 2 (), Lip(), C(), ma equivalenti grazie alle implicazioni I II III I. La terza implicazione, la più delicata, è dimostrata usando gli integrali di Siméon Denis Poisson (1781 1840) e il Principio del Massimo delle funzioni aventi la proprietà della media. Vi si incontrano, oltre a Karl Friedrich Gauss (1777 1855), Laplace, Eulero, Poisson, Rudolph Otto Sigmund Lipschitz (1832 1903), Johann Peter Gustav Lejeune Dirichlet (1805 1859), Georg Friedrich Bernhard Riemann (1826 1866), Karl Theodor Wilhelm Weierstrass (1815 1897), Cesare Arzelà (1847 1912) e David Hilbert (1862 1943). Il metodo del balayage di Jules Henri Poincaré (1854 1912) è ricordato come un metodo che non ha niente a che fare con il calcolo delle variazioni, ma è efficacissimo per la risoluzione del problema di Dirichlet per l equazione di Laplace partendo dagli integrali di Poisson. L inserimento del tentativo di Arzelà è importante perchè in esso si usa per la prima volta il teorema di compattezza per una famiglia di funzioni limitate e Lipschitziane. In altre parole Arzelà per primo segue l indicazione di, Weierstrass cioè dimostrare l esistenza del minimo in uno spazio di funzioni utilizzando la semicontinuità inferiore del funzionale insieme con la compattezza della classe di funzioni. Sempre in questo primo capitolo si accenna all esempio di Jacques Salomon Hadamard (1865 1963).

4 Mario Miranda Sono rinviati al Capitolo 2 lo studio del problema di Dirichlet per ogni integrale multiplo regolare su uniformemente convesso e la ulteriore regolarità dei minimi Lipschitziani conseguenza del Teorema di Ennio De Giorgi (1928 1996). 1. L equazione di Laplace e l equazione di Eulero Negli anni trenta del diciannovesimo secolo, Gauss osservò che nella ricerca delle soluzioni dell equazione di Laplace n u(x) := D i D i u(x) =0, x R n aperto,n 2,u C 2 () (1) i=1 poteva essere utile vederla come equazione di Eulero Du(x),Dϕ(x) dx =0, ϕ Lip c (),u Lip(). (2) Osservazione 1. Trascuriamo il fatto che Laplace e Gauss non intesero considerare le equazioni (1) e (2) per ogni n 2, e che Lipschitz sottolineò l importanza delle funzioni reali di rapporto incrementale limitato solo negli anni 70 del secolo XIX. 2. La proprietà della media e gli integrali di Poisson Dalla (2) è facile dedurre la u(x 0 )= u(x)dx, B ϱ (x 0 ). (3) Infatti, applicando l identità (2) alle ϕ(x) =(ϱ 2 x x 0 2 ) 0 con x 0 e0<ϱ<d(x 0, ), si trova Du(x), (x x 0 ) = 0 (4) e dalla (4) si ricava la validità della (3). Infatti, tenendo presente che, fissato x 0, si ha che div(u(x)(x x 0 )) = Du(x), (x x 0 ) + nu(x),

Superficie Minime e il problema di Plateau 5 da (4) si ottiene che 0 = Du(x), (x x 0 ) = div(u(x)(x x 0 ))dx n u(x)dx = ϱ x x 0 =ϱ u(x)dh n 1 (x) n u(x)dx. Quest ultima identità implica che d ϱ n dϱ u(x)dx =0, quindi in particolare per ogni ϱ>0tale che { x x 0 <ϱ}, dalla continuità di u, si ha che ϱ n u(x)dx = lim r n u(x)dx = ω n u(x 0 ), r 0 x x 0 <r dove si indica con ω n la misura n dimensionale della palla unitaria. La (3) implica la (1). Tale passaggio non è banale ma è facilmente dimostrabile ricorrendo agli integrali di Poisson, e può partirsi da u C(). Per ogni funzione g C( B ϱ (x 0 )) definiamo la funzione P (x) := (ϱ2 x x 0 2 ) nω n ϱ y x 0 =ϱ g(y) y x ndhn 1 (y), n 2, (5) che è detta integrale di Poisson ed ha la notevole proprietà P C(B ϱ (x 0 )) C 2 (B ϱ (x 0 )), P Bϱ(x 0) = g e verifica la (1) in B ϱ (x 0 ). Se si pone g = u Bϱ(x 0) per una u verificante la (3), avremo in B ϱ (x 0 ) due funzioni con la proprietà della media coincidenti su B ϱ (x 0 ). Grazie al principio del massimo, esse devono essere uguali, pertanto la u sarà in C 2 (B ϱ (x 0 )) e verificherà l equazione di Laplace in B ϱ (x 0 ).

6 Mario Miranda 3. Gauss Gauss conosceva la proprietà della media delle funzioni armoniche, dette al suo tempo anche funzioni potenziale, per la loro importanza nello studio del potenziale elettrico. Ed è anche verosimile che egli conoscesse gli integrali di Poisson e il fatto che essi risolvessero l equazione di Laplace, per i domini sferici. Ma Gauss non potè sapere quello che Poincaré avrebbe dimostrato, usando gli integrali di Poisson e il metodo di balayage, cioè il principio di Dirichlet per ogni aperto R n limitato soddisfacente la condizione di sfera esterna x 0, ϱ >0,y 0, con B ϱ (y 0 ) ={x 0 }. Ma l idea di Gauss di dimostrare l esistenza del minimo dell integrale dell energia E(u) := Du(x) 2 dx, u Lip(),u = g Lip( ) non avrebbe perso il suo valore dooo il lavoro di Poincaré, perché essa è utile, come sarà dimostrato, per una larga classe di integrali che oggi è nota come integrali multipli regolari: F (Du(x))dx, F C 2 (R n ) positiva e strettamente convessa. (6) 4. Riemann Riemann fu allievo di Dirichlet e utilizzò il principio di Dirichlet come si trattasse di un assioma. Tale principio affermava l esistenza di una funzione armonica in ogni aperto limitato con assegnati valori continui su. 5. Weierstrass e Arzelà Fu Weierstrass per primo ad osservare che il principio di Dirichlet era da considerarsi l enunciato di un teorema, da precisare nelle ipotesi e per il quale dare una dimostrazione. Arzelà [2] per primo seguì la strada di Weierstrass scrivendo nel 1897 un articolo che fu pubblicato nonostante che in esso il tentativo di dimostrare il principio di Dirichlet non fosse coronato da successo. La ragione dell insuccesso era dovuta al fatto che Arzelà non era stato in grado di provare una stima a priori della soluzione.

Superficie Minime e il problema di Plateau 7 Arzelà sapeva di poter disporre di un teorema di semicontinuità inferiore per l integrale dell energia e lo applicò ad una classe di funzioni reali in C 2 () con derivate seconde Lipschitziane e aventi su i valori di una di esse, che denoteremo con g. Fissata la g in questo modo e due numeri positivi H e K, denotiamo con F(g, H, K) la famiglia di tutte le f C 2 (), f = g e f H, Df H, D i D j f H e D i D j f Lip K per ogni i, j =1,...,n. In tale F, cheè non vuota per H, K sufficientemente grandi, esiste il minimo dell integrale dell energia, ma non si può garantire per esso il verificarsi dell equazione di Eulero (2). 6. Hilbert e la BSC Nel 1899 Hilbert [19] in una breve nota successivamente ampliata nel 1904 [20], non ebbe lo scrupolo di Arzelà di garantire a priori, per la funzione minimizzante, l appartenenza alla classe C 2 (). In [20] Hilbert richiedeva alle funzioni in gioco la sola Lipschitzianità. Quindi il suo problema di minimo potè essere così precisato: fissato R n aperto limitato e g Lip( ), detta F(g) la classe di tutte le funzioni Lipschitziane uguali alla g su, dimostrare l esistenza di u F(g) con Du(x) 2 dx Df(x) 2 dx, f F(g). Quello che era evidente per tale problema è l esistenza di una successione di funzioni u j F(g) con lim Du j (x) 2 dx = inf Df(x) 2 dx : f F(g) j +, ma non è sempre vero che la u j sia compatta in F(g) rispetto alla convergenza uniforme, come mostra il seguente esempio. Esempio 1.1. Prendiamo = {x R 2 :0< x < 1}, g(0) = 0, g(x) =1 per ogni x = 1; consideriamo la famiglia di funzioni non Lipschitziane in perché G = {u ε (x) = x ε } 0<ε<1 lim x 0 Du ε(x) =+, ε (0, 1).

8 Mario Miranda Ma le u ε sono continue su con u ε = g e lim ε 0 Du ε (x) 2 dx = lim ε 0 πε =0. Modifichiamo le u ε fissando per ciascuna di esse un valore σ (0, 1) e indicando con x ε per σ x < 1 u ε,σ (x) = σ ε 1 x per 0 < x σ. Si scelga poi σ = e 1/ε2. Con tale scelta di σ, le{u ε,σ } 0<ε<1 sono Lipschitziane e lim Du ε,σ 2 dx =0, ε 0 quindi in tale famiglia di funzioni non ci può essere il valore minimo Lipschitziano. 7. Hadamard Ma ancor più interessante è il seguente esempio. Esempio 1.2. Hadamard [17] richiamò l attenzione sul seguente problema di Dirichlet: cos(k!ϑ) ={(ϱ, ϑ) :ϱ<1}, g(ϑ) = k 2, k=1 la soluzione del quale è ϱ k! cos(k!ϑ) u(ϱ, ϑ) =, k 2 k=1 il cui integrale dell energia è 2π 0 1 0 Du 2 ϱdϱdϑ = π k=1 k! k 4 =+. I due esempi illustrati dimostrano come non sia possibile aspettarsi l esistenza del minimo Lipschitziano con la semplice proprietà della limitatezza dell aperto. Hilbert fu capace di indicare l esistenza di una ipotesi per il

Superficie Minime e il problema di Plateau 9 dato (,g) sufficiente per la dimostrazione dell esistenza del minimo Lipschitziano. L ipotesi di Hilbert è oggi detta BSC (Bounded Slope Condition) ed è la seguente. Definizione 1.3. Diremo che il dato (,g) soddisfa la Bounded Slope Condition (BSC) se K > 0 tale che x 0, esistono a, b R n con a K, b K e a, x x 0 g(x) g(x 0 ) b, x x 0, x. Escludendo i casi banali g costante o g polinomio di primo grado, casi nei quali la soluzione del problema di Dirichlet è la g stessa per qualunque la BSC implica a b e perciò b a, x x 0 0, x. Essendo limitato, questa disuguaglianza implica la convessità dello stesso. Inoltre, K x x 0 g(x) g(x 0 ) K x x 0, x, x 0, quindi g Lip K ( ). Le ipotesi aperto limitato convesso e g Lipschitiziana non implicano la BSC. Ha perciò interesse la seguente proposizione. Proposizione 1.4. Se R n è aperto limitato uniformemente convesso eseg C 2 ( ), allora (,g) soddisfa la BSC. Dim. Ricordiamo anzitutto che un insieme si dice uniformemente convesso se esiste una costante c>0 tale che per ogni x 0, se indichiamo con ν (x 0 ) la normale interna ad, vale la x x 0 2 c x x 0,ν (x 0 ), x. (7) Indichiamo con M = max{ Dg, Hg }; otteniamo quindi che, fissato x 0 e al variare di x, g(x) g(x 0 )= Dg(x 0 ),x x 0 + 1 2 Hg(ξ)(x x 0),x x 0. Siccome vale che M x x 0 2 Hg(ξ)(x x 0 ),x x 0 M x x 0 2,

10 Mario Miranda questo, unito con la condizione (7), implica che i coefficienti a = Dg(x 0 ) Mc 2 ν (x 0 ), b = Dg(x 0 )+ Mc 2 ν (x 0 ) soddisfano la condizione della BSC con K = M(c +1/2). 8. I Teoremi di Hilbert Nel Capitolo 2 dimostreremo i seguenti Teoremi, che contengono le dimostrazioni Hilbertiane del Principio di Dirichlet. Teorema 1.5. Se (,g) soddisfa la BSC ed R n è un aperto limitato, per ogni F C 2 (R n ) strettamente convessa e positiva, il funzionale u F (Du(x))dx ammette un unico minimo Lipschitziano nella classe di tutte le funzioni Lipschitziane eguali a g su. Teorema 1.6. Se R n è aperto limitato uniformemente convesso, se g C 2 (), per ogni F C 2 (R n ) strettamente convessa e positiva, il funzionale u F (Du(x))dx ammette un unico minimo Lipschitziano nella classe di tutte le funzioni Lipschitziane eguali a g su.