Equazione di Laplace

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Equazione di Laplace"

Transcript

1 Equazione di Laplace. Introduzione Si da il nome di operatore di Laplace o laplaciano all operatore differenziale u = u xx + u yy + u zz in tre dimensioni, o agli analoghi in dimensioni diverse. L operatore di Laplace é un operatore differenziale lineare del secondo ordine di tipo ellittico. Il nome di ellittico dato al Laplaciano o di iperbolico dato all operatore delle onde sono collegati alle forme quadratiche ottenute sostituendo agli operatori di derivazione i corrispondenti monomi: u xx + u yy + u zz x + y + z u tt c (u xx + u yy + u zz ) t c (x + y + z ) La forma quadratica corrispondente al laplaciano é definita positiva, donde il nome di operatore ellittico, quella corrispondente all equazione delle onde non é definita, donde il nome di operatore iperbolico. Le funzioni u che verificano l equazione u = si dicono funzioni armoniche. Esse hanno numerose importanti proprietá, quasi tutte collegabili alla proprietá di media: u(x ) = 4πr u(y)dσ S[x,r] che lega il valore di una funzione armonica in un punto ai valori che essa prende sulla superficie sferica S[x, r] di centro x e raggio r. Tale proprietá é alla base dei metodi numerici relativi ai problemi che coinvolgono funzioni armoniche... Coordinate polari o sferiche.

2 EQUAZIONE DI LAPLACE Sono importanti le espressioni polari del laplaciano in dimensione o 3: n = : u(x, y) = u ρ ρ + ρ u ρ + ρ u θ θ n = 3 : u(x, y, z) = (ρ sin(θ)u ρ ρ ) sin(θ) ρ + (sin(θ)u θ ) θ +.. Esempi di funzioni armoniche. In dimensione n = : u(x) = αx + β, polinomi di primo grado, In dimensione n = : u(x, y) tutte le parti reali e le parti immaginarie delle funzioni olomorfe, in dimensione n = 3 : tutte le precedenti e molte altre...! ( ) } sin(θ) u ϕ ϕ. Problemi collegati al laplaciano Assegnato un dominio si considerano, in varie occasioni, i seguenti problemi al contorno Problema interno di Dirichlet (DI) u = P u = f P Problema interno di Neumann (NI) u = P df dν = f P Problema esterno di Dirichlet (DE) u = P / u = f P lim u(p ) = P Problema esterno di Neumann (NE) u = P df dν = f P lim u(p ) = P

3 3. UNA PROPRIETÁ DI MINIMO 3 3. Una proprietá di minimo Sia limitato, sia F lo spazio delle funzioni di classe C () che coincidono con f(x) sulla frontiera : per ogni ϕ F consideriamo il funzionale quadratico, non negativo, Ψ(ϕ) = ϕ(y) dy Riesce min ϕ F Ψ(ϕ) = Ψ(u) essendo u F la soluzione del problema di Dirichlet u = P () u = f P Esempio 3.. Consideriamo la questione in dimensione n = : sia = [, ], e sia f() = a, f() = b. Lo spazio F é pertanto lo spazio delle funzioni di classe C ([, ]) che prendono agli estremi dell intervallo [, ] i valori a e b assegnati. Tra le funzioni di F c é la funzione lineare, e quindi armonica, u, u(x) = a + (b a)x Tutte le altre si possono esprimere modificando la u con un addendo v di classe C ([, ]) nullo agli estremi. Riesce [u (x) + v (x)] dx = [u (x)] dx+ u (x) v (x) dx+ [v (x)] dx = = [u (x)] dx u (x)v (x)dx + [v (x)] dx = = [u (x)] dx + [v (x)] dx [u (x)] dx = (b a) La funzione lineare u é pertanto, tra quelle che prendono agli estremi di [, ] i valori a e b quella che ha derivata prima al quadrato di integrale piú basso. Sia u la soluzione del precedente problema di Dirichlet (??): per ogni funzione v C () nulla su riesce u(y) ± v (y) F viceversa ogni funzione v F puó pensarsi come u + v per convenienti v C () nulla su.

4 4 EQUAZIONE DI LAPLACE riesce quindi Ψ(u ± v ) = Ψ(u) ± Ψ(u ± v ) Ψ(u) u v dy + Ψ(v ) u v dy = condizione quest ultima che, per il teorema della divergenza equivale a v (y) u(y) dy = É noto che tale ultima condizione é vera in corrispondenza ad ogni v C () nulla su se e solo se riesce u = Quindi tra le funzioni di F quella armonica ha il gradiente di modulo quadrato ad integrale piú basso. 4. Il principio di massimo Per le funzioni armoniche in una dimensione, u(x) = αx + β é ovvio che in qualsiasi intervallo [a, b] riesce minu(a), u(b)} u(x) maxu(a), u(b)} Cioé il massimo e il minimo della funzione in un intervallo sono il massimo e il minimo sulla frontiera. Il risultato si conserva in piú dimensioni: sia M = max u(p ) se P P o : u(p ) = M, allora tenuto conto che u(p ) coincide con la media su ogni superficie sferica di centro P se ne deduce che riesce u(p ) = u(p ) su tutta la superficie sferica scelta e, quindi, stante l arbitrarietá, riesce u(p ) = u(p ) P B(P, r) avendo indicato con B(P, r) una sfera di centro P e raggio tale da stare dentro. Allargandosi si arriva a toccare la frontiera e quindi a trovare un punto P in cui riesce u(p ) = M, e quindi Discorso analogo per il minimo. max u(p ) = max u(p ) P P

5 5. UNICITÁ DEL PROBLEMA DI DIRICHLET INTERNO 5 Proposizione 4.. Se due funzioni u e v armoniche in verificano la disuguaglianza t : u(t) v(t) allora riesce anche u(x) v(x) x Corollario 4.. Sia u armonica in e costante su : costante in. 5. Unicitá del problema di Dirichlet interno Proposizione 5.. Siano u e v le soluzioni dei due problemi allora é u = P v = P allora riesce u = f max x P u = g P u(x) v(x) max f(x) g(x) x Dimostrazione. Consideriamo la differenza w = u v La w é armonica e prende sulla frontiera i valori f(x) g(x). Dal principio di massimo segue allora x : minf(t) g(t)} u(x) v(x) maxf(t) g(t)} t t da cui l asserto. La precedente Proposizione?? garantisce naturalmente l unicitá della soluzione per il problema di Dirichlet interno. 5.. Il problema esterno. Se si omette la condizione di essere infinitesima all infinito il problema esterno non ha unicitá come si riconosce dal seguente contresempio: sia la sfera di centro l origine e raggio r = consideriamo il problema u = P / Le due funzioni u = P u (x), u (x) = r sono soluzioni del problema che, quindi non ha unicitá. Unicitá che ritorna se aggiungiamo, come fatto precedentemente, la condizione lim u(p ) =. r

6 6 EQUAZIONE DI LAPLACE 6. Unicitá del problema di Neumann interno Siano u e v due soluzioni del problema di Neumann interno u = P df dν = f P La loro differenza w = u v é armonica e ha derivata normale nulla sulla frontiera : dal teorema della divergenza riesce da cui da cui = w(y) w(y) dσ y = w(y) dy w(y) = w(y) = costante u(x) = v(x) + costante Ovvero il problema di Neumann ha unicitá a meno di costanti. 7. La soluzione fondamentale Indichiamo semplicemente con x = (x, x, x 3 ), y = (y, y, y 3 ), x y = 3 (x i y i ) La funzione (di sei variabili reali) possiede le seguenti proprietá: E(x, y) = 4π x y E(x, y) >, E(x, y) = E(y, x), E C (x y), x E(x, y) = y E(x, y) = x y E(x, y) é dotata di integrale rispetto ad y generalizzato in ogni dominio chiuso, limitato e misurabile, qualunque sia x, le derivate parziali prime E xi (x, y), i =,, 3 sono dotate di integrale rispetto ad y generalizzato in ogni dominio chiuso, limitato e misurabile, qualunque sia x. La soluzione di numerosi problemi collegati al laplaciano é rappresentata con formule integrali che si servono della funzione E(x, y) e/o delle sue derivate prime. i=

7 7. LA SOLUZIONE FONDAMENTALE 7 La funzione E(x, y) presenta, per x = y una singolaritá del tipo illimitato di ordine r Le sue derivate prime presentano una singolaritá del tipo illimitato di ordine r Tenuta presente la dimensione 3 dello spazio la funzione E(x, y) e le sue derivate prime sono dotate di integrale generalizzato anche in domini limitati che includono x. Si puó quindi far uso di integrali quali E(x, y)ϕ(y)dy, y i ϕ(y)dy,... qualunque sia la funzione (continua) ϕ(y) e ovunque sia il punto x. Per quanto riguarda integrali di E(x, y) in dimensione, cioé sulle frontiere, ancora nessuna difficoltá dovunque sia x, mentre non possono in generale essere integrate le derivate prime di E(x, y) su se x. 7.. Un fenomeno sorprendente. Se la superficie é sufficientemente regolare allora la derivata normale presenta, per x, y una singolaritá bassa, tanto da riconoscere che il suo integrale generalizzato su é limitato. Immaginiamo che sia cartesiana con y 3 = f(y, y ) f(, ) =, f y (, ) = f y (, ) = Prendiamo x =, punto appartenente a : r = y + y + f (y, y ), riesce = 4π Da cui n y = r 3 y, y, f(y, y )} + f y + f y f y, f y, } + f y + f y f y, f y, }

8 8 EQUAZIONE DI LAPLACE y f y (, ) + y f y (, ) f(y, y ) ( ) 3 M y + y ( y + y + f (y, y ) y + y Riassumendo M y + y da cui l asserto. Si ricordi che una tale singolaritá debole si trova solo per la derivata normale di E, mentre non si trova, in generale, per altre derivate oblique. ) 3 8. Formule di rappresentazione integrale Lemma 8.. Sia un dominio chiuso e limitato di R 3 teorema della divergenza x o dσ y = x / si ha, dal Dimostrazione. Cominciamo con il caso x / : il teorema della divergenza riconosce che dσ y = y E(x, y) dy da cui l asserto, tenuto conto che y E(x, y) =. Il caso x interno a non consente l uso immediato del teorema della divergenza su : consideriamo tuttavia una sferetta B(x, r) di centro x, raggio r tutta contenuta in e applichiamo il teorema della divergenza riferito a B(x, r): dσ y B(x,r) dσ y = Calcoliamo l integrale sulla frontiera della sferetta B(x, r) servendosi di coordinate sferiche di centro in x: = 4π da cui l asserto. r, B(x,r) dσ y = 4πr dσ y = B(x,r)

9 8. FORMULE DI RAPPRESENTAZIONE INTEGRALE 9 Il teorema della divergenza applicato alla E(x, y) e ad una funzione armonica u(y) conduce, se x /, a u(y) E(x, y) u(y) } dσ y = = u(y) y E(x, y) E(x, y) y u(y)} dy = essendo i due laplaciani nell integrale a secondo membro nulli entrambi. Nel caso in cui invece x o la formula non si puó applicare direttamente, ma, come fatto precedentemente si puó lavorare su B(x, r) essendo B(x, r) una sferetta di centro x e raggio r: si ha pertanto u(y) E(x, y) u(y) } dσ y = } = u(y) dσ y E(x, y) u(y) } dσ y B(x,r) B(x,r) Passando al limite per r nei due integrali a secondo membro: il primo tende a u(x) il secondo tende a zero. Si ha pertanto Lemma 8.. Sia u armonica in, per ogni x o vale la seguente formula di rappresentazione integrale: () u(x) = u(y) E(x, y) u(y) } dσ y Nel caso, terzo e piú complesso, che x costruiamo, analogamente la sferetta B(x, r) di centro x e raggio r: indichiamo con = ( B(x, r)) la porzione della superficie sferica che delimita B(x, r) interna a Σ r la parte di fuori di B(x, r) Applicando il teorema della divergenza su B(x, r) si ottiene quindi dee(x, y) u(y) E(x, y) u(y) } dσ y = Σ r } = u(y) dσ y E(x, y) u(y) } dσ y É possibile dimostrare che: lim...} dσ y = r Σ r...} dσ y

10 EQUAZIONE DI LAPLACE } lim u(y) dσ y = r u(x) lim E(x, y) u(y) } dσ y = r Il primo dei tre risultati, non banale, dipende dal tipo di singolaritá polare che la funzione di y presenta per y x se la frontiera é regolare, vedi paragrafo??, una singolaritá x y, α > α Il secondo dei tre risultati, non banale anch esso, dipende dall osservazione che la porzione di superficie sferica somiglia sempre piú, al tendere di r a una semi superficie sferica: quindi, pensando di lavorare in coordinate sferiche di centro x si ha } u(y) dσ y u(x) 4πr π r = u(x) Il terzo dei tre risultati é il piú semplice tenuto conto che la derivata normale di u sará limitata e la funzione E ha una singolaritá del tipo /r : quindi E(x, y) u(y) } dσ y M r πr = πmr 8.. Risultati di regolaritá. La formula di rappresentazione integrale (??) produce numerose ricadute importanti le funzioni armoniche in sono necessariamente C ( o ) i valori in o sono determinati dai valori di u e della sua derivata normale su. Indice

Equazione di Laplace

Equazione di Laplace Equazione di Laplace. La funzione di Green Sia, indicati con x e y due punti di R 3 E(x, y) = x y Consideriamo la rappresentazione integrale di u(x) C 2 (), anche rinunciando all ipotesi che sia armonica

Dettagli

Il teorema di rappresentazione

Il teorema di rappresentazione APITOLO 6 Il teorema di rappresentazione. Introduzione Lemma.. Sia una circonferenza e sia A il cerchio racchiuso: riesce 2π i Dimostrazione. Primo caso: z / A = 0 se z / A se z A La funzione = é analitica

Dettagli

Analisi Vettoriale A.A Soluzioni del foglio 5. y = y 2, dy y 2 = x

Analisi Vettoriale A.A Soluzioni del foglio 5. y = y 2, dy y 2 = x Analisi Vettoriale A.A. 2006-2007 - Soluzioni del foglio 5 5. Esercizio Assegnato il problema di Cauchy y = y 2, y(0) = k determinare per ogni k la soluzione y(x), determinare il suo insieme di esistenza,

Dettagli

Capitolo 1 ANALISI COMPLESSA

Capitolo 1 ANALISI COMPLESSA Capitolo 1 ANALISI COMPLESSA 1 1.2 Funzioni Complesse Una funzione complessa di variabile complessa f : E C, E C è un applicazione ce associa un numero complesso f(z) ad ogni z E, con E sottoinsieme del

Dettagli

ANALISI VETTORIALE ESERCIZI SULLE SUPERFICI

ANALISI VETTORIALE ESERCIZI SULLE SUPERFICI ANALII VETTORIALE EERCIZI ULLE UPERFICI Esercizio Calcolare l area della superficie dove Σ {(x, y, z) (x, y) E, z 2 + x 2 + y 2 } E {(x, y) x 2 + y 2 4}. Essendo la superficie Σ data come grafico di una

Dettagli

5.1. Esercizio. Sia D il cerchio di centro l origine e raggio R, calcolare, servendosi delle coordinate polari l integrale doppio x + y D

5.1. Esercizio. Sia D il cerchio di centro l origine e raggio R, calcolare, servendosi delle coordinate polari l integrale doppio x + y D ANALISI VTTORIAL Soluzione esercizi 26 novembre 2 5.. sercizio. Sia D il cerchio di centro l origine e raggio R, calcolare, servendosi delle coordinate polari l integrale doppio x + y dx dy D + x 2 + y2

Dettagli

DIARIO DELLE LEZIONI DEL CORSO DI FISICA MATEMATICA A.A. 2011/2012 CORSO DI LAUREA MAGISTRALE IN INGEGNERIA MECCANICA

DIARIO DELLE LEZIONI DEL CORSO DI FISICA MATEMATICA A.A. 2011/2012 CORSO DI LAUREA MAGISTRALE IN INGEGNERIA MECCANICA DIARIO DELLE LEZIONI DEL CORSO DI FISICA MATEMATICA A.A. 2011/2012 CORSO DI LAUREA MAGISTRALE IN INGEGNERIA MECCANICA DANIELE ANDREUCCI DIP. SCIENZE DI BASE E APPLICATE PER L INGEGNERIA UNIVERSITÀ LA SAPIENZA

Dettagli

c i χ Ai (x) f(x) = f(x)dx = c i m(a i ) R

c i χ Ai (x) f(x) = f(x)dx = c i m(a i ) R 1. Integrale di Lebesgue in La differenza fondamentale tra integrale di Lebesgue e integrale di iemann consiste nella diversa scelta delle decomposizioni su cui sostanzialmente si basa ogni integrale:

Dettagli

I teoremi della funzione inversa e della funzione implicita

I teoremi della funzione inversa e della funzione implicita I teoremi della funzione inversa e della funzione implicita Appunti per il corso di Analisi Matematica 4 G. Mauceri Indice 1 Il teorema della funzione inversa 1 Il teorema della funzione implicita 3 1

Dettagli

ESERCIZIARIO SULL'APPLICAZIONE DELLE DERIVATE

ESERCIZIARIO SULL'APPLICAZIONE DELLE DERIVATE ESERCIZIARIO SULL'APPLICAZIONE DELLE DERIVATE Determinare l incremento della funzione f (x) = x 2 relativo al punto x 0 e all incremento x x 0, nei seguenti casi:. x 0 =, x = 2 2. x 0 =, x =. 3. x 0 =,

Dettagli

ANALISI B alcuni esercizi proposti

ANALISI B alcuni esercizi proposti ANALISI B alcuni esercizi proposti G.P. Leonardi Parte II 1 Limiti e continuità per funzioni di 2 variabili Esercizio 1.1 Calcolare xy log(1 + x ) lim (x,y) (0,0) 2x 2 + 5y 2 Esercizio 1.2 Studiare la

Dettagli

Le derivate parziali

Le derivate parziali Sia f(x, y) una funzione definita in un insieme aperto A R 2 e sia P 0 = x 0, y 0 un punto di A. Essendo A un aperto, esiste un intorno I(P 0, δ) A. Preso un punto P(x, y) I(P 0, δ), P P 0, possiamo definire

Dettagli

2.3. Esercizio. Disegnare il grafico delle seguenti funzioni f(x) = x x, g(x) = max(0, cos(x)), h(x) = min(0, sin(x))

2.3. Esercizio. Disegnare il grafico delle seguenti funzioni f(x) = x x, g(x) = max(0, cos(x)), h(x) = min(0, sin(x)) ANALISI Soluzione esercizi 4 ottobre 0.. Esercizio. Disegnare il grafico delle funzioni f(x) = x 4, g(x) = x 3, r(x) = min(0, x 3 ), s(x) = 3 x Esistono software che disegnano i grafici di moltissime funzioni

Dettagli

Corso di Laurea in Ingegneria, Settore Informazione (gruppi 2-3), A.A. 2007/2008 Docente: Antonio Ponno

Corso di Laurea in Ingegneria, Settore Informazione (gruppi 2-3), A.A. 2007/2008 Docente: Antonio Ponno Programma del Corso di Matematica A Corso di Laurea in Ingegneria, Settore Informazione (gruppi 2-3), A.A. 2007/2008 Docente: Antonio Ponno Premessa (D) dopo un teorema o una proposizione citati sta ad

Dettagli

Soluzione. Il dominio E consiste nella parte di spazio contenuta nella sfera ma esterna al cono rappresentata in Figura 1. Infatti

Soluzione. Il dominio E consiste nella parte di spazio contenuta nella sfera ma esterna al cono rappresentata in Figura 1. Infatti Esercizio 1 (G. Ziglio). (6 punti) Calcolare il volume della porzione di spazio E interna alla sfera di equazione x 2 + y 2 + z 2 = 1 ed esterna al cono di equazione z 2 = x 2 + y 2 E = (x, y, z) R x 2

Dettagli

Il teorema di Lagrange e la formula di Taylor

Il teorema di Lagrange e la formula di Taylor Il teorema di Lagrange e la formula di Taylor Il teorema del valor medio di Lagrange, valido per funzioni reali di una variabile reale, si estende alle funzioni reali di più variabili. Come si vedrà, questo

Dettagli

Teoria di Lebesgue. P n E = n=1

Teoria di Lebesgue. P n E = n=1 Teoria di Lebesgue 1. La misura di Peano-Jordan La misura di Peano Jordan di un insieme é quasi sempre proposta per sottoinsiemi limitati E R 2 : si tratta di quanto suggerito dalla carta quadrettata,

Dettagli

Teorema delle Funzioni Implicite

Teorema delle Funzioni Implicite Teorema delle Funzioni Implicite Sia F una funzione di due variabili definita in un opportuno dominio D di R 2. Consideriamo l equazione F (x, y) = 0, questa avrà come soluzioni coppie di valori (x, y)

Dettagli

variabili. se i limiti esistono e si chiamano rispettivamente derivata parziale rispetto ad x e rispetto ad y.

variabili. se i limiti esistono e si chiamano rispettivamente derivata parziale rispetto ad x e rispetto ad y. Funzioni di più variabili Derivate parziali Qui saranno considerate soltanto funzioni di due variabili, ma non c è nessuna difficoltà ad estendere le nuove nozioni a funzioni di n ( > variabili ( Definizione:

Dettagli

UNIVERSITÀ DI ROMA TOR VERGATA. Analisi Matematica II per Ingegneria Prof. C. Sinestrari

UNIVERSITÀ DI ROMA TOR VERGATA. Analisi Matematica II per Ingegneria Prof. C. Sinestrari UNIVERSITÀ DI ROMA TOR VERGATA Analisi Matematica II per Ingegneria Prof. C. Sinestrari Risposte sintetiche) agli esercizi del 17.XI.17 1. Le curve hanno tutte parametrizzazioni di classe C. Per studiare

Dettagli

1) Applicando la definizione di derivata, calcolare la derivata in x = 0 delle funzioni: c) x + 1 d)x sin x.

1) Applicando la definizione di derivata, calcolare la derivata in x = 0 delle funzioni: c) x + 1 d)x sin x. Funzioni derivabili Esercizi svolti 1) Applicando la definizione di derivata, calcolare la derivata in x = 0 delle funzioni: a)2x 5 b) x 3 x 4 c) x + 1 d)x sin x. 2) Scrivere l equazione della retta tangente

Dettagli

Funzioni vettoriali di variabile scalare

Funzioni vettoriali di variabile scalare Capitolo 11 Funzioni vettoriali di variabile scalare 11.1 Curve in R n Abbiamo visto (capitolo 2) come la posizione di un punto in uno spazio R n sia individuata mediante le n coordinate di quel punto.

Dettagli

Forme differenziali lineari

Forme differenziali lineari Forme differenziali lineari Sia Ω R 3 un insieme aperto e siano A, B, C: Ω R funzioni continue in Ω. Si definisce forma differenziale ω in Ω l espressione ω = A x, y, z dx + B x, y, z dy + C x, y, z dz

Dettagli

Risposta La curva r è regolare a tratti per via di quanto succede della sua rappresentazione parametrica nel punto t = 1: pur riuscendo

Risposta La curva r è regolare a tratti per via di quanto succede della sua rappresentazione parametrica nel punto t = 1: pur riuscendo ANALISI VETTORIALE OMPITO PER LE VAANZE DI FINE D ANNO Esercizio Sia r(t) la curva regolare a tratti x = t, y = t, t [, ] e x = t, y = t, t [, ]. alcolare la lunghezza di r, calcolare, dove esistono, i

Dettagli

ESERCIZI DI ANALISI II Ingegneria Civile e dei Trasporti (M-Z) a.a. 2006/2007

ESERCIZI DI ANALISI II Ingegneria Civile e dei Trasporti (M-Z) a.a. 2006/2007 ESERCIZI I ANALISI II Ingegneria Civile e dei Trasporti (M-Z) a.a. 006/007 1 FUNZIONI IN UE VARIABILI (I parte) Insiemi di definizione eterminare gli insiemi di definizione delle seguenti funzioni in due

Dettagli

Matematica II. Risolvere o integrare una e.d. significa trovarne tutte le soluzione, che costituiscono il cosidetto integrale generale.

Matematica II. Risolvere o integrare una e.d. significa trovarne tutte le soluzione, che costituiscono il cosidetto integrale generale. Definizione Si dice equazione differenziale di ordine n nella funzione incognita y = y (x) una relazione fra y, le sue derivate y,..., y (n), e la variabila indipendente x Risolvere o integrare una e.d.

Dettagli

determinare una soluzione y(t) dell equazione completa e, quindi dedurne tutte le y(t) soluzioni dell equazione.

determinare una soluzione y(t) dell equazione completa e, quindi dedurne tutte le y(t) soluzioni dell equazione. ANALISI VETTORIALE Soluzione esercizi 4 febbraio 2011 10.1. Esercizio. Assegnata l equazione lineare omogenea di primo ordine y + a y = 0 determinare le soluzioni di tale equazione in corrispondenza ai

Dettagli

Funzioni Complesse di variabile complessa

Funzioni Complesse di variabile complessa Funzioni Complesse di variabile complessa Docente:Alessandra Cutrì Richiami sui numeri complessi Indichiamo con C il campo dei Numeri complessi z = x + iy C, ses x, y R i := 1 (Rappresentazione cartesiana

Dettagli

Esercizi sull equazione di Laplace

Esercizi sull equazione di Laplace Esercizi sull equazione di Laplace Corso di Fisica Matematica, a.a. 011-01 Dipartimento di Matematica, Università di Milano 16/1/01 Questi esercizi trattano la soluzione dell equazione di Laplace u xx

Dettagli

Indici di posizione e dispersione per distribuzioni di variabili aleatorie

Indici di posizione e dispersione per distribuzioni di variabili aleatorie Indici di posizione e dispersione per distribuzioni di variabili aleatorie 12 maggio 2017 Consideriamo i principali indici statistici che caratterizzano una distribuzione: indici di posizione, che forniscono

Dettagli

Soluzioni dei quesiti della maturità scientifica A.S. 2007/2008

Soluzioni dei quesiti della maturità scientifica A.S. 2007/2008 Soluzioni dei quesiti della maturità scientifica A.S. 007/008 Nicola Gigli Sun-Ra Mosconi 19 giugno 008 1. La proposizione è falsa. Per trovare un controesempio ad essa, si consideri un qualunque piano

Dettagli

Ingegneria civile - ambientale - edile

Ingegneria civile - ambientale - edile Ingegneria civile - ambientale - edile Analisi - Prove scritte dal 7 Prova scritta del 9 giugno 7 Esercizio Determinare i numeri complessi z che risolvono l equazione Esercizio (i) Posto a n = n i z z

Dettagli

Limiti e continuità. Teoremi sui limiti. Teorema di unicità del limite Teorema di permanenza del segno Teoremi del confronto Algebra dei limiti

Limiti e continuità. Teoremi sui limiti. Teorema di unicità del limite Teorema di permanenza del segno Teoremi del confronto Algebra dei limiti Limiti e continuità Teorema di unicità del ite Teorema di permanenza del segno Teoremi del confronto Algebra dei iti 2 2006 Politecnico di Torino 1 Se f(x) =` ` è unico Per assurdo, siano ` 6= `0 con f(x)

Dettagli

Consideriamo il seguente sistema di equazioni differenziali ordinarie (ODE) ai valori iniziali:

Consideriamo il seguente sistema di equazioni differenziali ordinarie (ODE) ai valori iniziali: Capitolo 1 PROBLEMI INIZIALI PER ODE Consideriamo il seguente sistema di equazioni differenziali ordinarie (ODE) ai valori iniziali: { y (t) = f(t, y(t)), t t f (1.1) y( ) = y 0 dove f : [, t f ] R m R

Dettagli

Prima prova in itinere di Analisi Matematica 2 Ingegneria Elettronica. Politecnico di Milano. A.A. 2017/2018. Prof. M. Bramanti.

Prima prova in itinere di Analisi Matematica 2 Ingegneria Elettronica. Politecnico di Milano. A.A. 2017/2018. Prof. M. Bramanti. Prima prova in itinere di Analisi Matematica Ingegneria Elettronica. Politecnico di Milano Es. Punti A.A. 07/08. Prof. M. Bramanti Tema n 4 5 6 Tot. Cognome e nome (in stampatello) codice persona (o n

Dettagli

IL TEOREMA DEGLI ZERI Una dimostrazione di Ezio Fornero

IL TEOREMA DEGLI ZERI Una dimostrazione di Ezio Fornero IL TEOREMA DEGLI ZERI Una dimostrazione di Ezio Fornero Il teorema degli zeri è fondamentale per determinare se una funzione continua in un intervallo chiuso [ a ; b ] si annulla in almeno un punto interno

Dettagli

Collegio di Merito Bernardo Clesio Università di Trento

Collegio di Merito Bernardo Clesio Università di Trento Collegio di Merito Bernardo Clesio Università di Trento 23 luglio 2012 Prova per i candidati per le facoltà scientifiche Esercizio 1. Descrivere tutti i polinomi p(x) con coefficienti reali tali che per

Dettagli

R. Capone Analisi Matematica Calcolo Differenziale Funzioni di due variabili

R. Capone Analisi Matematica Calcolo Differenziale Funzioni di due variabili Richiami teorici Sia una funzione di due variabili definita in un insieme A e sia un punto interno ad A. Se R è un dominio regolare di centro e di dimensioni e la funzione della sola variabile x, risulta

Dettagli

Esercizi di Complementi di Matematica (L-Z) a.a. 2015/2016

Esercizi di Complementi di Matematica (L-Z) a.a. 2015/2016 Esercizi di Complementi di Matematica (L-Z) a.a. 2015/2016 Prodotti scalari e forme bilineari simmetriche (1) Sia F : R 2 R 2 R un applicazione definita da F (x, y) = x 1 y 1 + 3x 1 y 2 5x 2 y 1 + 2x 2

Dettagli

Analisi 4 - SOLUZIONI (compito del 29/09/2011)

Analisi 4 - SOLUZIONI (compito del 29/09/2011) Corso di laurea in Matematica Analisi 4 - SOLUZIONI compito del 9/09/0 Docente: Claudia Anedda Calcolare, tramite uno sviluppo in serie noto, la radice quinta di e la radice cubica di 9 Utilizzando la

Dettagli

DIFFERENZIAZIONE. Sia f una funzione reale di variabile reale con dominio un intervallo. Se f è derivabile in un punto x 0, allora: f(x) f(x 0 ) lim

DIFFERENZIAZIONE. Sia f una funzione reale di variabile reale con dominio un intervallo. Se f è derivabile in un punto x 0, allora: f(x) f(x 0 ) lim DIFFERENZIAZIONE 1 Regola della catena Sia f una funzione reale di variabile reale con dominio un intervallo. Se f è derivabile in un punto x 0, allora: f(x) f(x 0 ) lim = f (x 0 ). x x 0 x x 0 Questa

Dettagli

Funzioni derivabili (V. Casarino)

Funzioni derivabili (V. Casarino) Funzioni derivabili (V. Casarino) Esercizi svolti 1) Applicando la definizione di derivata, calcolare la derivata in = 0 delle funzioni: a) 5 b) 3 4 c) + 1 d) sin. ) Scrivere l equazione della retta tangente

Dettagli

Sviluppi e derivate delle funzioni elementari

Sviluppi e derivate delle funzioni elementari Sviluppi e derivate delle funzioni elementari In queste pagine dimostriamo gli sviluppi del prim ordine e le formule di derivazioni delle principali funzioni elementari. Utilizzeremo le uguaglianze lim

Dettagli

Contenuti delle lezioni:

Contenuti delle lezioni: Contenuti delle lezioni: 1. Introduzione ed esempi di Equazioni alle Derivate Parziali; 2. Classificazione delle Equazioni alle Derivate Parziali (PDE) 3. Derivazione numerica 4. Metodi numerici alle differenze

Dettagli

Gradiente, divergenza e rotore

Gradiente, divergenza e rotore Gradiente, divergenza e rotore Gradiente di una funzione scalare della posizione Sia f(x,y,z) una funzione scalare continua e derivabile delle coordinate costruiamo in ogni punto dello spazio un vettore

Dettagli

R. Capone Analisi Matematica Integrali multipli

R. Capone Analisi Matematica Integrali multipli Integrali multipli Consideriamo, inizialmente il caso degli integrali doppi. Il concetto di integrale doppio è l estensione della definizione di integrale per una funzione reale di una variabile reale

Dettagli

a) Il denominatore dev essere diverso da zero. Studiamo il trinomio x 2 5x + 6. Si ha: x 1,2 = 5 ± se x ], 2[ ]3, + [;

a) Il denominatore dev essere diverso da zero. Studiamo il trinomio x 2 5x + 6. Si ha: x 1,2 = 5 ± se x ], 2[ ]3, + [; ESERCIZIO - Data la funzione f (x) + x2 2x x 2 5x + 6, si chiede di: a) calcolare il dominio di f ; (2 punti) b) studiare la positività e le intersezioni con gli assi; (3 punti) c) stabilire se f ha asintoti

Dettagli

Spazi di Sobolev e. formulazione variazionale dei. problemi ai limiti

Spazi di Sobolev e. formulazione variazionale dei. problemi ai limiti Spazi di Sobolev e formulazione variazionale dei problemi ai limiti Corso di Analisi Funzionale 11 e 13 gennaio 21 Stefania Maria Buccellato Ultima Edizione 21 dicembre 211 Dipartimento di Matematica e

Dettagli

Funzioni implicite - Esercizi svolti

Funzioni implicite - Esercizi svolti Funzioni implicite - Esercizi svolti Esercizio. È data la funzione di due variabili F (x, y) = y(e y + x) log x. Verificare che esiste un intorno I in R del punto di ascissa x 0 = sul quale è definita

Dettagli

NOTE SULLE FUNZIONI CONVESSE DI UNA VARIABILE REALE

NOTE SULLE FUNZIONI CONVESSE DI UNA VARIABILE REALE NOTE SULLE FUNZIONI CONVESSE DI UNA VARIABILE REALE ROBERTO GIAMBÒ 1. DEFINIZIONI E PRIME PROPRIETÀ In queste note saranno presentate alcune proprietà principali delle funzioni convesse di una variabile

Dettagli

SIMULAZIONE - 29 APRILE QUESITI

SIMULAZIONE - 29 APRILE QUESITI www.matefilia.it SIMULAZIONE - 29 APRILE 206 - QUESITI Q Determinare il volume del solido generato dalla rotazione attorno alla retta di equazione y= della regione di piano delimitata dalla curva di equazione

Dettagli

quando il limite delle somme di Riemann esiste. In tal caso diciamo che la funzione è integrabile sul rettangolo.

quando il limite delle somme di Riemann esiste. In tal caso diciamo che la funzione è integrabile sul rettangolo. Integrali multipli Consideriamo, inizialmente il caso degli integrali doppi. Il concetto di integrale doppio è l estensione della definizione di integrale per una funzione reale di una variabile reale

Dettagli

Esercizi sulla soluzione dell equazione delle onde con il metodo della serie di Fourier

Esercizi sulla soluzione dell equazione delle onde con il metodo della serie di Fourier Esercizi sulla soluzione dell equazione delle onde con il metodo della serie di Fourier Corso di Fisica Matematica 2, a.a. 2013-2014 Dipartimento di Matematica, Università di Milano 13 Novembre 2013 1

Dettagli

Domande da 6 punti. Prima parte del programma

Domande da 6 punti. Prima parte del programma Domande da 6 punti Prima parte del programma Domanda. Dare la definizione di arco di curva continua, di sostegno di una curva, di curva chiusa, di curva semplice e di curva piana fornendo qualche esempio.

Dettagli

Appunti sulle equazioni differenziali lineari a coefficienti costanti del secondo ordine

Appunti sulle equazioni differenziali lineari a coefficienti costanti del secondo ordine Appunti sulle equazioni differenziali lineari a coefficienti costanti del secondo ordine A. Figà-Talamanca 22 maggio 2005 L equazione differenziale y + ay + by = 0, (1) dove a e b sono costanti, si chiama

Dettagli

3. Successioni di insiemi.

3. Successioni di insiemi. 3. Successioni di insiemi. Per evitare incongruenze supponiamo, in questo capitolo, che tutti gli insiemi considerati siano sottoinsiemi di un dato insieme S (l insieme ambiente ). Quando occorrerà considerare

Dettagli

A Analisi Matematica 2 (Corso di Laurea in Informatica) Simulazione compito d esame

A Analisi Matematica 2 (Corso di Laurea in Informatica) Simulazione compito d esame COGNOME NOME Matr. Firma dello studente A Analisi Matematica (Corso di Laurea in Informatica) Simulazione compito Tempo: ore. Prima parte: test a risposta multipla. Una ed una sola delle 4 affermazioni

Dettagli

x 1 Fig.1 Il punto P = P =

x 1 Fig.1 Il punto P = P = Geometria di R 2 In questo paragrafo discutiamo le proprietà geometriche elementari del piano Per avere a disposizione delle coordinate nel piano, fissiamo un punto, che chiamiamo l origine Scegliamo poi

Dettagli

Dipolo Elettrico: due cariche (puntiformi) +q e q (stesso modulo, segno opposto) a distanza a. Momento di Dipolo, P: Vettore di modulo

Dipolo Elettrico: due cariche (puntiformi) +q e q (stesso modulo, segno opposto) a distanza a. Momento di Dipolo, P: Vettore di modulo Il Dipolo Elettrico Dipolo Elettrico: due cariche (puntiformi) q e q (stesso modulo, segno opposto) a distanza a. Momento di Dipolo, P: Vettore di modulo qa che va da qq a q Dato un punto P molto distante

Dettagli

Esercitazioni di Matematica

Esercitazioni di Matematica Università degli Studi di Udine Anno Accademico 009/00 Facoltà di Agraria Corsi di Laurea in VIT e STAL Esercitazioni di Matematica novembre 009 Trovare le soluzioni della seguente disequazione: x + +

Dettagli

Sia ϕ una funzione continua definita su un rettangolo R = [a, b] [c, d] di R 2 e a valori in R 3 : ϕ : R R 2 R 3

Sia ϕ una funzione continua definita su un rettangolo R = [a, b] [c, d] di R 2 e a valori in R 3 : ϕ : R R 2 R 3 1 uperfici ia ϕ una funzione continua definita su un rettangolo R = [a, b] [c, d] di R 2 e a valori in R 3 : ϕ : R R 2 R 3 (u, v) R ϕ(u, v) = (x(u, v), y(u, v), z(u, v)), cioè tale che le componenti x(u,

Dettagli

0.1 Arco di curva regolare

0.1 Arco di curva regolare .1. ARCO DI CURVA REGOLARE 1.1 Arco di curva regolare Se RC(O, i, j, k ) è un riferimento cartesiano fissato per lo spazio euclideo E, e se v (t) = x(t) i + y(t) j + z(t) k è una funzione a valori vettoriali

Dettagli

Facoltà di Architettura Valle Giulia Corso di Laurea Specialistica Quinquennale U.E. 1 CALCOLO INTEGRALE PER LE FUNZIONI DI UNA VARIABILE

Facoltà di Architettura Valle Giulia Corso di Laurea Specialistica Quinquennale U.E. 1 CALCOLO INTEGRALE PER LE FUNZIONI DI UNA VARIABILE Facoltà di Architettura Valle Giulia Corso di Laurea Specialistica Quinquennale U.E. Istituzioni di Matematica 2 a.a. 2007-2008 http://www.dmmm.uniroma.it/persone/capitanelli CALCOLO INTEGRALE PER LE FUNZIONI

Dettagli

Corso di Geometria III - A.A. 2016/17 Esercizi

Corso di Geometria III - A.A. 2016/17 Esercizi Corso di Geometria III - A.A. 216/17 Esercizi (ultimo aggiornamento del file: 2 ottobre 215) Esercizio 1. Calcolare (1 + 2i) 3, ( ) 2 + i 2, (1 + i) n + (1 i) n. 3 2i Esercizio 2. Sia z = x + iy. Determinare

Dettagli

Calcolo differenziale 2: Massimi e minimi. Studio di una funzione. (M.S.Bernabei & H. Thaler)

Calcolo differenziale 2: Massimi e minimi. Studio di una funzione. (M.S.Bernabei & H. Thaler) Calcolo differenziale 2: Massimi e minimi. Studio di una funzione. (M.S.Bernabei & H. Thaler) Studio di una funzione Funzioni crescenti e decrescenti Una funzione f è crescente nell intervallo (a, b) se

Dettagli

1 Successioni di funzioni

1 Successioni di funzioni Analisi Matematica 2 Successioni di funzioni CORSO DI STUDI IN SMID CORSO DI ANALISI MATEMATICA 2 CAPITOLO 6 SERIE DI POTENZE Supponiamo di associare ad ogni n N (rispettivamente ad ogni n p, per qualche

Dettagli

Calcolo integrale. Regole di integrazione

Calcolo integrale. Regole di integrazione Calcolo integrale Linearità dell integrale Integrazione per parti Integrazione per sostituzione Integrazione di funzioni razionali 2 2006 Politecnico di Torino Proprietà Siano e funzioni integrabili su

Dettagli

Risoluzione di sistemi lineari sparsi e di grandi dimensioni

Risoluzione di sistemi lineari sparsi e di grandi dimensioni Risoluzione di sistemi lineari sparsi e di grandi dimensioni Un sistema lineare Ax = b con A R n n, b R n, è sparso quando il numero di elementi della matrice A diversi da zero è αn, con n α. Una caratteristica

Dettagli

Trapani. Dispensa di Geometria, x 1 x 2.x n. (x 1 y 1 ) (x n y n ) 2.

Trapani. Dispensa di Geometria, x 1 x 2.x n. (x 1 y 1 ) (x n y n ) 2. 2006 Trapani Dispensa di Geometria, 1 Distanze Siano P e Q punti di R n con P di coordinate allora la distanza tra P e Q e P Q = x 1 x 2 x n (x 1 y 1 ) 2 + (x n y n ) 2 e Q di coordinate Siano Σ 1 e Σ

Dettagli

Equazioni sub-lineari con dati regolari ed irregolari

Equazioni sub-lineari con dati regolari ed irregolari Capitolo 5 Equazioni sub-lineari con dati regolari ed irregolari In questo capitolo, ci proponiamo di affrontare un problema omogeneo differente dal problema agli autovalori; il nostro scopo, sarà quello

Dettagli

Note sulle funzioni di variabile complessa

Note sulle funzioni di variabile complessa Note sulle funzioni di variabile complessa Carlo Sinestrari Dipartimento di Matematica, Università di Roma Tor Vergata Queste note contengono alcuni risultati sulle funzioni di variabile complessa esposti

Dettagli

Appunti su Indipendenza Lineare di Vettori

Appunti su Indipendenza Lineare di Vettori Appunti su Indipendenza Lineare di Vettori Claudia Fassino a.a. Queste dispense, relative a una parte del corso di Matematica Computazionale (Laurea in Informatica), rappresentano solo un aiuto per lo

Dettagli

Serie Borlini Alex

Serie Borlini Alex Serie numerica >> Prefazione Progressione lista ordinata e finita di elementi. Successione lista ordinata e infinita di elementi (numeri reali chiamati termini), {a n }=a 1, a 2, a 3 Successione di Fibonacci:

Dettagli

TEOREMA DI GREEN ( ) D ; C è il contorno orientato del dominio D considerato

TEOREMA DI GREEN ( ) D ; C è il contorno orientato del dominio D considerato Le formule f d dy = f (, y ) dy TEOEMA I GEEN [] f d dy = f (, y ) d [] note come formule di Green sono due relazioni semplici ma molto importanti fra gli integrali estesi ad un dominio piano e gli integrali

Dettagli

Istituzioni di Matematiche, Integrali fratti. corso di laurea in Scienze geologiche. Mauro Costantini

Istituzioni di Matematiche, Integrali fratti. corso di laurea in Scienze geologiche. Mauro Costantini Istituzioni di Matematiche, Integrali fratti corso di laurea in Scienze geologiche. Mauro Costantini tipo: Il nostro obiettivo è studiare gli integrali (indefiniti e definiti delle funzioni razionali,

Dettagli

La convergenza uniforme

La convergenza uniforme La convergenza uniforme 1. Il tubo Sia {f n (x)} una successione convergente a f(x) per x E: disegniamo il grafico della funzione limite f(x) assegnato ε > 0 disegniamo la striscia - il tubo - intorno

Dettagli

Alcune nozioni di calcolo differenziale

Alcune nozioni di calcolo differenziale Alcune nozioni di calcolo differenziale G. Mastroeni, M. Pappalardo 1 Limiti per funzioni di piu variabili Supporremo noti i principali concetti algebrici e topologici relativi alla struttura dello spazio

Dettagli

ANALISI DI FOURIER. 2πk. è periodica di periodo T. Più precisamente, essendo. T x + 2π = cos. s(x) = s x + T ) T +α. f(x) dx

ANALISI DI FOURIER. 2πk. è periodica di periodo T. Più precisamente, essendo. T x + 2π = cos. s(x) = s x + T ) T +α. f(x) dx ANALISI DI FOURIER Sia >. Una funzione f, definita per x R, si dice periodica di periodo, se f(x + = f(x, x R. ( Se una funzione è periodica di periodo, essa è anche periodica di periodo, 3,..., k,....

Dettagli

Calcolo differenziale 2: Massimi e minimi. Studio di una funzione. (M.S.Bernabei & H. Thaler)

Calcolo differenziale 2: Massimi e minimi. Studio di una funzione. (M.S.Bernabei & H. Thaler) Calcolo differenziale 2: Massimi e minimi. Studio di una funzione. (M.S.Bernabei & H. Thaler) Studio di una funzione Funzioni crescenti e decrescenti Una funzione f é crescente nell intervallo (a, b) se

Dettagli

Elettromagnetismo Formulazione differenziale

Elettromagnetismo Formulazione differenziale Elettromagnetismo Formulazione differenziale 1. Legge di Gauss 2. Legge di Ampere 3. Equazioni di Maxwell statiche V - 0 Legge di Gauss Campo elettrico Carica contenuta all interno della superficie A Flusso

Dettagli

5.2 Sistemi ONC in L 2

5.2 Sistemi ONC in L 2 5.2 Sistemi ONC in L 2 Passiamo ora a considerare alcuni esempi di spazi L 2 e di relativi sistemi ONC al loro interno. Le funzioni trigonometriche Il sistema delle funzioni esponenziali { e ikx 2π },

Dettagli

1 Polinomio di Taylor 1. 2 Formula di Taylor 2. 3 Alcuni sviluppi notevoli 2. 4 Uso della formula di Taylor nel calcolo dei limiti 4

1 Polinomio di Taylor 1. 2 Formula di Taylor 2. 3 Alcuni sviluppi notevoli 2. 4 Uso della formula di Taylor nel calcolo dei limiti 4 1 POLINOMIO DI TAYLOR 1 Formula di Taylor Indice 1 Polinomio di Taylor 1 Formula di Taylor 3 Alcuni sviluppi notevoli 4 Uso della formula di Taylor nel calcolo dei iti 4 5 Soluzioni degli esercizi 6 La

Dettagli

Esame di MATEMATICA CORSO BASE del

Esame di MATEMATICA CORSO BASE del Esame di MATEMATICA CORSO BASE del Cognome Matricola Nome Esercizio. Si consideri il seguente sistema x 3y + z =5 x ky +z = k kx y z = Si trovino il numero delle soluzioni al variare del parametro k e

Dettagli

Liceo Scientifico di ordinamento anno ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO anno PROBLEMA 1

Liceo Scientifico di ordinamento anno ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO anno PROBLEMA 1 Liceo Scientifico di ordinamento anno 00-00 ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO anno 00-00 PROBLEMA Punto a Indicati rispettivamente con V ed S il volume e l area totale di T e con

Dettagli

Appunti sui Codici di Reed Muller. Giovanni Barbarino

Appunti sui Codici di Reed Muller. Giovanni Barbarino Appunti sui Codici di Reed Muller Giovanni Barbarino Capitolo 1 Codici di Reed-Muller I codici di Reed-Muller sono codici lineari su F q legati alle valutazioni dei polinomi sullo spazio affine. Per semplicità

Dettagli

Teorema dei residui: applicazioni

Teorema dei residui: applicazioni Teorema dei residui: applicazioni Docente:Alessandra Cutrì ichiamo: Teorema dei residui Teorema dei esidui:sia f H(A \ {z, z 2,... z N }), z, z 2,... z N singolarità isolate per f e sia γ una curva chiusa,

Dettagli

ANALISI MATEMATICA 3. esercizi assegnati per la prova scritta del 31 gennaio 2011

ANALISI MATEMATICA 3. esercizi assegnati per la prova scritta del 31 gennaio 2011 esercizi assegnati per la prova scritta del 31 gennaio 2011 Esercizio 1. Per x > 0 e n N si ponga f n (x) = ln ( n 5 x ) a) Provare l integrabilità delle funzioni f n in (0, + ). 3 + n 4 x 2. b) Studiare

Dettagli

Derivata materiale (Lagrangiana) e locale (Euleriana)

Derivata materiale (Lagrangiana) e locale (Euleriana) ispense di Meccanica dei Fluidi 0 0 det 0 = [ (0 ) + ( ( ) ) + (0 0 ) ] = 0. Pertanto, v e µ sono indipendenti tra loro e costituiscono una nuova base. Con essi è possibile descrivere altre grandezze,

Dettagli

Istituzioni di Matematiche Modulo B (SG)

Istituzioni di Matematiche Modulo B (SG) Istituzioni di Matematiche Modulo B (SG) II foglio di esercizi ESERCIZIO 1. Per ciascuna funzione f(, ) calcolare le derivate parziali f (, ) e f (, ) e determinare il relativo dominio di definizione.

Dettagli

Forme differenziali lineari e loro integrazione

Forme differenziali lineari e loro integrazione Forme differenziali lineari e loro integrazione Integrazione di una forma differenziale in due variabili Siano L(, ) e ( ) consideriamo l espressione M, due funzioni definite e continue in un insieme connesso

Dettagli

Esistenza ed unicità per equazioni differenziali

Esistenza ed unicità per equazioni differenziali Esistenza ed unicità per equazioni differenziali Per concludere queste lezioni sulle equazioni differenziali vogliamo dimostrare il teorema esistenza ed unicità per il problema di Cauchy. Faremo la dimostrazione

Dettagli

Soluzioni dello scritto di Analisi Matematica II - 10/07/09. C.L. in Matematica e Matematica per le Applicazioni

Soluzioni dello scritto di Analisi Matematica II - 10/07/09. C.L. in Matematica e Matematica per le Applicazioni Soluzioni dello scritto di Analisi Matematica II - /7/9 C.L. in Matematica e Matematica per le Applicazioni Proff. K. Payne, C. Tarsi, M. Calanchi Esercizio. a La funzione f è limitata e essendo lim fx

Dettagli

Funzioni di più variabili a valori vettoriali n t m

Funzioni di più variabili a valori vettoriali n t m Funzioni di più variabili a valori vettoriali n t m Definizione f(x 1, x 2,...x n )=[f 1 (x 1, x 2,...x n ), f 2 (x 1, x 2,...x n ),...f m (x 1, x 2,...x n )] Funzione definita n d m Dove: n = dominio

Dettagli

Introduzione al Metodo agli Elementi Finiti (FEM) (x, y) Γ Tale formulazione viene detta Formulazione forte del problema.

Introduzione al Metodo agli Elementi Finiti (FEM) (x, y) Γ Tale formulazione viene detta Formulazione forte del problema. Introduzione al Metodo agli Elementi Finiti (FEM) Consideriamo come problema test l equazione di Poisson 2 u x 2 + 2 u = f(x, y) u = f y2 definita su un dominio Ω R 2 avente come frontiera la curva Γ,

Dettagli

Appunti sul corso di Complementi di Matematica mod. Analisi prof. B.Bacchelli - a.a. 2010/2011.

Appunti sul corso di Complementi di Matematica mod. Analisi prof. B.Bacchelli - a.a. 2010/2011. Appunti sul corso di Complementi di Matematica mod. Analisi prof. B.Baccelli - a.a. 2010/2011. 06 - Derivate, differenziabilità, piano tangente, derivate di ordine superiore. Riferimenti: R.Adams, Calcolo

Dettagli

A.A. 2016/17 - Analisi Matematica 1

A.A. 2016/17 - Analisi Matematica 1 A.A. 2016/17 - Analisi Matematica 1 Argomenti svolti, libro di testo di riferimento: P. Marcellini, C. Sbordone: Elementi Calcolo. Liguori Editore. O. Bernardi: Temi d esame senza tema. Ed. Libreria Progetto.

Dettagli

Esercizi per il corso di Analisi 6.

Esercizi per il corso di Analisi 6. Esercizi per il corso di Analisi 6. 1. Si verifichi che uno spazio normato (X, ) è uno spazio vettoriale topologico con la topologia indotta dalla norma. Si verifichi poi che la norma è una funzione continua

Dettagli

SESSIONE SUPPLETIVA QUESTIONARIO QUESITO 1

SESSIONE SUPPLETIVA QUESTIONARIO QUESITO 1 www.matefilia.it SESSIONE SUPPLETIVA 216 - QUESTIONARIO QUESITO 1 Si consideri questa equazione differenziale: y + 2y + 2y = x. Quale delle seguenti funzioni ne è una soluzione? Si giustifichi la risposta.

Dettagli

Prodotto scalare e ortogonalità

Prodotto scalare e ortogonalità Prodotto scalare e ortogonalità 12 Novembre 1 Il prodotto scalare 1.1 Definizione Possiamo estendere la definizione di prodotto scalare, già data per i vettori del piano, ai vettori dello spazio. Siano

Dettagli

Serie e Trasformata di Fourier

Serie e Trasformata di Fourier Serie e Trasformata di Fourier Corso di Analisi Funzionale Prof. Paolo Nistri Cancelli, D Angelo, Giannetti Polinomio di Fourier Si consideri la successione costituita dalle restrizioni delle funzioni

Dettagli