(x) = F 1 x 1. (x)+ F 2. cioè è la traccia (cioè la somma degli elementi della diagonale principale) della matrice jacobiana J F (x).

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "(x) = F 1 x 1. (x)+ F 2. cioè è la traccia (cioè la somma degli elementi della diagonale principale) della matrice jacobiana J F (x)."

Transcript

1 Teorema della divergenza Richiami di teoria Operatori divergenza e di Laplace R n un insieme aperto, x = (x 1, x 2,..., x n ). Divergenza Consideriamo un campo vettoriale F : R n R n differenziabile in (cioè F = (F 1,..., F n ) e per ogni i = 1,..., n le funzioni F i : R sono differenziabili in ogni punto di ). L operatore divergenza di F è definito da div F (x) = n i=1 F i x i (x) = F 1 x 1 (x)+ F 2 x 2 (x)+...+ F n x n (x), x, cioè è la traccia (cioè la somma degli elementi della diagonale principale) della matrice jacobiana J F (x). Notare che l operatore divergenza fa passare da un campo vettoriale F : R n R n a un campo scalare div F : R. Laplaciano Consideriamo un campo scalare f : R n R f C 2 (). L operatore Laplaciano di f è definito da f(x) = div ( f) (x) = n i=1 2 f (x) x 2 i = 2 f x 2 (x) + 2 f 1 x 2 (x) f (x), x, 2 x 2 n

2 cioè è la traccia della matrice hessiana Hf(x). Data f = f(x, y) C 2 (), sia f = f(ρ, ϑ) = f(ρ cos(ϑ), ρ sin(ϑ)) la funzione corrispondente a f in coordinate polari. L operatore corrispondente al Laplaciano in coordinate polari è f f = 2 f ρ + 1 f 2 ρ ρ f ρ 2 ϑ 2.

3 Regolarità di insiemi aperti Un aperto R n si dice di classe C 1 se soddisfa le seguenti condizioni è limitato si rappresenta localmente come grafico di una funzione di classe C 1, cioè x B r (x) f : T R n 1 R, T insieme aperto e f C 1 (T ), tali che B r (x) = graf(f) = {(x 1, x 2,..., x n ) R n : (x 1,..., x n 1 ) T, x n = f(x 1,..., x n 1 )}. Analogamente si da la definizione di aperto di classe C k, k 1.

4 Versore normale esterno Sia R n un aperto di classe C 1. Allora per ogni x è ben definito il versore (di R n ) normale a in x, diretto verso l esterno di, che denotiamo come ν(x) versore normale esterno in x. Chiamiamo normale esterna il campo vettoriale ν : R n, che è di classe C 0 su. Esempi: se n = 2, R 2, quindi è una curva regolare (di classe C 1 ) allora ν(x) è il versore normale alla curva in x, diretto verso l esterno di se n = 3, R 3, quindi è una superficie regolare di R 3 e ν(x) è il versore normale alla superficie in x, diretto verso l esterno di

5 Superficie e integrali di superficie Sia S una superficie regolare di R 3 data in forma cartesiana, cioè S è il grafico di una funzione f : T R 2 R classe C 1 : S = { (x, y, z) R 3 : z = f(x, y), (x, y) T }. Allora per ogni P = (x, y, z) = (x, y, f(x, y)) S il versore normale a S nel punto P è ν(p ) = ν(x, y, f(x, y)) = 1 + f data una funzione 1 2 x (x, y) 2 y (x, y) + f g : S R limitata su S, g = g(x, y, z) l integrale di superficie di g su S è = ove S g ds T g(x, y, f(x, y)) ds = ( f ) (x, y), f x y (x, y), 1 ( ) f 2 ( ) f 2 x (x, y) + y (x, y) dxdy ( ) f 2 ( ) f 2 x (x, y) + y (x, y) dxdy è l elemento infinitesimo di area della superficie.

6 Sia F : S R 3 di classe C 1. Il flusso di F attraverso S è F ν ds S con il prodotto scalare. Quindi usando la rappresentazione cartesiana della superficie (e osservando che la quantità 1 + f x si elide) si ha la formula per il flusso di una campo vettoriale attraverso una superficie cartesiana F ν ds 2 + f 2 y = S T F (x, y, f(x, y)) ( f x (x, y), f y (x, y), 1 ) dxdy

7 Il teorema della divergenza (o teorema di Gauss) Sia n = 2 o n = 3 sia R n un aperto di classe C 1 sia F : R n un campo vettoriale con F C 0 () C 1 () cioè F è continuo sulla chiusura di e di classe C 1 in sia ν : R n la normale esterna al bordo. Allora div F dx = F ν ds. Riduzione dimensionale: Si passa da un integrale in R n (n = 2, 3) a un integrale in R n 1! se n = 2, si passa da un integrale doppio a un integrale curvilineo: notare che ν è il versore normale (esterno) alla curva F ν ds è l integrale curvilineo di prima specie del campo scalare ϕ = F ν lungo la curva se n = 3, si passa da un integrale triplo a un integrale superficiale: notare che ν è il versore normale (esterno) alla superficie F ν ds è il flusso di F attraverso la superficie

8 Formula di integrazione per parti La riduzione dimensionale è caratteristica di tutte le formule di integrazione per parti: nel caso f, g : (a, b) R R di classe C 1 su (a, b) si passa da integrali 1-dimensionali a integrali 0-dimensionali b a f (x)g(x) dx = b a f(x)g (x) dx + [f(x)g(x)] b a. Dal teorema della divergenza si ricava la seguente Formula di integrazione per parti. Allora Sia n = 2 o n = 3 e R n un aperto di classe C 1 siano u : R un campo scalare con u C 0 () C 1 () v : R n un campo vettoriale con v C 0 () C 1 () v (x) u(x) dx = u(x) div( v (x)) dx + u v ν ds.... Si dimostra applicando il teorema della divergenza al campo F = u v e osservando che vale la formula di Leibniz div(u v ) = u v + u div( v )

9 Da si ricavano Altre formule di integrazione per parti v (x) u(x) dx = u(x) div( v (x)) dx + u v ν ds. formula di integrazione per parti rispetto alla derivata parziale i-esima: dati u, w : R campi scalare con u, w C 0 () C 1 () si ha per ogni i = 1,..., n u x i w dx = u w dx + x i uwν i ds.... Si dimostra applicando la formula di integrazione per parti al campo scalare u e al campo vettoriale v = w e i, con e i l i-esimo versore della base canonica di R n formula di integrazione per parti per l operatore di Laplace: dati si ha u, w : R campi scalari con u C 0 () C 1 () u w dx = u w dx + w C 1 () C 2 () u w ν ds.... Si dimostra applicando la formula di integrazione per parti al campo scalare u e al campo vettoriale v = w, che ha la regolarità giusta essendo w C 1 () C 2 (). Si noti che il termine w ν viene detto derivata normale di w e denotato come w ν. Allora la formula diventa u w dx = u w dx + u w ν ds.

ANALISI VETTORIALE ESERCIZI SULLE SUPERFICI

ANALISI VETTORIALE ESERCIZI SULLE SUPERFICI ANALII VETTORIALE EERCIZI ULLE UPERFICI Esercizio Calcolare l area della superficie dove Σ {(x, y, z) (x, y) E, z 2 + x 2 + y 2 } E {(x, y) x 2 + y 2 4}. Essendo la superficie Σ data come grafico di una

Dettagli

calcolare il lavoro di E lungo il segmento da A = ( 1, 1, 1) a B = (1, 1, 1), calcolare rot ( E ), determinare un potenziale U(x, y, z) per E.

calcolare il lavoro di E lungo il segmento da A = ( 1, 1, 1) a B = (1, 1, 1), calcolare rot ( E ), determinare un potenziale U(x, y, z) per E. ANALISI VETTORIALE Soluzione esonero.1. Esercizio. Assegnato il campo E (x, y, z) = x(y + z ), y(x + z ), z(x + y ) } 1111 calcolare il lavoro di E lungo il segmento da A = ( 1, 1, 1) a B = (1, 1, 1),

Dettagli

1. Mar. 17/1/06 2 ore Presentazione del corso. Libro di testo e altri testi consigliati. Alcune informazioni

1. Mar. 17/1/06 2 ore Presentazione del corso. Libro di testo e altri testi consigliati. Alcune informazioni Università degli Studi di Firenze Anno Accademico 2005/2006 Ingegneria per l Ambiente e il Territorio Corso di Analisi Matematica 2 (IAT) Docente: Francesca Bucci Periodo: II periodo (16 gennaio 2006 17

Dettagli

Analisi Vettoriale A.A Soluzioni del Foglio 4

Analisi Vettoriale A.A Soluzioni del Foglio 4 Analisi Vettoriale A.A. 26-27 - Soluzioni del Foglio 4 Esercizio 4.1. Sia Σ la superficie cartesiana z = 1 x y, (x, y) = {x 2 + y 2 1}, determinare in ogni punto di Σ il versore normale diretto nel verso

Dettagli

Integrali di superficie

Integrali di superficie Integrali di superficie Hynek Kovarik Università di Brescia Analisi Matematica 2 Hynek Kovarik (Università di Brescia) Integrali curvilinei Analisi Matematica 2 1 / 27 Superfici in forma parametrica Procediamo

Dettagli

si ha La lunghezza L si calcola per ciascun tratto L = (2t)2 + (3t 2 ) dt+ 2 (3t2 ) 2 + (2t) 2 dt = 4t2 + 9t 4 dt = t

si ha La lunghezza L si calcola per ciascun tratto L = (2t)2 + (3t 2 ) dt+ 2 (3t2 ) 2 + (2t) 2 dt = 4t2 + 9t 4 dt = t ANALISI VETTORIALE Soluzione esercizi 1 gennaio 211 6.1. Esercizio. Sia Γ la curva regolare a tratti di rappresentazione parametrica x = t 2, y = t, t [, 1] e x = t, y = t 2, t [1, 2] calcolare la lunghezza,

Dettagli

Soluzione della Prova Parziale di Analisi Matematica III - 17/02/04. C.L. in Matematica e Matematica per le Applicazioni. Prof. Kevin R.

Soluzione della Prova Parziale di Analisi Matematica III - 17/02/04. C.L. in Matematica e Matematica per le Applicazioni. Prof. Kevin R. Soluzione della Prova Parziale di Analisi Matematica III - 7//4 C.L. in Matematica e Matematica per le Applicazioni Prof. Kevin R. Payne Esercizio. a. Ricordiamo inanzitutto la seguente: efinizione: Si

Dettagli

Gli argomenti denotati con un asterisco tra parentesi (e solo quelli) sono stati dimostrati.

Gli argomenti denotati con un asterisco tra parentesi (e solo quelli) sono stati dimostrati. Corso di laurea: Fisica ed Astronomia Programma di Analisi Matematica 2 a.a. 2016/17 Docente: Fabio Paronetto Gli argomenti denotati con un asterisco tra parentesi (e solo quelli) sono stati dimostrati.

Dettagli

Corso di laurea: Ingegneria aerospaziale e meccanica Programma di Fondamenti di Analisi Matematica II a.a. 2012/13 Docente: Fabio Paronetto

Corso di laurea: Ingegneria aerospaziale e meccanica Programma di Fondamenti di Analisi Matematica II a.a. 2012/13 Docente: Fabio Paronetto Corso di laurea: Ingegneria aerospaziale e meccanica Programma di Fondamenti di Analisi Matematica II a.a. 2012/13 Docente: Fabio Paronetto Gli argomenti denotati con un asterisco tra parentesi (e solo

Dettagli

Corsi di laurea in ingegneria aerospaziale e ingegneria meccanica Prova scritta di Fondamenti di Analisi Matematica II. Padova, 19.9.

Corsi di laurea in ingegneria aerospaziale e ingegneria meccanica Prova scritta di Fondamenti di Analisi Matematica II. Padova, 19.9. Corsi di laurea in ingegneria aerospaziale e ingegneria meccanica Prova scritta di Fondamenti di Analisi Matematica II Padova, 19.9.2016 Si svolgano i seguenti esercizi facendo attenzione a giustificare

Dettagli

Corso di laurea: Ingegneria aerospaziale e meccanica Programma di Fondamenti di Analisi Matematica II a.a. 2013/14 Docente: Fabio Paronetto

Corso di laurea: Ingegneria aerospaziale e meccanica Programma di Fondamenti di Analisi Matematica II a.a. 2013/14 Docente: Fabio Paronetto Corso di laurea: Ingegneria aerospaziale e meccanica Programma di Fondamenti di Analisi Matematica II a.a. 2013/14 Docente: Fabio Paronetto Gli argomenti denotati con un asterisco tra parentesi (e solo

Dettagli

Premesse matematiche. 2.1 Gradiente

Premesse matematiche. 2.1 Gradiente Premesse matematiche 2.1 Gradiente ia f(x, y, z) : R 3 una funzione scalare delle coordinate spaziali (x, y, z). L ampiezza della funzione f(x, y, z) dipende dal punto di osservazione e risulta in genere

Dettagli

Funzioni di R n a R m e la matrice Jacobiana

Funzioni di R n a R m e la matrice Jacobiana 0.1 Funzioni di R n a R m. Politecnico di Torino. Funzioni di R n a R m e la matrice Jacobiana Nota Bene: delle lezioni. Questo materiale non deve essere considerato come sostituto 0.1 Funzioni di R n

Dettagli

Soluzione della Prova Scritta di Analisi Matematica III - 28/02/02. C.L. in Matematica e Matematica per le Applicazioni. Prof. Kevin R.

Soluzione della Prova Scritta di Analisi Matematica III - 28/02/02. C.L. in Matematica e Matematica per le Applicazioni. Prof. Kevin R. Soluzione della Prova Scritta di Analisi Matematica III - 28/2/2 C.L. in Matematica e Matematica per le Applicazioni Prof. Kevin R. Payne Esercizio 1. 1a. Teorema: (di ini) Sia Φ : A R n R R dove A è aperto.

Dettagli

es.1 es.2 es.3 es.4 es.5 somma Analisi Matematica 2: Secondo Parziale, , Versione A Cognome e nome:...matricola:...

es.1 es.2 es.3 es.4 es.5 somma Analisi Matematica 2: Secondo Parziale, , Versione A Cognome e nome:...matricola:... es.1 es. es.3 es. es.5 somma 6 6 6 6 6 3 Analisi Matematica : Secondo Parziale, 3.5.16, Versione A Cognome e nome:....................................matricola:......... 1. Dimostrare che la forma differenziale

Dettagli

Gli argomenti denotati con un asterisco tra parentesi (e solo quelli) sono stati dimostrati.

Gli argomenti denotati con un asterisco tra parentesi (e solo quelli) sono stati dimostrati. Corso di laurea: Fisica ed Astronomia Programma di Analisi Matematica 2 a.a. 2018/19 Docente: Fabio Paronetto Gli argomenti denotati con un asterisco tra parentesi (e solo quelli) sono stati dimostrati.

Dettagli

Cognome Nome Matricola Codice ESEMPIO 1

Cognome Nome Matricola Codice ESEMPIO 1 Cognome Nome Matricola Codice ESEMPIO 1 [1]. (***) Definizione di sistema fondamentale di soluzioni di un equazione differenziale lineare d ordine n omogenea. Sia I un intervallo non banale di R; siano

Dettagli

PROGRAMMA DI ANALISI MATEMATICA 2 Corsi di Laurea in Ing. Informatica (Prof. Ravaglia) Anno Accademico 2015/16

PROGRAMMA DI ANALISI MATEMATICA 2 Corsi di Laurea in Ing. Informatica (Prof. Ravaglia) Anno Accademico 2015/16 PROGRAMMA DI ANALISI MATEMATICA 2 Corsi di Laurea in Ing. Informatica (Prof. Ravaglia) Anno Accademico 2015/16 Simboli: I= introduzione intuitiva, D = definizione, T = teorema C = criterio deduttivo, d

Dettagli

Corso di Laurea in Ingegneria Gestionale - Sede di Fermo Anno Accademico 2009/2010 Matematica 2 Esercizi d esame

Corso di Laurea in Ingegneria Gestionale - Sede di Fermo Anno Accademico 2009/2010 Matematica 2 Esercizi d esame Corso di Laurea in Ingegneria Gestionale - ede di Fermo Anno Accademico 2009/2010 Matematica 2 Esercizi d esame Nome... N. Matricola... Fermo, gg/mm/aaaa 1. tabilire l ordine di ciascuna delle seguenti

Dettagli

Analisi Matematica III (Fisica) 07 Gennaio 2016

Analisi Matematica III (Fisica) 07 Gennaio 2016 Analisi Matematica III (Fisica 7 Gennaio 16 1. (1 punti Calcolare l area della sezione del cilindro x + y 4 determinata dal piano di equazione z x + y. (Possibilmente in due modi differenti Ci sono vari

Dettagli

Gli argomenti denotati con un asterisco tra parentesi (e solo quelli) sono stati dimostrati.

Gli argomenti denotati con un asterisco tra parentesi (e solo quelli) sono stati dimostrati. Corso di laurea: Fisica ed Astronomia Programma di Analisi Matematica 2 a.a. 2017/18 Docente: Fabio Paronetto Gli argomenti denotati con un asterisco tra parentesi (e solo quelli) sono stati dimostrati.

Dettagli

Funzioni di n variabili a valori vettoriali

Funzioni di n variabili a valori vettoriali Funzioni di n variabili a valori vettoriali Ultimo aggiornamento: 22 maggio 2018 1 Differenziale per funzioni da R n in R k Una funzione F : A R n R k può essere vista come una k-upla di funzioni scalari

Dettagli

es.1 es.2 es.3 es.4 es.5 somma Analisi Matematica 2: Primo Parziale, , Versione A Cognome e nome:...matricola:...

es.1 es.2 es.3 es.4 es.5 somma Analisi Matematica 2: Primo Parziale, , Versione A Cognome e nome:...matricola:... es. es. es. es.4 es.5 somma 5 4 8 8 5 Analisi Matematica : Primo Parziale,.4.7, Versione A Cognome e nome:....................................matricola:.......... Calcolare la lunghezza della curva di

Dettagli

Operatori vettoriali su R ³

Operatori vettoriali su R ³ Operatori vettoriali su R ³ Sui campi scalari e vettoriali tridimensionali è possibile definire degli operatori vettoriali che giocano un ruolo importantissimo anche per le applicazioni nel campo fisico

Dettagli

Cognome Nome Matricola Codice ESEMPIO 1

Cognome Nome Matricola Codice ESEMPIO 1 Cognome Nome Matricola Codice ESEMPIO 1 [1]. (***) Definizione di forma differenziale chiusa. Sia A R N ; sia A aperto; sia ω = N i=1 ω i dx i una forma differenziale su A; sia ω di classe C 1 ; si dice

Dettagli

PROGRAMMA PROVVISORIO DI ANALISI MATEMATICA 2 INGEGNERIA EDILE -ARCHITETTURA, A.A. 2018/2019 DOCENTE MICHIEL BERTSCH

PROGRAMMA PROVVISORIO DI ANALISI MATEMATICA 2 INGEGNERIA EDILE -ARCHITETTURA, A.A. 2018/2019 DOCENTE MICHIEL BERTSCH PROGRAMMA PROVVISORIO DI ANALISI MATEMATICA 2 INGEGNERIA EDILE -ARCHITETTURA, A.A. 2018/2019 DOCENTE MICHIEL BERTSCH Libro di testo di riferimento: M. Bertsch, R. Dal Passo, L. Giacomelli, Analisi Matematica,

Dettagli

Risposta La curva r è regolare a tratti per via di quanto succede della sua rappresentazione parametrica nel punto t = 1: pur riuscendo

Risposta La curva r è regolare a tratti per via di quanto succede della sua rappresentazione parametrica nel punto t = 1: pur riuscendo ANALISI VETTORIALE OMPITO PER LE VAANZE DI FINE D ANNO Esercizio Sia r(t) la curva regolare a tratti x = t, y = t, t [, ] e x = t, y = t, t [, ]. alcolare la lunghezza di r, calcolare, dove esistono, i

Dettagli

Analisi Matematica 2 (Corso di Laurea in Informatica)

Analisi Matematica 2 (Corso di Laurea in Informatica) COGNOME NOME Matr. Firma dello studente Analisi Matematica 2 (Corso di Laurea in Informatica) 2.02.2012 B Tempo: ore. Prima parte: test a risposta multipla. Una ed una sola delle 4 affermazioni è corretta.

Dettagli

Analisi Matematica II Politecnico di Milano Ingegneria Industriale

Analisi Matematica II Politecnico di Milano Ingegneria Industriale Analisi Matematica II Politecnico di Milano Ingegneria Industriale Autovalutazione #5. Sia f : R R la funzione definita da f(x, y) x + x + y + x + y (x, y) R. (a) Determinare il segno di f. (b) Calcolare

Dettagli

Es. 1 Es. 2 Es. 3 Es. 4 Totale

Es. 1 Es. 2 Es. 3 Es. 4 Totale Es. Es. Es. Es. 4 Totale Analisi e Geometria Seconda prova in itinere Docente: luglio Cognome: Nome: Matricola: Ogni risposta dev essere giustificata. Gli esercizi vanno svolti su questi fogli, nello spazio

Dettagli

Funzioni di più variabili a valori vettoriali n t m

Funzioni di più variabili a valori vettoriali n t m Funzioni di più variabili a valori vettoriali n t m Definizione f(x 1, x 2,...x n )=[f 1 (x 1, x 2,...x n ), f 2 (x 1, x 2,...x n ),...f m (x 1, x 2,...x n )] Funzione definita n d m Dove: n = dominio

Dettagli

PARTE 3: Funzioni di più variabili e funzioni vettoriali

PARTE 3: Funzioni di più variabili e funzioni vettoriali PROGRAMMA di Fondamenti di Analisi Matematica 2 (Versione estesa del 14/1/ 10) A.A. 2009-2010, canali 1 e 2, proff.: Francesca Albertini e Monica Motta Ingegneria gestionale, meccanica e meccatronica,

Dettagli

Integrali superficiali

Integrali superficiali Integrali superficiali Integreremo solo su particolari superfici: le calotte regolari in forma cartesiana. Definizione. Diciamo calotta (cartesiana) regolare il grafico di una qualsiasi funzione continua

Dettagli

Analisi Matematica T_2 (prof.g.cupini) A.A CdL Ingegneria Automaz./Energ.Elettrica - Univ.Bologna REGISTRO DELLE LEZIONI

Analisi Matematica T_2 (prof.g.cupini) A.A CdL Ingegneria Automaz./Energ.Elettrica - Univ.Bologna REGISTRO DELLE LEZIONI Analisi Matematica T_2 (prof.g.cupini) A.A.2014-2015 - CdL Ingegneria Automaz./Energ.Elettrica - Univ.Bologna REGISTRO DELLE LEZIONI Lu, 23 febbraio 2015 Presentazione del corso. Curve parametriche: definizione.

Dettagli

Le soluzioni del foglio 3

Le soluzioni del foglio 3 Le soluzioni del foglio 3 1. Esercizio Consideriamo la famiglia di elicoidi, vedi Figura 1, x = u cos(v), y = u sin(v), z = kv, u 1, v π Quella proposta nell esercizio corrisponde alla scelta k = 1 Matrice

Dettagli

Introduzione alla Fisica Moderna - a.a

Introduzione alla Fisica Moderna - a.a Introduzione alla Fisica Moderna - a.a. 2016-17 18/12/2017 Nome Cognome Matricola: 1) Si consideri il sistema dinamico nonlineare ẋ = y x 2, ẏ = x + y 2, Si determinino i punti di equilibrio, si caratterizzi

Dettagli

Analisi Matematica II 14 Giugno 2019

Analisi Matematica II 14 Giugno 2019 Analisi Matematica II 14 Giugno 2019 Cognome: Nome: Matricola: 1. (10 punti) Si determinino i sottoinsiemi del piano in cui valgano, rispettivamente, continuità, derivabilità e differenziabilità della

Dettagli

I teoremi della funzione inversa e della funzione implicita

I teoremi della funzione inversa e della funzione implicita I teoremi della funzione inversa e della funzione implicita Appunti per il corso di Analisi Matematica 4 G. Mauceri Indice 1 Il teorema della funzione inversa 1 Il teorema della funzione implicita 3 1

Dettagli

Domande da 6 punti. Prima parte del programma

Domande da 6 punti. Prima parte del programma Domande da 6 punti Prima parte del programma Domanda. Dare la definizione di arco di curva continua, di sostegno di una curva, di curva chiusa, di curva semplice e di curva piana fornendo qualche esempio.

Dettagli

Risultati di ANALISI VETTORIALE

Risultati di ANALISI VETTORIALE Guida allo studio autonomo in ELETTROMAGNETISMO U Unità Risultati di ANALISI VETTORIALE Introduzione Hai già studiato gran parte della matematica necessaria per questo corso Comunque vale la pena di rivedere

Dettagli

ANALISI MATEMATICA 2 - INGEGNERIA MECCANICA ED ENERGETICA A.A PROVA SCRITTA DEL 28/1/19

ANALISI MATEMATICA 2 - INGEGNERIA MECCANICA ED ENERGETICA A.A PROVA SCRITTA DEL 28/1/19 ANALISI MATEMATICA - INGEGNERIA MECCANICA E ENERGETICA A.A. 8-9 PROVA SCRITTA EL 8//9 Scrivere nome cognome e numero di matricola in stampatello su tutti i fogli da consegnare. Consegnare solo la bella

Dettagli

Michela Procesi Analisi matematica II Programma svolto nel corso 2012, dal 27 febbraio all' 8 giugno, lezioni 1-25

Michela Procesi Analisi matematica II Programma svolto nel corso 2012, dal 27 febbraio all' 8 giugno, lezioni 1-25 Michela Procesi Analisi matematica II Programma svolto nel corso 2012, dal 27 febbraio all' 8 giugno, lezioni 1-25 Lezione 1 (27/02/2012) - Richiami sullo spazio euclideo Rn: operazioni di spazio vettoriale,

Dettagli

PARTE 4: Equazioni differenziali

PARTE 4: Equazioni differenziali PROGRAMMA di Fond. di Analisi Mat. 2 - sett. 1-11 A.A. 2011-2012, canali 1 e 2, proff.: Francesca Albertini e Monica Motta Ingegneria gestionale, meccanica e meccatronica, Vicenza Testo Consigliato: Analisi

Dettagli

ANALISI MATEMATICA 2 ING. ENERGETICA prof. Daniele Andreucci Prova tecnica del 05/02/2019

ANALISI MATEMATICA 2 ING. ENERGETICA prof. Daniele Andreucci Prova tecnica del 05/02/2019 I ANALISI MATEMATICA ING ENERGETICA prof Daniele Andreucci Prova tecnica del //9 Si consideri la funzione x+yarctg x 3 y fx,y = x +y, x,y,,, x,y =, A Si dimostri che f è differenziabile in, B Si dimostri

Dettagli

Ω : 0 z x 2 y 2 + 5, x 2 + y 2 1. Soluzione: Tenuto conto che. 1 + f 2 x + f 2 y dx dy. riesce, servendosi delle coordinate polari,

Ω : 0 z x 2 y 2 + 5, x 2 + y 2 1. Soluzione: Tenuto conto che. 1 + f 2 x + f 2 y dx dy. riesce, servendosi delle coordinate polari, ANALISI VETTORIALE Soluzione scritto 19 settembre 11 4.1. Esercizio. Assegnata la superficie cartesiana S : z = x y + 5, x + y 1 calcolare l area di S calcolare il volume di Tenuto conto che Ω : z x y

Dettagli

PROGRAMMA DI ANALISI MATEMATICA 2 Corsi di Laurea in Ing. Informatica - Ing. dell Automazione (Prof. Ravaglia) Anno Accademico 2012/13

PROGRAMMA DI ANALISI MATEMATICA 2 Corsi di Laurea in Ing. Informatica - Ing. dell Automazione (Prof. Ravaglia) Anno Accademico 2012/13 PROGRAMMA DI ANALISI MATEMATICA 2 Corsi di Laurea in Ing. Informatica - Ing. dell Automazione (Prof. Ravaglia) Anno Accademico 2012/13 Simboli: I= introduzione intuitiva, D = definizione, T = teorema C

Dettagli

Gradiente, divergenza e rotore

Gradiente, divergenza e rotore Gradiente, divergenza e rotore Gradiente di una funzione scalare della posizione Sia f(x,y,z) una funzione scalare continua e derivabile delle coordinate costruiamo in ogni punto dello spazio un vettore

Dettagli

Corso di laurea: Ingegneria aerospaziale e meccanica Programma di Fondamenti di Analisi Matematica II a.a. 2015/16 Docente: Fabio Paronetto

Corso di laurea: Ingegneria aerospaziale e meccanica Programma di Fondamenti di Analisi Matematica II a.a. 2015/16 Docente: Fabio Paronetto Corso di laurea: Ingegneria aerospaziale e meccanica Programma di Fondamenti di Analisi Matematica II a.a. 2015/16 Docente: Fabio Paronetto Gli argomenti denotati con un asterisco tra parentesi (e solo

Dettagli

Syllabus per la seconda prova intermedia e per le prove scritte di esame. Esercizi di preparazione.

Syllabus per la seconda prova intermedia e per le prove scritte di esame. Esercizi di preparazione. Università di Trento - Corsi di Laurea in Ingegneria Civile e in Ingegneria Ambientale Analisi matematica 2 - a.a. 2013-14 - Prof. Gabriele Anzellotti Syllabus per la seconda prova intermedia e per le

Dettagli

Argomenti delle singole lezioni del corso di Analisi Matematica 2 (Ingegneria Edile-Architettura, A.A )

Argomenti delle singole lezioni del corso di Analisi Matematica 2 (Ingegneria Edile-Architettura, A.A ) Argomenti delle singole lezioni del corso di Analisi Matematica 2 (Ingegneria Edile-Architettura, A.A. 2018-19) NB. Le indicazioni bibliografiche si riferiscono al libro di testo. Lezione nr. 1, 24/9/2018.

Dettagli

Calcolo 2B - Analisi III dicembre 2004

Calcolo 2B - Analisi III dicembre 2004 Calcolo 2B - Analisi III dicembre 2. Verificare esplicitamente il teorema di Stokes in R 2 : dω = ω per la -forma: nella regione piana data da: ω = x 2 + y 2 dx = x, y x 2 + y 2 ª x, y y 2x 2ª 2. Considerato

Dettagli

Cognome Nome Matricola Codice ESEMPIO 1

Cognome Nome Matricola Codice ESEMPIO 1 Cognome Nome Matricola Codice ESEMPIO 1 [1]. (***) Definizione di derivata di una funzione in un punto. Sia A R N ; sia a A; sia f : A R M ; sia f differenziabile in a; allora la derivata di f in a è...

Dettagli

Esercizi sull integrazione II

Esercizi sull integrazione II ANALISI MATEMATICA T-2 (C.d.L. Ing. per l ambiente e il territorio) - COMPL. DI ANALISI MATEMATICA (A-K) (C.d.L. Ing. Civile) A.A.28-29 - Prof. G.Cupini Esercizi sull integrazione II (Grazie agli studenti

Dettagli

Corso di Laurea in Ingegneria Civile ed Ambientale Prova Scritta di Analisi Matematica 2 del 29 settembre 2012

Corso di Laurea in Ingegneria Civile ed Ambientale Prova Scritta di Analisi Matematica 2 del 29 settembre 2012 Corso di Laurea in Ingegneria Civile ed Ambientale Prova Scritta di Analisi Matematica del 9 settembre A) Data la funzione f(x, y) = { xy x se (x, y) (, ) se (x, y) = (, ), i) stabilire se risulta continua

Dettagli

Analisi Matematica II Politecnico di Milano Ingegneria Industriale

Analisi Matematica II Politecnico di Milano Ingegneria Industriale Analisi Matematica II Politecnico di Milano Ingegneria Industriale Autovalutazione #. Sia P l insieme di tutti i parallelepipedi che giacciono nel primo ottante con tre facce sui piani coordinati e un

Dettagli

Analisi Matematica 2 - a.a. 2009/2010

Analisi Matematica 2 - a.a. 2009/2010 Primo appello Esercizio Analisi Matematica 2 - a.a. 29/2 Sia f : R 2 R la funzione definita da f(x,y) = x 2 + y 2 se (x,y) (,), se (x,y) = (,).. Si studino continuità, derivabilità e differenziabilità

Dettagli

Analisi Matematica 2. Trasformazioni integrali. Trasformazioni integrali 1 / 29

Analisi Matematica 2. Trasformazioni integrali. Trasformazioni integrali 1 / 29 Analisi Matematica 2 Trasformazioni integrali Trasformazioni integrali 1 / 29 Trasformazioni integrali. 1) Formule di Gauss-Green: nel piano: trasformano un integrale doppio in un integrale curvilineo,

Dettagli

DIPARTIMENTO DI INGEGNERIA INDUSTRIALE E DELL'INFORMAZIONE Anno Accademico 2016/17 Registro lezioni del docente VENERONI MARCO

DIPARTIMENTO DI INGEGNERIA INDUSTRIALE E DELL'INFORMAZIONE Anno Accademico 2016/17 Registro lezioni del docente VENERONI MARCO DIPARTIMENTO DI INGEGNERIA INDUSTRIALE E DELL'INFORMAZIONE Anno Accademico 2016/17 Registro lezioni del docente VENERONI MARCO Attività didattica ANALISI MATEMATICA 2 [500121] Modulo: ANALISI MATEMATICA

Dettagli

Fondamenti di Analisi Matematica 2 - a.a. 2016/2017 Primo appello

Fondamenti di Analisi Matematica 2 - a.a. 2016/2017 Primo appello Fondamenti di Analisi Matematica 2 - a.a. 216/217 Primo appello Esercizi senza svolgimento - Tema 1 Ω = { x, y, z) R 3 : 4x 2 + y 2 + z 2 1, z }. x = ρ/2) sen ϕ cos ϑ, 1. y = ρ sen ϕ sen ϑ, ρ [, 1], ϕ

Dettagli

Es. 1 Es. 2 Es. 3 Totale

Es. 1 Es. 2 Es. 3 Totale Es. 1 Es. 2 Es. 3 Totale Analisi e geometria 2 Seconda Prova in Itinere Docente: 2 7 212 Cognome: Nome: Matricola: Ogni risposta dev essere giustificata. Gli esercizi vanno svolti su questi fogli, nello

Dettagli

Richiami di analisi vettoriale. Gradiente, divergenza, rotore Teoremi della divergenza e di Stokes Relazioni campi-sorgenti

Richiami di analisi vettoriale. Gradiente, divergenza, rotore Teoremi della divergenza e di Stokes Relazioni campi-sorgenti Richiami di analisi vettoriale Gradiente, divergenza, rotore Teoremi della divergenza e di Stokes Relazioni campi-sorgenti Derivate parziali - Gradiente = ( f) dx i i Esercizio Esempi Esempio C 1 b (1,1)

Dettagli

ANALISI MATEMATICA 2 A.A. 2015/16

ANALISI MATEMATICA 2 A.A. 2015/16 ANALISI MATEMATICA 2 SCHEMA PROVVISORIO DELLE LEZIONI A.A. 2015/16 1 Distribuzione degli argomenti Argomento lezioni tot Calcolo differenziale 12 12 Forme differenziali lineari 4 16 Funzioni implicite

Dettagli

Integrali doppi. Riccarda Rossi. Università di Brescia. Analisi Matematica B

Integrali doppi. Riccarda Rossi. Università di Brescia. Analisi Matematica B Integrali doppi Riccarda Rossi Università di Brescia Analisi Matematica B Riccarda Rossi (Università di Brescia) Integrali doppi Analisi Matematica B 1 / 92 Motivazione per l integrale di Riemann: calcolo

Dettagli

Richiami di topologia di R n e di calcolo differenziale in più variabili

Richiami di topologia di R n e di calcolo differenziale in più variabili Anno accademico: 2016-2017 Corso di laurea in Ingegneria Aerospaziale e Ingegneria dell Autoveicolo Programma di Analisi Matematica II (6 CFU) (codice: 22ACILZ e 22ACILN) Docente: Lancelotti Sergio Richiami

Dettagli

ANALISI VETTORIALE COMPITO PER CASA DEL 6/12/ y x 2 + y 2 dxdy =

ANALISI VETTORIALE COMPITO PER CASA DEL 6/12/ y x 2 + y 2 dxdy = ANALII VTTORIAL COMPITO PR CAA DL 6// sercizio Calcolare l integrale y x + y dxdy dove è l intersezione del cerchio del piano di centro l origine e raggio con il semipiano dato da y x. Risposta In questo

Dettagli

Analisi Matematica 2. Trasformazioni integrali. Trasformazioni integrali 1 / 15

Analisi Matematica 2. Trasformazioni integrali. Trasformazioni integrali 1 / 15 Analisi Matematica 2 Trasformazioni integrali Trasformazioni integrali 1 / 15 Trasformazioni integrali. 1) Formule di Gauss-Green: nel piano: trasformano un integrale doppio in un integrale curvilineo,

Dettagli

Foglio 3 Esercizi su forme differenziali lineari ed integrali di seconda specie (alcuni con cenno di soluzione).

Foglio 3 Esercizi su forme differenziali lineari ed integrali di seconda specie (alcuni con cenno di soluzione). Università degli Studi di Padova Facoltà di Ingegneria Laurea in Ingegneria Gestionale e MeccanicaMeccatronica, V. Casarino P. Mannucci (-) Foglio 3 Esercizi su forme differenziali lineari ed integrali

Dettagli

Analisi Matematica 3 (Fisica), , M. Peloso e L. Vesely Prova scritta del 14 luglio 2009 Breve svolgimento (con alcuni conti omessi)

Analisi Matematica 3 (Fisica), , M. Peloso e L. Vesely Prova scritta del 14 luglio 2009 Breve svolgimento (con alcuni conti omessi) Analisi Matematica 3 Fisica, 8-9, M. Peloso e L. Vesely Prova scritta del 4 luglio 9 Breve svolgimento con alcuni conti omessi. a Dimostrare che l insieme G = { x, y R : x + x + log y = ye x} coincide

Dettagli

Meccanica. 3. Elementi di Analisi Vettoriale. Domenico Galli. Dipartimento di Fisica e Astronomia.

Meccanica. 3. Elementi di Analisi Vettoriale.  Domenico Galli. Dipartimento di Fisica e Astronomia. Meccanica 3. Elementi di Analisi Vettoriale http://campus.cib.unibo.it/246981/ Domenico Galli Dipartimento di Fisica e Astronomia 5 maggio 2017 Traccia 1. Vettori Variabili 2. Derivate e Integrali 3. Derivate

Dettagli

Es.1 Es.2 Es.3 Es.4 Totale. Analisi e Geometria 2 Docente: 17 Luglio 2014

Es.1 Es.2 Es.3 Es.4 Totale. Analisi e Geometria 2 Docente: 17 Luglio 2014 Es.1 Es.2 Es.3 Es.4 Totale Analisi e Geometria 2 Docente: 17 Luglio 214 Cognome: Nome: Matricola: Ogni risposta deve essere giustificata. Gli esercizi vanno svolti su questi fogli, nello spazio sotto il

Dettagli

Fondamenti di Analisi Matematica II per IPIM-IEN, 14/02/13. Tema 1 (parte di esercizi)

Fondamenti di Analisi Matematica II per IPIM-IEN, 14/02/13. Tema 1 (parte di esercizi) Fondamenti di Analisi Matematica II per IPIM-IEN, 14/02/13 Nota bene: è obbligatorio scrivere le sole risposte richieste su questo foglio senza giustificazione. I passaggi principali dei calcoli e le loro

Dettagli

Analisi Matematica T_2 (prof.g.cupini) A.A CdL Ingegneria Amb.Terr./Automazione - Univ.Bologna REGISTRO DELLE LEZIONI

Analisi Matematica T_2 (prof.g.cupini) A.A CdL Ingegneria Amb.Terr./Automazione - Univ.Bologna REGISTRO DELLE LEZIONI Analisi Matematica T_2 (prof.g.cupini) A.A.2010-2011 - CdL Ingegneria Amb.Terr./Automazione - Univ.Bologna REGISTRO DELLE LEZIONI Lu, 28 febbraio 2011 (Amb.Terr./Automazione) Presentazione del corso. Curve

Dettagli

Superfici e integrali di superficie. 1. Scrivere una parametrizzazione per le seguenti superfici

Superfici e integrali di superficie. 1. Scrivere una parametrizzazione per le seguenti superfici Superfici e integrali di superficie 1. Scrivere una parametrizzazione per le seguenti superfici (a) Il grafico della funzione f(x, y) = x 2 y 3 (b) La superficie laterale di un cilindro di raggio R e altezza

Dettagli

Le derivate parziali

Le derivate parziali Sia f(x, y) una funzione definita in un insieme aperto A R 2 e sia P 0 = x 0, y 0 un punto di A. Essendo A un aperto, esiste un intorno I(P 0, δ) A. Preso un punto P(x, y) I(P 0, δ), P P 0, possiamo definire

Dettagli

RICHIAMI DI ELETTROMAGNETISMO

RICHIAMI DI ELETTROMAGNETISMO RICHIAMI DI ELETTROMAGNETISMO Equazioni di Maxwell I fenomeni elettrici e magnetici a livello del mondo macroscopico sono descritti da due campi vettoriali, in generale dipendenti dal tempo, E(x, t), H(x,

Dettagli

vettore spostamento infinitesimo: ds dr dxi + dyj + dzk

vettore spostamento infinitesimo: ds dr dxi + dyj + dzk Appendice A A.1 - istemi di coordinate. 1) Coordinate cartesiane. Il sistema di riferimento è costituito da tre assi perpendicolari uscenti da una comune origine O ed orientati positivamente verso l esterno.

Dettagli

Registro dell'insegnamento

Registro dell'insegnamento Registro dell'insegnamento Anno accademico 2014/2015 Prof. MARCO SPADINI Settore inquadramento MAT/05 - ANALISI MATEMATICA Scuola Ingegneria Dipartimento Matematica e Informatica 'Ulisse Dini' Insegnamento

Dettagli

Scritto di Analisi Vettoriale ( ) proff. F. De Marchis, F. Lanzara, E. Montefusco

Scritto di Analisi Vettoriale ( ) proff. F. De Marchis, F. Lanzara, E. Montefusco COGNOM, NOM e MATRICOLA: Scritto di Analisi Vettoriale 8..18) proff. F. De Marchis, F. Lanzara,. Montefusco DOCNT: De Marchis Lanzara Montefusco Se ammesso, sosterrò la prova orale: questo appello in un

Dettagli

Geometria 3 primo semestre a.a

Geometria 3 primo semestre a.a Geometria 3 primo semestre a.a. 2014-2015 Esercizi Forme differenziali Ricordiamo alcune definizioni date a lezione. s-forma definite da Siano ω una k-forma e φ una ω = I a I dx I, φ = J b J dx J Definizione

Dettagli

CAPITOLO 3 LA LEGGE DI GAUSS

CAPITOLO 3 LA LEGGE DI GAUSS CAPITOLO 3 LA LEGGE DI GAUSS Elisabetta Bissaldi (Politecnico di Bari) - A.A. 2017-2018 2 Premesse TEOREMA DI GAUSS Formulazione equivalente alla legge di Coulomb Trae vantaggio dalle situazioni nelle

Dettagli

Università di Trieste Facoltà d Ingegneria. Esercizi sulle curve, le superfici, i campi vettoriali. Dott. Franco Obersnel

Università di Trieste Facoltà d Ingegneria. Esercizi sulle curve, le superfici, i campi vettoriali. Dott. Franco Obersnel Università di Trieste Facoltà d Ingegneria. Esercizi sulle curve, le superfici, i campi vettoriali. Dott. Franco Obersnel Esercizio 1 Sia f : [a, b] IR 2 una funzione di classe C 1 su [a, b]. consideri

Dettagli

CINEMATICA DEL PUNTO MATERIALE

CINEMATICA DEL PUNTO MATERIALE CINEMATICA DEL PUNTO MATERIALE Regole di derivazione per il prodotto scalare e per il prodotto vettore Sia v funzione di un parametro reale t, t.c. 5 v : R R 3 t 7 v (t). (1) Proprietà: 1. Limite. Il concetto

Dettagli

Analisi Matematica 2: Scritto Generale, , Fuori corso. Cognome e nome:...matricola:...

Analisi Matematica 2: Scritto Generale, , Fuori corso. Cognome e nome:...matricola:... Analisi Matematica 2: Scritto Generale, 26.11.216, Fuori corso Cognome e nome:....................................matricola:......... es.1 es.2 es. es.4 es.5 es.6/7 somma 5cr. 6 6 6 6 6 6/9cr. 5 5 5 5

Dettagli

Analisi Matematica 2. Superfici e integrali superficiali. Superfici e integrali superficiali 1 / 27

Analisi Matematica 2. Superfici e integrali superficiali. Superfici e integrali superficiali 1 / 27 Analisi Matematica 2 Superfici e integrali superficiali Superfici e integrali superficiali 1 / 27 Superficie Sia D un dominio connesso di R 2 (per def. un dominio connesso é la chiusura di un aperto connesso).

Dettagli

Corso di Matematica 3 o A.A. 2016/2017 Argomenti delle lezioni

Corso di Matematica 3 o A.A. 2016/2017 Argomenti delle lezioni Corso di Matematica 3 o A.A. 2016/2017 Argomenti delle lezioni 1 lezione. Martedí 27 settembre. 2 ore. Richiami sulle applicazioni lineari tra spazi vettoriali di dimensione finita. Il teorema di rappresentazione.

Dettagli

Analisi Matematica II

Analisi Matematica II Claudio Canuto, Anita Tabacco Analisi Matematica II Teoria ed esercizi con complementi in rete ^ Springer Indice 1 Serie numeriche 1 1.1 Richiami sulle successioni 1 1.2 Serie numeriche 4 1.3 Serie a termini

Dettagli

Integrali superficiali e teorema della divergenza

Integrali superficiali e teorema della divergenza Integrali superficiali e teorema della divergenza Data una superficie regolare = ϕ(k), con ϕ : K R R 3, e una funzione continua f : R, definiamo integrale di ϕ su f dσ := (f ϕ) ϕ u ϕ v dudv = f(ϕ(u, v))

Dettagli

Analisi Matematica 2 (Corso di Laurea in Informatica)

Analisi Matematica 2 (Corso di Laurea in Informatica) COGNOME NOME Matr. Firma dello studente A Tempo: 3 ore. Prima parte: test a risposta multipla. Una ed una sola delle 4 affermazioni è corretta. Indicatela con una croce. È consentita una sola correzione

Dettagli

Funzioni a valori vettoriali Differenziabilità e regola della catena

Funzioni a valori vettoriali Differenziabilità e regola della catena e regola della catena Analisi Matematica A Secondo modulo Corso di Laurea in Matematica Università di Trento 4 aprile 2019 o: le curve o: F : R 2 R 2 Sia E R n. Una funzione a valori vettoriali f : E R

Dettagli

Soluzione della Prova Scritta di Analisi Matematica 4-27/06/11. C.L. in Matematica e Matematica per le Applicazioni. Proff. K. R. Payne e E.

Soluzione della Prova Scritta di Analisi Matematica 4-27/06/11. C.L. in Matematica e Matematica per le Applicazioni. Proff. K. R. Payne e E. Soluzione della Prova Scritta di Analisi Matematica 4-27/6/ C.L. in Matematica e Matematica per le Applicazioni Proff. K. R. Payne e E. Terraneo Esercizio. a. La successione di funzioni {f n } + n definite

Dettagli

Analisi Matematica II Corso di Ingegneria Gestionale Compito A del f(x, y) = x 2 + 2y 2 x 3 y 3

Analisi Matematica II Corso di Ingegneria Gestionale Compito A del f(x, y) = x 2 + 2y 2 x 3 y 3 Analisi Matematica II Corso di Ingegneria Gestionale Compito A del 7-7-8 - È obbligatorio consegnare tutti i fogli, anche la brutta e il testo. - Le risposte senza giustificazione sono considerate nulle.

Dettagli

Analisi Matematica 2. Continuità, derivabilità e differenziabilità

Analisi Matematica 2. Continuità, derivabilità e differenziabilità Docente: E. G. Casini Università degli Studi dell Insubria DIPATIMENTO DI SCIENZA E ALTA TECNOLOGIA Corso di Studio in Matematica e Fisica Analisi Matematica ichiami di Teoria ed Esercizi con Svolgimento

Dettagli

IL CALCOLO DIFFERENZIALE PER FUNZIONI DI PIÙ VARIABILI

IL CALCOLO DIFFERENZIALE PER FUNZIONI DI PIÙ VARIABILI IL CALCOLO DIFFERENZIALE PER FUNZIONI DI PIÙ VARIABILI 218-19 CLAUDIO BONANNO Richiamiamo le definizioni e le prime principali proprietà delle funzioni differenziabili di più variabili e a valori vettoriali

Dettagli

Diario del Corso di Analisi Matematica II

Diario del Corso di Analisi Matematica II Diario del Corso di Analisi Matematica II 1. Martedì 1 ottobre 2013 Presentazione del corso. Insieme di punti nel piano: retta, coniche canoniche (ellisse, iperbole, parabola). Esempi ed esercizi. 2. Mercoledì

Dettagli

Registro dell insegnamento. Emanuele Paolini

Registro dell insegnamento. Emanuele Paolini UNIVERSITÀ DEGLI STUDI DI FIRENZE Registro dell insegnamento Anno Accademico 2009/2010 Facoltà: Insegnamento: Ingegneria (Università di Pisa) Analisi Matematica II e Complementi di Analisi Matematica Settore:..........................

Dettagli

h (y) = e y2 (1 2y 2 )

h (y) = e y2 (1 2y 2 ) . Sia f(x, y = (x+ye x y. eterminare gli estremi assoluti di f nel triangolo chiuso di vertici (0, 0, (a, a, (0, a ( a. Soluzione Poniamo O = (0, 0, A = (a, a, B = (0, a. Il triangolo giace nel primo quadrante

Dettagli

Esercizi su curve e funzioni reali di più variabili reali 1Febbraio 2010

Esercizi su curve e funzioni reali di più variabili reali 1Febbraio 2010 Esercizi su curve e funzioni reali di più variabili reali 1Febbraio 1 1.Si calcoli la lunghezza della curva di equazione g y = 1 x 1 log x x [1, e].. Sia f(x, y, ) = x + y e sia il sostegno della curva

Dettagli

Appendici Definizioni e formule notevoli Indice analitico

Appendici Definizioni e formule notevoli Indice analitico Indice 1 Serie numeriche... 1 1.1 Richiami sulle successioni................................. 1 1.2 Serie numeriche........................................ 4 1.3 Serie a termini positivi...................................

Dettagli

Fondamenti di Analisi Matematica 2 - a.a. 2016/2017 Secondo appello

Fondamenti di Analisi Matematica 2 - a.a. 2016/2017 Secondo appello Fondamenti di Analisi Matematica - a.a. 6/7 Secondo appello Esercizi senza svolgimento - Tema ρ = cos ϑ, ϑ [, π/], F(x, y = ( x + e x cos y cos y i + ( xe x cos y sen y j. Figura : Il sostegno Γ. ( ; 4

Dettagli