Analisi Matematica 3 (Fisica), , M. Peloso e L. Vesely Secondo compitino ( ) Svolgimento della Versione B

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Analisi Matematica 3 (Fisica), , M. Peloso e L. Vesely Secondo compitino ( ) Svolgimento della Versione B"

Transcript

1 Analisi Matematica (Fisica), , M. Peloso e L. Vesely Secondo compitino ( ) Svolgimento della Versione B 1. (a) Dimostrare che l insieme G = { (x, y) R 2 : x 2 e 2y e 2y + (x 1)e x y = 0 } coincide con il grafico di una funzione g. Indicare l insieme di definizione di g e stabilire se g è di classe C su tale insieme. (b) Della funzione g, studiare i limiti e la monotonia. (c) Dimostrare che β = g(0) < 1 e calcolare il limite g(x) β lim x 0 x 2. (d) (Facoltativo) Studiare l esistenza di asintoti di g. Soluzione. (a) Denotando con F (x, y) la funzione nella definizione di C, si ha F y (x, y) = 2x 2 e 2y 2e 2y 1 < 0 (x, y) R 2. Fissaimo un qualsiasi x R. Siccome lim F (x, y) = y ± e F (x, ) è strettamente decrescente e continua in R, esiste un unico y R tale che F (x, y) = 0 (Darboux!); poniamo g(x) := y. La funzione g è quindi definita su tutto R e il suo grafico coincide con C. Essendo F C (R 2 ), il teorema del Dini (applicato nei punti del grafico di g) impklica che anche g C (R). (b) Limiti. Per ogni a R, lim x + F (x, y) = + e quindi g(x) > a definitivamente per x +. Perciò lim g(x) = +. x + Analogamente, lim x F (x, y) = + a R implica che lim g(x) = +. x Monotonia. Sappiamo che g (x) = Fx(x,g(x)) F y(x,g(x)). Dal segno di F y segue che g > 0 se e solo se F x > 0. Ma F x (x, y) = x (2e 2y + e x ). Quindi g è strettamente decrescente in (, 0) e strettamente crescente in (0, + ). In particolare, 0 è l unico punto di minimo assoluto per g. (c) 0 = F (0, β) = e 2β 1 β implica β = 1 e 2β < 1. (Si poteva arrivare alla stessa conclusione confrontando i grafici di e 2t e t 1.) Per calcolare il limite abbiamo bisogno di sviluppare g fino al II ordine. Sappiamo 1

2 2 già che g (0) = 0 (perché è un estremante). Per calcolare g (0) possiamo usare la formula g (0) = F xx(0, β) F y (0, β) valida nei punti stazionari di g (si veda [FMS, p.600, (101.45)]). Se non cela ricordiamo, possiamo procedere derivando l equazione come segue. L equazione F (x, g(x)) = 0 è Derivandola otteniamo x 2 e 2g(x) e 2g(x) + (x 1)e x g(x) = 0. 2xe 2g(x) + x 2 ( 2)g (x)e 2g(x) 2g (x)e 2g(x) + xe x g (x) = 0. Deriviamo un altra volta, tenendo presente che dopo dovremo sostituire x = 0, g (x) = 0, g(x) = β (e quindi tutti i sommandi contenenti x o g (x) diventeranno nulli): 2e 2g(x) +2xe 2g(x) +2x(...)+x 2 (...) 2g (x)e 2g(x) 2g (x)(...)+e x +xe x g (x) = 0. Sostituendovi i valori menzionati, otteniamo 2e 2β 2g (0)e 2β + 1 g (0) = 0 da cui g (0) = 1 + 2e 2β 1 + 2e 2β. Di conseguenza, lim x 0 g(x) β x 2 = lim x 0 g(0)+(1/2)g (0)x 2 +o(x 2 ) β x 2 = g (0) 2 = 1+2e 2β 2(1+2e 2β ). (d) Per x +. Il limite lim F (x, mx) = lim ( x 2 e 2mx e 2mx + (x 1)e x mx ) x + x + vale: + se m < 0; + se m = 0; + se 0 < m 1 2 ; se m > 1 2. Quindi: m > 1 2 g(x) < mx definitivamente, e m < 1 2 g(x) > mx definitivamente. g(x) Ne segue facilmente che lim x + x = 1 2. Ora, lim F (x, 1 (x x + 2 x + q) = lim 2 e x 2q e x+2q + (x 1)e x = 12 ) x q = + x + e quindi g(x) > 1 2x + q definitivamente, per ogni q R. Ciò implica che lim x + (g(x) 1 2x) = + e quindi non esiste asintoto per x +. Per x. lim F (x, mx) = lim ( x 2 e 2mx e 2mx + (x 1)e x mx ) = + x + x + g(x) per ogni m R, da cui (analogamente al caso precedente) lim x x = + e quindi non esiste asintoto per x.

3 2. Sia S la parte della superficie z = x 2 + y 2 compresa tra i piani z = 1 e z =. (a) Calcolare l area di S. (b) Calcolare il flusso del campo F(x, y, z) = ( ze y2, x 2 e xz, z 2) attraverso S, orientata in modo che ν, e < 0. (ν denota il versore normale alla superficie.) (c) Calcolare + S ω, dove ω = xdx + zdy ydz. Soluzione. La superficie è una superficie cartesiana: g(x, y) = x 2 + y 2 sull insieme Una parametrizzazione di S è Con tale parametrizzazione si ha D = {(x, y) : 1 x 2 + y 2 }. ϕ(x, y) = (x, y, g(x, y)), (x, y) D. coincide con il grafico della funzione ϕ x ϕ y = ( 2x, 2y, 1), ϕ x ϕ y = 1 + 4(x 2 + y 2 ). (a) A(ϕ) = D ϕ x ϕ y dxdy = D 1 + 4(x 2 + y 2 ) dxdy = 2π 0 dθ 1 ϱ 1 + 4ϱ 2 dϱ = = π 6 (1/2 5 /2 ). (b) Il flusso richiesto è Φ := S F, ν dσ. Siccome div F = 2z è molto semplice, applicheremo il teorema della divergenza. La superficie S è il bordo laterale dell insieme T = {(x, y, z) : z x 2 + y 2, 1 z }. Si ha T = S S 1 S dove S è il coperchio di T e S 1 è la base di T. Notiamo che nei punti di S il versore normale ν definito dal testo dell esercizio coincide con la normale esterna ν e ; nei punti punti di S si ha ν e = e ; nei punti di S 1 si ha ν e = e. Per il teorema della divergenza, div F dxdydz = Φ + F, ( e ) dσ + F, e dσ. T S 1 S Calcoliamo ora i singoli integrali. S F, e dσ = S z 2 dσ = S 9 dσ = 9 π( ) 2 = 27π. Analogamente S 1 F, ( e ) dσ = = π. Per calcolare l integrale su T ci sono diverse possibilità. La più semplice risulta integrare per sezioni perpendicolari all asse z (che sono dei cerchi T z di raggio z): T 2z dxdydz = ( ) 1 2z dxdy dz = 52π Tz 1 2z πz dz =. Per completezza indichiamo altre due possibilità. La prima consiste nel calcolare l integrale su T come la differenza dell integrale sul paraboloide tagliato al livello z = e l integrale sul paraboloide tagliato al livello z = 1; a questo scopo denotiamo con D k il cerchio (nel piano xy) di raggio k, centrato nell origine: T 2z dxdydz = ( ) D x 2z dz dxdy ( ) 1 2 D 1 x 2z dz dxdy =.... 2

4 4 La seconda possibilità è quella di suddividere T in due insiemi: la parte sopra l insieme D e il rimanente ( cilindro: ) 2z dxdydz = D x 2 +y 2z dz dxdy + ( ) 2 D 1 1 2z dz dxdy =.... (In entrambi i casi conviene usare le coordinate polari.) Concludiamo che Φ = 52π + π 27π = 26π. (c) Alla forma differenziale ω è associato il campo G(x, y, z) = (x, z, y). Per il teorema di Stokes (T denota il versore tangente a + S) ω = G, T ds = rot G, ν dσ =: I. + S + S Abbiamo rot G(x, y, z) = ( 2, 0, 0). Inoltre, la parametrizzazione ϕ di S (v. l inizio dell esercizio) ci dà un versore normale avente terza coordinata > 0, mentre noi abbiamo bisogno di quello opposto. A questo scopo non è necessario cambiare parametrizzazione! Possiamo utilizzare la nostra parametrizzazione ϕ, tenendo conto del fatto che essa ci fornisce un risultato di segno opposto. Quindi: I = D rot G(ϕ(, )), ϕ x ϕ y ϕ x ϕ y ϕ x ϕ y dxdy = D ( 2, 0, 0), ( 2x, 2y, 1) dxdy = ( 4) D x dxdy = 0 per simmetria. (In alternativa, si poteva usare il teorema di Stokes sulle due superfici piane S 1 e S, orientate in modo opportuno; oppure effettuare il calcolo diretto parametrizzando [con giusta orientazione!] le due circonferenze componenti S.) S. (a) Determinare i punti di distanza minima dall origine nell insieme C = { (x, y, z) : y 4 x 2 z 2 = 1 }. (b) Per ognuna delle forme differenziali lineari ω = (e z + ye x )dx + (e x + ze y )dy + (e y + xe z )dz e σ = zdx + dy ydz in R stabilire se è esatta, e in caso affermativo calcolarne un potenziale. (c) Data la curva regolare γ(t) = (t 2, 1 + t, t 2 ), t [0, 1], calcolare γ ω. Soluzione. (a) Vogliamo minimizzare, sotto il vincolo F (x, y, z) := y 4 x 2 z 2 1 = 0, la funzione f(x, y, z) = x 2 + y 2 + z 2 (ovviamente è più comodo considerare, al posto della norma, il quadrato della norma!). Procediamo con il metodo dei moltiplicatori di Lagrange che può essere utilizzato nei punti regolari, cioè quelli in cui il gradiente DF non sia nullo. Il vettore DF (x, y, z) = ( 2xz 2, 4y, 2x 2 z) è nullo se e solo se y = 0 e xz = 0, ma tali punti non appartengono al vincolo C.

5 Il sistema di Lagrange diventa cioè 2x + 2λxz 2 = 0 2y 4λy = 0 2z + 2λx 2 z = 0 F (x, y) = 0 x(1 + λz 2 ) = 0 y(1 2λy 2 ) = 0 z(1 + λx 2 ) = 0 y 4 x 2 z 2 = 1 Se y = 0, la IV equazione diventa x 2 z 2 = 1, impossibile. Quindi deve essere 1 2λy 2 = 0, cioè λ = 1. Siccome λ > 0, le I e III implicano che x = z = 0. Dalla 2y 2 IV si ottiene y 4 = 1, cioè y = ±1. Abbiamo trovato solo due punti, (0, ±1, 0), nei quali f assume lo stesso valore 1. Sono davvero i punti cercati? E facile vedere che il nostro insieme C è chiuso, ma non è limitato. Quindi non possiamo applicare direttamente il teorema di Weierstrass per dimostrare l esistenza dei punti di minimo. Ma possiamo ragionare come segue. Nei punti molto lontani dall origine, il valore di f è molto grande. Di conseguenza, per r > 0 sufficientemente grande, inf f(c) = inf f(c B r (0)), dove B r (0) = {(x, y, z) : x 2 + y 2 + z 2 r 2 } (sfera chiusa di raggio r centrata nell origine). Ora, l esistenza di un punto di minimo segue dal teorema di Weierstrass applicato all insieme compatto C B r (0). (In alternativa, si può procedere considerando una successione di punti x n C tale che f(x n ) inf f(c). Siccome la successione {f(x n )} = { x n 2 } è limitata [essendo convergente], la successione {x n } è limitata in R. Allora essa ammette una sottosuccessione {x nk } convergente a qualche punto z R. Essendo C chiuso, z appartiene a C. Inoltre, inf f(c) = lim f(x nk ) = f(z), e quindi z è un punto di minimo di f in C.) Concludiamo che i punti trovati (0, ±1, 0) sono necessariamente gli unici due punti di minima distanza da 0 in C. (b) Perché una forma differenziale Adx + Bdy + Cdz di classe C 1 in R (che è semplicemente connesso!) sia esatta, è necessario e sufficiente che essa sia chiusa, cioè A y = B x, A z = C x, B z = C y. Si verifica direttamente che ω è chiusa (e quindi esatta), mentre σ non lo è. Sia f un potenziale per ω, cioè una funzione su R tale che ω = df. Allora implica che f x (x, y, z) = ez + ye x f(x, y, z) = xe z + ye x + a(y, z).. 5

6 6 Inoltre, abbiamo e x + ze y = f y (x, y, z) = ex + a y (y, z) da cui a y (y, z) = zey, e quindi a(y, z) = ze y + b(z). Quindi f(x, y, z) = xe z + ye x + ze y + b(z). Ora, e y + xe z = f z (x, y, z) = xez + e y + b (z) implica b (z) = 0 ( z R), e quindi b(z) = k R. Concludiamo che un potenziale di ω è la funzione f(x, y, z) = xe z + ye x + ze y (e tutti gli altri potenziali differiscono da questo per una costante). (c) Sia f il potenziale calcolato nel punto precedente. Allora ω = f(γ(1)) f(γ(0)) = f(1, 2, 1) f(0, 1, 0) = e 2 + e 1. γ

Analisi Matematica 3 (Fisica), , M. Peloso e L. Vesely Prova scritta del 14 luglio 2009 Breve svolgimento (con alcuni conti omessi)

Analisi Matematica 3 (Fisica), , M. Peloso e L. Vesely Prova scritta del 14 luglio 2009 Breve svolgimento (con alcuni conti omessi) Analisi Matematica 3 Fisica, 8-9, M. Peloso e L. Vesely Prova scritta del 4 luglio 9 Breve svolgimento con alcuni conti omessi. a Dimostrare che l insieme G = { x, y R : x + x + log y = ye x} coincide

Dettagli

Analisi Matematica 3 (Fisica) Prova scritta del 27 gennaio 2012 Uno svolgimento

Analisi Matematica 3 (Fisica) Prova scritta del 27 gennaio 2012 Uno svolgimento Analisi Matematica 3 (Fisica) Prova scritta del 27 gennaio 22 Uno svolgimento Prima di tutto, eccovi alcuni commenti che potrebbero aiutarvi a svolgere meglio le prove scritte. Ad ogni domanda del testo

Dettagli

Analisi Matematica II Politecnico di Milano Ingegneria Industriale

Analisi Matematica II Politecnico di Milano Ingegneria Industriale Analisi Matematica II Politecnico di Milano Ingegneria Industriale Autovalutazione #5. Sia f : R R la funzione definita da f(x, y) x + x + y + x + y (x, y) R. (a) Determinare il segno di f. (b) Calcolare

Dettagli

Analisi Matematica 3 (Fisica) Prova scritta del 17 febbraio 2012 Un breve svolgimento delle versioni A

Analisi Matematica 3 (Fisica) Prova scritta del 17 febbraio 2012 Un breve svolgimento delle versioni A Analisi Matematica 3 (Fisica) Prova scritta del 7 febbraio Un breve svolgimento delle versioni A Vi sarò grato per la segnalazione di eventuali errori. Esercizio. (a) Dimostrare che l equazione () (3 +

Dettagli

UNIVERSITÀ DI ROMA TOR VERGATA. Analisi Matematica II per Ingegneria Prof. C. Sinestrari

UNIVERSITÀ DI ROMA TOR VERGATA. Analisi Matematica II per Ingegneria Prof. C. Sinestrari UNIVERSITÀ DI ROMA TOR VERGATA Analisi Matematica II per Ingegneria Prof. C. Sinestrari Risposte sintetiche) agli esercizi del 15.XII.218 1. NB si ricorda che l equazione del piano passante per un punto

Dettagli

Esercizi sull integrazione II

Esercizi sull integrazione II ANALISI MATEMATICA T-2 (C.d.L. Ing. per l ambiente e il territorio) - COMPL. DI ANALISI MATEMATICA (A-K) (C.d.L. Ing. Civile) A.A.28-29 - Prof. G.Cupini Esercizi sull integrazione II (Grazie agli studenti

Dettagli

Corsi di laurea in ingegneria aerospaziale e ingegneria meccanica Prova scritta di Fondamenti di Analisi Matematica II. Padova, 19.9.

Corsi di laurea in ingegneria aerospaziale e ingegneria meccanica Prova scritta di Fondamenti di Analisi Matematica II. Padova, 19.9. Corsi di laurea in ingegneria aerospaziale e ingegneria meccanica Prova scritta di Fondamenti di Analisi Matematica II Padova, 19.9.2016 Si svolgano i seguenti esercizi facendo attenzione a giustificare

Dettagli

Analisi Matematica II - Ingegneria Meccanica/Energetica - 29 Gennaio 2018

Analisi Matematica II - Ingegneria Meccanica/Energetica - 29 Gennaio 2018 nalisi Matematica II - Ingegneria Meccanica/Energetica - 29 Gennaio 218 1) ia data la funzione f(x, y, z) = (x 2 + y 2 1) 2 + 8 a) tudiare l esistenza di massimi e minimi assoluti della funzione f nella

Dettagli

Es. 1 Es. 2 Es. 3 Es. 4 Totale

Es. 1 Es. 2 Es. 3 Es. 4 Totale Es. Es. Es. Es. 4 Totale Analisi e Geometria Seconda prova in itinere Docente: luglio Cognome: Nome: Matricola: Ogni risposta dev essere giustificata. Gli esercizi vanno svolti su questi fogli, nello spazio

Dettagli

sen n x( tan xn n n=1

sen n x( tan xn n n=1 8 Gennaio 2016 Nome (in stampatello): 1) (8 punti) Discutere la convergenza della serie di funzioni al variare di x in [ 1, 1]. n x( tan xn n ) xn sen n 2) (7 punti) Provare che la forma differenziale

Dettagli

ANALISI MATEMATICA 2 - INGEGNERIA MECCANICA ED ENERGETICA A.A PROVA SCRITTA DEL 28/1/19

ANALISI MATEMATICA 2 - INGEGNERIA MECCANICA ED ENERGETICA A.A PROVA SCRITTA DEL 28/1/19 ANALISI MATEMATICA - INGEGNERIA MECCANICA E ENERGETICA A.A. 8-9 PROVA SCRITTA EL 8//9 Scrivere nome cognome e numero di matricola in stampatello su tutti i fogli da consegnare. Consegnare solo la bella

Dettagli

Analisi Matematica II Corso di Ingegneria Gestionale Compito A del , se (x, y) = (0, 0) ( x e. + y x e (y2 )

Analisi Matematica II Corso di Ingegneria Gestionale Compito A del , se (x, y) = (0, 0) ( x e. + y x e (y2 ) Analisi Matematica II Corso di Ingegneria Gestionale Compito A del -6-9 - È obbligatorio consegnare tutti i fogli, anche la brutta e il testo. - Le risposte senza giustificazione sono considerate nulle.

Dettagli

COMPLEMENTI DI ANALISI MATEMATICA A.A Primo appello del 5/5/2010

COMPLEMENTI DI ANALISI MATEMATICA A.A Primo appello del 5/5/2010 COMPLEMENTI DI ANALISI MATEMATICA A.A. 29- Primo appello del 5/5/2 Qui trovate le tracce delle soluzioni degli esercizi del compito. Ho tralasciato i calcoli da Analisi (che comunque sono parte della risoluzione),

Dettagli

UNIVERSITÀ DI ROMA TOR VERGATA. Analisi Matematica II per Ingegneria Prof. C. Sinestrari

UNIVERSITÀ DI ROMA TOR VERGATA. Analisi Matematica II per Ingegneria Prof. C. Sinestrari UNIVERSITÀ DI ROMA TOR VERGATA Analisi Matematica II per Ingegneria Prof. C. Sinestrari Risposte (sintetiche) agli esercizi del 27.XI.217 1. (NB si ricorda che l equazione del piano passante per un punto

Dettagli

Soluzione della Prova Scritta di Analisi Matematica III - 28/02/02. C.L. in Matematica e Matematica per le Applicazioni. Prof. Kevin R.

Soluzione della Prova Scritta di Analisi Matematica III - 28/02/02. C.L. in Matematica e Matematica per le Applicazioni. Prof. Kevin R. Soluzione della Prova Scritta di Analisi Matematica III - 28/2/2 C.L. in Matematica e Matematica per le Applicazioni Prof. Kevin R. Payne Esercizio 1. 1a. Teorema: (di ini) Sia Φ : A R n R R dove A è aperto.

Dettagli

x 2 y 2 z 2 (b) Detta z = z(x, y) la funzione definita dall equazione f(x, y, z) = 1 intorno al punto (1, 1, 0), calcolare z

x 2 y 2 z 2 (b) Detta z = z(x, y) la funzione definita dall equazione f(x, y, z) = 1 intorno al punto (1, 1, 0), calcolare z Analisi Matematica II, Anno Accademico 4-5 Ingegneria Edile, Civile, Ambientale Paolo Acquistapace, Laura Cremaschi, Vincenzo M. Tortorelli giugno 5 - primo appello - gruppo A, prima parte (un ora) N.

Dettagli

Analisi Matematica 2: Scritto Generale, , Versione A. Cognome e nome:...matricola:...

Analisi Matematica 2: Scritto Generale, , Versione A. Cognome e nome:...matricola:... Analisi Matematica : Scritto Generale, 7.9.16, Versione A Cognome e nome:....................................matricola:......... es.1 es. es.3 es.4 es.5 es.6/7 somma 5cr. 6 6 6 6 6 3 9cr. 5 5 5 5 5 /3

Dettagli

Analisi Matematica 2 (Corso di Laurea in Informatica)

Analisi Matematica 2 (Corso di Laurea in Informatica) COGNOME NOME Matr. Firma dello studente A Tempo: 3 ore. Prima parte: test a risposta multipla. Una ed una sola delle 4 affermazioni è corretta. Indicatela con una croce. È consentita una sola correzione

Dettagli

Esame di Analisi Matematica 2 24/9/2013 Corsi di Laurea in Ingegneria Meccanica e Energetica A.A. 2012/2013

Esame di Analisi Matematica 2 24/9/2013 Corsi di Laurea in Ingegneria Meccanica e Energetica A.A. 2012/2013 Esame di Analisi Matematica 2 24/9/2013 Corsi di Laurea in Ingegneria Meccanica e Energetica A.A. 2012/2013 Esercizio 1. Sia A il cerchio aperto del piano di centro l origine e raggio 1. Sia f(x, y) una

Dettagli

Analisi Matematica II Corso di Ingegneria Gestionale Compito del y 2

Analisi Matematica II Corso di Ingegneria Gestionale Compito del y 2 Analisi Matematica II Corso di Ingegneria Gestionale Compito del 15--18 - È obbligatorio consegnare tutti i fogli, anche la brutta e il testo. - Le risposte senza giustificazione sono considerate nulle.

Dettagli

Esame di Analisi Matematica 2 18/9/2013 Corsi di Laurea in Ingegneria Meccanica e Energetica A.A. 2012/2013

Esame di Analisi Matematica 2 18/9/2013 Corsi di Laurea in Ingegneria Meccanica e Energetica A.A. 2012/2013 Esame di Analisi Matematica 18/9/13 Corsi di Laurea in Ingegneria Meccanica e Energetica A.A. 1/13 A Esercizio 1. Sia C la regione aperta di R compresa tra le circonferenze di centro l origine e raggi

Dettagli

Analisi Vettoriale A.A Soluzioni del Foglio 4

Analisi Vettoriale A.A Soluzioni del Foglio 4 Analisi Vettoriale A.A. 26-27 - Soluzioni del Foglio 4 Esercizio 4.1. Sia Σ la superficie cartesiana z = 1 x y, (x, y) = {x 2 + y 2 1}, determinare in ogni punto di Σ il versore normale diretto nel verso

Dettagli

Soluzione della Prova Scritta di Analisi Matematica III - 28/01/05. C.L. in Matematica e Matematica per le Applicazioni. Prof. Kevin R.

Soluzione della Prova Scritta di Analisi Matematica III - 28/01/05. C.L. in Matematica e Matematica per le Applicazioni. Prof. Kevin R. Soluzione della Prova Scritta di Analisi Matematica III - 28/1/5 C.L. in Matematica e Matematica per le Applicazioni Prof. Kevin R. Payne Esercizio 1. 1a. Teorema: (di Dini) Sia Φ : A R 2 R R dove A è

Dettagli

Calcolo 2B - Analisi III dicembre 2004

Calcolo 2B - Analisi III dicembre 2004 Calcolo 2B - Analisi III dicembre 2. Verificare esplicitamente il teorema di Stokes in R 2 : dω = ω per la -forma: nella regione piana data da: ω = x 2 + y 2 dx = x, y x 2 + y 2 ª x, y y 2x 2ª 2. Considerato

Dettagli

Analisi Matematica 2. Trasformazioni integrali. Trasformazioni integrali 1 / 29

Analisi Matematica 2. Trasformazioni integrali. Trasformazioni integrali 1 / 29 Analisi Matematica 2 Trasformazioni integrali Trasformazioni integrali 1 / 29 Trasformazioni integrali. 1) Formule di Gauss-Green: nel piano: trasformano un integrale doppio in un integrale curvilineo,

Dettagli

Analisi Matematica II Politecnico di Milano Ingegneria Industriale

Analisi Matematica II Politecnico di Milano Ingegneria Industriale Analisi Matematica II Politecnico di Milano Ingegneria Industriale Autovalutazione #. Sia P l insieme di tutti i parallelepipedi che giacciono nel primo ottante con tre facce sui piani coordinati e un

Dettagli

TRACCIA DELLE SOLUZIONI DEI PROBLEMI DELL ESAME DEL 2/9/2011

TRACCIA DELLE SOLUZIONI DEI PROBLEMI DELL ESAME DEL 2/9/2011 TRACCIA DELLE SOLUZIONI DEI PROBLEMI DELL ESAME DEL /9/11 Esercizio 1 a. Dopo aver scritto l equazione parametrica C(t) della curva di equazione cartesiana y = x x, si calcolino i vettori T(t), N(t) e

Dettagli

Analisi Matematica 2 - a.a. 2009/2010

Analisi Matematica 2 - a.a. 2009/2010 Secondo appello Esercizio 1 Analisi Matematica - aa /1 Sia Γ = (x,y,z) R : x 4 + y 4 z 4 = 1, x + y + z = } 1 Provare che esistono due funzioni y = g(x) e z = h(x) definite in un intorno U di x = 1, tali

Dettagli

Corsi di laurea in ingegneria aerospaziale e ingegneria meccanica Prova scritta di Fondamenti di Analisi Matematica II. Padova, 26.1.

Corsi di laurea in ingegneria aerospaziale e ingegneria meccanica Prova scritta di Fondamenti di Analisi Matematica II. Padova, 26.1. Corsi di laurea in ingegneria aerospaziale e ingegneria meccanica Prova scritta di Fondamenti di Analisi Matematica II Padova, 6.1.16 Si svolgano i seguenti esercizi facendo attenzione a giustificare le

Dettagli

ESERCIZI SU MASSIMI E MINIMI DI FUNZIONI IN PIÙ VARIABILI. m(x, y, z) = (2x 2 + y 2 )e x2 y 2, f(x, y) = (y x 2 )(y x2. f(x, y) = x 3 + (x y) 2,

ESERCIZI SU MASSIMI E MINIMI DI FUNZIONI IN PIÙ VARIABILI. m(x, y, z) = (2x 2 + y 2 )e x2 y 2, f(x, y) = (y x 2 )(y x2. f(x, y) = x 3 + (x y) 2, ESERCIZI SU MASSIMI E MINIMI DI FUNZIONI IN PIÙ VARIABILI VALENTINA CASARINO Esercizi per il corso di Analisi Matematica, (Ingegneria Gestionale, dell Innovazione del Prodotto, Meccanica e Meccatronica,

Dettagli

Politecnico di Milano Ingegneria Industriale e dell Informazione Analisi e Geometria 2 Primo Appello 13 Luglio 2017

Politecnico di Milano Ingegneria Industriale e dell Informazione Analisi e Geometria 2 Primo Appello 13 Luglio 2017 Politecnico di Milano Ingegneria Industriale e dell Informazione Analisi e Geometria Primo Appello 13 Luglio 017 Cognome: Nome: Matricola: Es.1: 11 punti Es.: 6 punti Es.3: 7 punti Es.: 8 punti Totale

Dettagli

Alcuni esercizi risolti da esami di anni passati

Alcuni esercizi risolti da esami di anni passati Alcuni esercizi risolti da esami di anni passati Andrea Braides ( x. Calcolare, se esiste, il limite lim (x,y (, x + y log + y + x 3 y. x + y Dato che log( + s = s + o(s per s, abbiamo lim (x,y (, ( x

Dettagli

ANALISI MATEMATICA 3

ANALISI MATEMATICA 3 ANALISI MATEMATICA 3 Corso di laurea triennale in Fisica, F480 Prova scritta del 8//003 prof. Marco Vignati ] Sia dato il problema di Cauchy xy + y = 0 i) Determinarne la soluzione locale. y () = 3 ii)

Dettagli

Analisi Matematica II Corso di Ingegneria Biomedica Compito A del f(x, y) = x 2 + y 2

Analisi Matematica II Corso di Ingegneria Biomedica Compito A del f(x, y) = x 2 + y 2 Analisi Matematica II Corso di Ingegneria Biomedica Compito A del -7- - È obbligatorio consegnare tutti i fogli, anche quelli della brutta. - Le risposte senza giustificazione sono considerate nulle. Esercizio.

Dettagli

Analisi Matematica 2

Analisi Matematica 2 Esercizio 1 Analisi Matematica 2 12 gennaio 2017 Si consideri la curva piana γ di parametrizzazione α(t) = (sin(t), sin(2t)), t [0, π]. 1. Si disegni (approssimativamente) il suo sostegno, specificando

Dettagli

Analisi Matematica 2: Scritto Generale, Cognome e nome:...matricola:...

Analisi Matematica 2: Scritto Generale, Cognome e nome:...matricola:... Analisi Matematica 2: Scritto Generale, 21.02.2017 Cognome e nome:....................................matricola:......... es.1 es.2 es.3 es.4 es.5 es.6 es.7 somma 5cr. 6 6 6 6 6 - - 30 6/9cr. 5 5 5 5 5

Dettagli

Analisi Matematica II Corso di Ingegneria Gestionale Compito del f(x, y) = log(1 + x 2 y) lim x 2 x

Analisi Matematica II Corso di Ingegneria Gestionale Compito del f(x, y) = log(1 + x 2 y) lim x 2 x Analisi Matematica II Corso di Ingegneria Gestionale Compito del -7-14 Esercizio 1. (14 punti) Data la funzione = log(1 + x y) i) determinare il dominio e studiare l esistenza del ite (x,y) (,) x x ii)

Dettagli

Prima prova di verifica in itinere di ANALISI MATEMATICA II. 12 Marzo 2008 Compito A. 1 (punti 3)

Prima prova di verifica in itinere di ANALISI MATEMATICA II. 12 Marzo 2008 Compito A. 1 (punti 3) anno accademico 007-008 Prima prova di verifica in itinere di ANALISI MATEMATICA II Marzo 008 Compito A (punti ) y = x + xy + y x. (punti 4) y + y x = ln x x y. (punti ) y = y + y ln y. 4 (punti 6) Determinare

Dettagli

Teoremi di Stokes, della divergenza e di Gauss Green.

Teoremi di Stokes, della divergenza e di Gauss Green. Matematica 3 Esercitazioni eoremi di tokes, della divergenza e di Gauss Green. Esercizio 1 : Calcolare l area del dominio avente per frontiera la linea chiusa γ di equazioni parametriche x (1 t) t γ :,

Dettagli

ANALISI MATEMATICA II PROVA DI TEORIA (23/6/2009)

ANALISI MATEMATICA II PROVA DI TEORIA (23/6/2009) ANALISI MATEMATICA II PROVA DI TEORIA (23/6/2009) 1. Sia S = { } (x, y, z) : x 2 + y 2 = 4, 0 z 3 + x. Scrivere le equazioni parametriche di una superficie regolare che abbia S come sostegno. 2. Enunciare

Dettagli

Corso di Laurea in Ingegneria Civile ed Ambientale Prova Scritta di Analisi Matematica 2 del 19/06/2010 A

Corso di Laurea in Ingegneria Civile ed Ambientale Prova Scritta di Analisi Matematica 2 del 19/06/2010 A Corso di Laurea in Ingegneria Civile ed Ambientale Prova Scritta di Analisi Matematica del 9/6/ A ) ata la funzione f(x, y) x y log( + x + y ), a) stabilire dove risulta derivabile parzialmente nel suo

Dettagli

ISTITUZIONI DI MATEMATICHE II

ISTITUZIONI DI MATEMATICHE II ISTITUZIONI DI MATEMATIHE II SEONDO ESONERO Esercizio 1. Data la funzione f(x, y) = (x + y )(1 y) i) se ne studi il segno. ii) Si trovino i punti critici di f e se ne studi le natura. iii) Sia D = {(x,

Dettagli

Esprimendo il vettore (u, v) in coordinate polari (u = r cos θ, v = r sin θ), si ha. = u2 v 0 0 u 0 v

Esprimendo il vettore (u, v) in coordinate polari (u = r cos θ, v = r sin θ), si ha. = u2 v 0 0 u 0 v Università di Milano - Bicocca Corso di laurea di primo livello in Scienze statistiche ed economiche Corso di laurea di primo livello in Statistica e gestione delle informazioni Matematica II rova scritta

Dettagli

Università di Trieste Facoltà d Ingegneria. Esercitazioni per la preparazione della prova scritta di Matematica 3 Dott.

Università di Trieste Facoltà d Ingegneria. Esercitazioni per la preparazione della prova scritta di Matematica 3 Dott. Università di Trieste Facoltà d Ingegneria Esercitazioni per la preparazione della prova scritta di Matematica Dott Franco Obersnel Lezione 8: estremi vincolati Esercizio 1 Scomporre il numero 411 nella

Dettagli

calcolare il lavoro di E lungo il segmento da A = ( 1, 1, 1) a B = (1, 1, 1), calcolare rot ( E ), determinare un potenziale U(x, y, z) per E.

calcolare il lavoro di E lungo il segmento da A = ( 1, 1, 1) a B = (1, 1, 1), calcolare rot ( E ), determinare un potenziale U(x, y, z) per E. ANALISI VETTORIALE Soluzione esonero.1. Esercizio. Assegnato il campo E (x, y, z) = x(y + z ), y(x + z ), z(x + y ) } 1111 calcolare il lavoro di E lungo il segmento da A = ( 1, 1, 1) a B = (1, 1, 1),

Dettagli

Analisi Matematica 2. Michele Campiti. Prove scritte di. Ingegneria Industriale a.a

Analisi Matematica 2. Michele Campiti. Prove scritte di. Ingegneria Industriale a.a Michele Campiti Prove scritte di Analisi Matematica 2 Ingegneria Industriale a.a. 20 202 Grafico della funzione f(x, y) := sin(2x 2 y) cos(x 2y 2 ) in [ π/2, π/2] 2 Raccolta delle tracce di Analisi Matematica

Dettagli

= 2x 2λx = 0 = 2y 2λy = 0

= 2x 2λx = 0 = 2y 2λy = 0 ESERCIZI SULLA OTTIMIZZAZIONE VINCOLATA ESERCIZIO Determinare i punti di massimo e minimo di f x, y = x y soggetta al vincolo x + y = Il vincolo è chiuso e limitato (circonferenza di raggio ) e la funzione

Dettagli

Esame di Analisi Matematica 2 24/7/2013 Corsi di Laurea in Ingegneria Meccanica e Energetica A.A. 2012/2013

Esame di Analisi Matematica 2 24/7/2013 Corsi di Laurea in Ingegneria Meccanica e Energetica A.A. 2012/2013 Esame di Analisi Matematica 4/7/013 Corsi di Laurea in Ingegneria Meccanica e Energetica A.A. 01/013 A Cognome (in STAMPATELLO):... Nome (in STAMPATELLO):... CFU:... Esercizio 1. Sia f : R R una funzione

Dettagli

Forme differenziali e campi vettoriali: esercizi svolti

Forme differenziali e campi vettoriali: esercizi svolti Forme differenziali e campi vettoriali: esercizi svolti 1 Esercizi sul Teorema di Green......................... 2 2 Esercizi sul Teorema di Stokes......................... 4 3 Esercizi sul Teorema di

Dettagli

Analisi Matematica II Corso di Ingegneria Gestionale Compito del xy + 2x + 2y + 2xy + 2x + 2y + sin

Analisi Matematica II Corso di Ingegneria Gestionale Compito del xy + 2x + 2y + 2xy + 2x + 2y + sin Analisi Matematica II Corso di Ingegneria Gestionale Compito del 9--8 - È obbligatorio consegnare tutti i fogli, anche la brutta e il testo. - Le risposte senza giustificazione sono considerate nulle.

Dettagli

1 x 2 y 2 dxdy D. 3 (1 ρ2 ) 3/2 = 1 3. = π 12.

1 x 2 y 2 dxdy D. 3 (1 ρ2 ) 3/2 = 1 3. = π 12. INGEGNERIA CIVILE - AMBIENTE E TERRITORIO ANALISI MATEMATICA II SOLUZIONI DELLA PROVA SCRITTA DEL 19-6-15 ESERCIZIO 1 Calcolare 1 x y dxdy D dove D è il dominio piano delimitato dalla curva x + y = x e

Dettagli

Esonero di Analisi Matematica II (A)

Esonero di Analisi Matematica II (A) Esonero di Analisi Matematica II (A) Ingegneria Edile, 8 aprile 3. Studiare la convergenza del seguente integrale improprio: + x log 3 x (x ) 3 dx.. Studiare la convergenza puntuale ed uniforme della seguente

Dettagli

Fondamenti di Analisi Matematica 2 - a.a. 2016/2017 Primo appello

Fondamenti di Analisi Matematica 2 - a.a. 2016/2017 Primo appello Fondamenti di Analisi Matematica 2 - a.a. 216/217 Primo appello Esercizi senza svolgimento - Tema 1 Ω = { x, y, z) R 3 : 4x 2 + y 2 + z 2 1, z }. x = ρ/2) sen ϕ cos ϑ, 1. y = ρ sen ϕ sen ϑ, ρ [, 1], ϕ

Dettagli

Fondamenti di Analisi Matematica 2 - a.a. 2016/2017 Secondo appello

Fondamenti di Analisi Matematica 2 - a.a. 2016/2017 Secondo appello Fondamenti di Analisi Matematica - a.a. 6/7 Secondo appello Esercizi senza svolgimento - Tema ρ = cos ϑ, ϑ [, π/], F(x, y = ( x + e x cos y cos y i + ( xe x cos y sen y j. Figura : Il sostegno Γ. ( ; 4

Dettagli

Analisi Matematica 2: Scritto Generale, , Fuori corso. Cognome e nome:...matricola:...

Analisi Matematica 2: Scritto Generale, , Fuori corso. Cognome e nome:...matricola:... Analisi Matematica 2: Scritto Generale, 26.11.216, Fuori corso Cognome e nome:....................................matricola:......... es.1 es.2 es. es.4 es.5 es.6/7 somma 5cr. 6 6 6 6 6 6/9cr. 5 5 5 5

Dettagli

Analisi Matematica II Corso di Ingegneria Gestionale Compito A del f(x, y) = 2x 2 + x 4 + 4y 4., x 2 + y 2 1.

Analisi Matematica II Corso di Ingegneria Gestionale Compito A del f(x, y) = 2x 2 + x 4 + 4y 4., x 2 + y 2 1. Analisi Matematica II Corso di Ingegneria Gestionale Compito A del 05-06-08 - È obbligatorio consegnare tutti i fogli, anche la brutta e il testo. - Le risposte senza giustificazione sono considerate nulle.

Dettagli

Corso di Laurea in Ingegneria Civile ed Ambientale Prova Scritta di Analisi Matematica 2 del 29 settembre 2012

Corso di Laurea in Ingegneria Civile ed Ambientale Prova Scritta di Analisi Matematica 2 del 29 settembre 2012 Corso di Laurea in Ingegneria Civile ed Ambientale Prova Scritta di Analisi Matematica del 9 settembre A) Data la funzione f(x, y) = { xy x se (x, y) (, ) se (x, y) = (, ), i) stabilire se risulta continua

Dettagli

Analisi Matematica 2 (Corso di Laurea in Informatica)

Analisi Matematica 2 (Corso di Laurea in Informatica) COGNOME NOME Matr. Firma dello studente Analisi Matematica 2 (Corso di Laurea in Informatica) 2.02.2012 B Tempo: ore. Prima parte: test a risposta multipla. Una ed una sola delle 4 affermazioni è corretta.

Dettagli

Analisi Matematica III 16 Gennaio (x 1) 2 + y2

Analisi Matematica III 16 Gennaio (x 1) 2 + y2 Analisi Matematica III 6 Gennaio 7. ( punti) Calcolare il seguente integrale triplo ( e z + y(x ) + dove = {(x, y, z) R 3 : (x ) + y 4 + z }. y + (x ) + y 4 + z ) dxdz, Il dominio di integrazione è un

Dettagli

Quesito 1. f(x, y) = xy log (x 2 + y 2 ) Quesito 2. Quesito 3. y = 2y3 +x 3. xy 2 y(1) = 1. Quesito 4

Quesito 1. f(x, y) = xy log (x 2 + y 2 ) Quesito 2. Quesito 3. y = 2y3 +x 3. xy 2 y(1) = 1. Quesito 4 Corso di laurea in Ing. Meccanica, a.a. 2002/2003 Prova scritta di Analisi Matematica 2 del 7 gennaio 2003 Determinare gli eventuali estremi relativi della funzione f(x, y) = xy log (x 2 + y 2 ) Calcolare

Dettagli

ANALISI MATEMATICA 2 Prova scritta 02/07/2012. log(x 2 + 3y 2 ) ) [15 pt] Data la funzione f : dom f R 2 R, f(x, y) = 1 4. [1 pt] calcolare f:

ANALISI MATEMATICA 2 Prova scritta 02/07/2012. log(x 2 + 3y 2 ) ) [15 pt] Data la funzione f : dom f R 2 R, f(x, y) = 1 4. [1 pt] calcolare f: ANALISI MATEMATICA Prova scritta /7/1 COGNOME e Nome firma 1. [15 pt] Data la funzione f : dom f R R, fx, y) 1 4 logx + 3y ) ) [1 pt] calcolare f: [ pt] Disegnare l insieme dei punti stazionari di f [

Dettagli

Risposta La curva r è regolare a tratti per via di quanto succede della sua rappresentazione parametrica nel punto t = 1: pur riuscendo

Risposta La curva r è regolare a tratti per via di quanto succede della sua rappresentazione parametrica nel punto t = 1: pur riuscendo ANALISI VETTORIALE OMPITO PER LE VAANZE DI FINE D ANNO Esercizio Sia r(t) la curva regolare a tratti x = t, y = t, t [, ] e x = t, y = t, t [, ]. alcolare la lunghezza di r, calcolare, dove esistono, i

Dettagli

Analisi Matematica II Corso di Ingegneria Gestionale Compito del f(x, y) = sin( x 2 + 2y 2 )

Analisi Matematica II Corso di Ingegneria Gestionale Compito del f(x, y) = sin( x 2 + 2y 2 ) Analisi Matematica II Corso di Ingegneria Gestionale Compito del 9--9 - È obbligatorio consegnare tutti i fogli, anche la brutta e il testo - Le risposte senza giustificazione sono considerate nulle Esercizio

Dettagli

Corso di laurea in Ingegneria civile - ambientale - edile Prova scritta del 3 febbraio Regole per lo svolgimento

Corso di laurea in Ingegneria civile - ambientale - edile Prova scritta del 3 febbraio Regole per lo svolgimento Corso di laurea in Ingegneria civile - ambientale - edile Prova scritta del febbraio 6 Regole per lo svolgimento (a) Gli studenti di ingegneria civile e edile -5 faranno gli esercizi,,. (b) Gli studenti

Dettagli

Soluzione della prova scritta di Analisi Matematica II del 15 Aprile 2009 (Ingegneria Edile e Architettura)

Soluzione della prova scritta di Analisi Matematica II del 15 Aprile 2009 (Ingegneria Edile e Architettura) Soluzione della prova scritta di Analisi Matematica II del 5 Aprile 009 Ingegneria Edile e Architettura x. Calcolare J = ds essendo γ la curva ottenuta intersecando γ + y il cilindro di equazione x + y

Dettagli

Analisi Matematica II Politecnico di Milano Ingegneria Industriale

Analisi Matematica II Politecnico di Milano Ingegneria Industriale Analisi Matematica II Politecnico di Milano Ingegneria Industriale Autovalutazione #8. Sia f : R 2 R la funzione definita da 2 y 2 per (, y) (, ) f(, y) 2 + y 2 per (, y) (, ). (a) Stabilire se f è continua

Dettagli

Analisi 4 - SOLUZIONI (17/01/2013)

Analisi 4 - SOLUZIONI (17/01/2013) Corso di Laurea in Matematica Analisi 4 - SOLUZIONI 7//23 Docente: Claudia Anedda Utilizzando uno sviluppo in serie noto, scrivere lo sviluppo in serie di MacLaurin della funzione fx = 32 + x, specificando

Dettagli

Matematica e Statistica

Matematica e Statistica Matematica e Statistica Prova d Esame (0/09/200) Università di Verona - Laurea in Biotecnologie - A.A. 2009/0 Matematica e Statistica Prova d Esame di MATEMATICA (0/09/200) Università di Verona - Laurea

Dettagli

+ (6 ( 6)) 2 = 6 6 = 1 2/30

+ (6 ( 6)) 2 = 6 6 = 1 2/30 Prova scritta di Matematica II - marzo 6 - COEZIONE Fila A c.d.l. Scienze dell Architettura - Prof.. izzi.a. Calcolare la distanza tra i punti P = (, 6, e Q = (, 6,. d(p, Q = ( 9 + (6 ( 6 + ( = 69 =. 6.b.

Dettagli

(a) E è convesso; (b) (1, 0) non è punto interno; (c) E non è misurabile.

(a) E è convesso; (b) (1, 0) non è punto interno; (c) E non è misurabile. Cognome Nome Matricola Laurea Civ Amb Gest Inf Eln Tlc Mec Non scrivere qui 3 4 5 6 A Università degli Studi di Parma Dipartimento di Ingegneria e Architettura Esame di Analisi Matematica Soluzioni A.A.

Dettagli

Analisi Matematica 2 - a.a. 2009/2010

Analisi Matematica 2 - a.a. 2009/2010 Quarto appello Esercizio Analisi Matematica 2 - a.a. 29/2 Sia Γ = { (,y,z) R 3 : 2 + y 2 = z 2, y 2 + (z 2) 2 = }.. Provare che tutti i punti di Γ sono regolari. 2. Determinare lo spazio tangente a Γ nel

Dettagli

ANALISI VETTORIALE ESERCIZI SULLE SUPERFICI

ANALISI VETTORIALE ESERCIZI SULLE SUPERFICI ANALII VETTORIALE EERCIZI ULLE UPERFICI Esercizio Calcolare l area della superficie dove Σ {(x, y, z) (x, y) E, z 2 + x 2 + y 2 } E {(x, y) x 2 + y 2 4}. Essendo la superficie Σ data come grafico di una

Dettagli

Soluzioni degli esercizi proposti nella sessione estiva Terni Perugia. F NdS. div F = 2 div F dxdydz = 2volume (V ) = 36π.

Soluzioni degli esercizi proposti nella sessione estiva Terni Perugia. F NdS. div F = 2 div F dxdydz = 2volume (V ) = 36π. Soluzioni degli esercizi proposti nella sessione estiva 2-2 Terni Perugia ) Sia F = (2x, y, z) e V il volume delimitato dalle superfici: la semisfera S := z = 9 x 2 y 2 ed il disco S 2 di equazione z =,

Dettagli

1 x 2 y 2 dxdy D. 3 (1 ρ2 ) 3/2 = 1 3. = π 12.

1 x 2 y 2 dxdy D. 3 (1 ρ2 ) 3/2 = 1 3. = π 12. INGEGNERIA CIVILE - AMBIENTE E TERRITORIO ANALISI MATEMATICA II SOLUZIONI DELLA PROVA SCRITTA DEL 19-6-15 ESERCIZIO 1 Calcolare 1 x y dxdy D dove D è il dominio piano delimitato dalla curva x + y x e dalle

Dettagli

Corso di Analisi Matematica 2. Corso di Laurea in Ingegneria Biomedica Prof. A. Iannizzotto Prove d esame 2014/2015

Corso di Analisi Matematica 2. Corso di Laurea in Ingegneria Biomedica Prof. A. Iannizzotto Prove d esame 2014/2015 Corso di Analisi Matematica 2 in Ingegneria Biomedica Prof. A. Iannizzotto Prove d esame 2014/2015 Appello del 21 novembre 2014 Tempo: 150 minuti 1. Enunciare la definizione di forma differenziale esatta

Dettagli

Analisi 4 - SOLUZIONI (compito del 29/09/2011)

Analisi 4 - SOLUZIONI (compito del 29/09/2011) Corso di laurea in Matematica Analisi 4 - SOLUZIONI compito del 9/09/0 Docente: Claudia Anedda Calcolare, tramite uno sviluppo in serie noto, la radice quinta di e la radice cubica di 9 Utilizzando la

Dettagli

Esercizi di Analisi Matematica 3. Prima parte

Esercizi di Analisi Matematica 3. Prima parte Esercizi di Analisi Matematica 3 per le Facoltà di Ingegneria Prima parte Corrado Lattanzio e Bruno Rubino Versione preliminare L Aquila, ottobre 5 Indice 1 Curve, superfici e campi vettoriali 3 1.1 Curve

Dettagli

Analisi Matematica II, Anno Accademico Ingegneria Edile e Architettura Vincenzo M. Tortorelli 16 Gennaio 2018: primo appello.

Analisi Matematica II, Anno Accademico Ingegneria Edile e Architettura Vincenzo M. Tortorelli 16 Gennaio 2018: primo appello. Analisi Matematica II Anno Accademico 7-8 Ingegneria Edile e Architettura Vincenzo M Tortorelli 6 Gennaio 8: primo appello ESERCIZIO Si consideri l intersezione dei sottoinsiemi di R definiti da z = x

Dettagli

Soluzione. Il dominio E consiste nella parte di spazio contenuta nella sfera ma esterna al cono rappresentata in Figura 1. Infatti

Soluzione. Il dominio E consiste nella parte di spazio contenuta nella sfera ma esterna al cono rappresentata in Figura 1. Infatti Esercizio 1 (G. Ziglio). (6 punti) Calcolare il volume della porzione di spazio E interna alla sfera di equazione x 2 + y 2 + z 2 = 1 ed esterna al cono di equazione z 2 = x 2 + y 2 E = (x, y, z) R x 2

Dettagli

Integrali multipli - Esercizi svolti

Integrali multipli - Esercizi svolti Integrali multipli - Esercizi svolti Integrali di superficie. Si calcoli l integrale di superficie Σ z +y +4(x +y ) dσ, dove Σ è la parte di superficie di equazione z = x y che si proietta in = {(x,y)

Dettagli

Estremi vincolati, Teorema del Dini.

Estremi vincolati, Teorema del Dini. Estremi vincolati, Teorema del Dini. 1. Da un cartone di 1m si deve ricavare una scatola rettangolare senza coperchio. Trovare il massimo volume possibile della scatola.. Trovare gli estremi assoluti di

Dettagli

Analisi Matematica II Corso di Ingegneria Gestionale Compito del log 1 + x4 +y 2. xy y

Analisi Matematica II Corso di Ingegneria Gestionale Compito del log 1 + x4 +y 2. xy y Analisi Matematica II Corso di Ingegneria Gestionale Compito del 9--6 - È obbligatorio consegnare tutti i fogli, anche la brutta e il testo. - Le risposte senza giustificazione sono considerate nulle.

Dettagli

Soluzione della Prova Parziale di Analisi Matematica III - 17/02/04. C.L. in Matematica e Matematica per le Applicazioni. Prof. Kevin R.

Soluzione della Prova Parziale di Analisi Matematica III - 17/02/04. C.L. in Matematica e Matematica per le Applicazioni. Prof. Kevin R. Soluzione della Prova Parziale di Analisi Matematica III - 7//4 C.L. in Matematica e Matematica per le Applicazioni Prof. Kevin R. Payne Esercizio. a. Ricordiamo inanzitutto la seguente: efinizione: Si

Dettagli

Corso di Analisi Matematica 2

Corso di Analisi Matematica 2 Corso di Analisi Matematica 2 in Ingegneria Biomedica Prof. A. Iannizzotto Prove d esame 2016 Versione del 27 ottobre 2016 Appello del 15 gennaio 2016 Tempo: 150 minuti 1. Enunciare le definizioni di campo

Dettagli

Esercizi su Funzioni di più variabili. - Parte II. Derivate parziali, derivate direzionali, piano tangente

Esercizi su Funzioni di più variabili. - Parte II. Derivate parziali, derivate direzionali, piano tangente Esercizi su Funzioni di più variabili. - Parte II Derivate parziali, derivate direzionali, piano tangente 1. Data la funzione f(x, y, z) = e x2 y 3 sin(x + z) calcolarne il gradiente e la derivata direzionale

Dettagli

Analisi Matematica II Corso di Ingegneria Biomedica Compito del

Analisi Matematica II Corso di Ingegneria Biomedica Compito del Analisi Matematica II Corso di Ingegneria Biomedica Compito del 0-0-0 - È obbligatorio consegnare tutti i fogli, anche quelli della brutta. - Le risposte senza giustificazione sono considerate nulle. Esercizio.

Dettagli

Esempi di esercizi d esame A.A. 2006/07 Analisi Matematica 2 Ingegneria Elettronica Proff. G. Vergara Caffarelli e L. Giacomelli

Esempi di esercizi d esame A.A. 2006/07 Analisi Matematica 2 Ingegneria Elettronica Proff. G. Vergara Caffarelli e L. Giacomelli Esempi di esercizi d esame A.A. 6/7 Analisi Matematica Ingegneria Elettronica Proff. G. Vergara Caffarelli e L. Giacomelli versione preliminare, si prega di segnalare eventuali errori *) Determinare e

Dettagli

Analisi Matematica II Corso di Ingegneria Gestionale Compito del f(x, y) = x 2 + y 3 4y. 4 1, y 2 2(1 + }

Analisi Matematica II Corso di Ingegneria Gestionale Compito del f(x, y) = x 2 + y 3 4y. 4 1, y 2 2(1 + } Analisi Matematica II Corso di Ingegneria Gestionale Compito del 8-09-07 - È obbligatorio consegnare tutti i fogli, anche la brutta e il testo. - Le risposte senza giustificazione sono considerate nulle.

Dettagli

Soluzione della Prova Scritta di Analisi Matematica 4-27/06/11. C.L. in Matematica e Matematica per le Applicazioni. Proff. K. R. Payne e E.

Soluzione della Prova Scritta di Analisi Matematica 4-27/06/11. C.L. in Matematica e Matematica per le Applicazioni. Proff. K. R. Payne e E. Soluzione della Prova Scritta di Analisi Matematica 4-27/6/ C.L. in Matematica e Matematica per le Applicazioni Proff. K. R. Payne e E. Terraneo Esercizio. a. La successione di funzioni {f n } + n definite

Dettagli

Estremi vincolati, Teorema del Dini.

Estremi vincolati, Teorema del Dini. Estremi vincolati, Teorema del Dini. 1. Da un cartone di 1m si deve ricavare una scatola rettangolare senza coperchio. Trovare il massimo volume possibile della scatola.. Trovare gli estremi assoluti di

Dettagli

Esame di Analisi Matematica 2 25/2/2013 Corsi di Laurea in Ingegneria Meccanica e Energetica A.A. 2012/2013

Esame di Analisi Matematica 2 25/2/2013 Corsi di Laurea in Ingegneria Meccanica e Energetica A.A. 2012/2013 Esame di Analisi Matematica 2 25/2/203 Corsi di Laurea in Ingegneria Meccanica e Energetica A.A. 202/203 A Esercizio 0. Riportare esclusivamente la risposta a ciascuno dei questi a-d di sotto. Gli elaborati

Dettagli

Analisi II, a.a Soluzioni 4

Analisi II, a.a Soluzioni 4 Analisi II, a.a. 17-18 Soluzioni 4 1) Consideriamo le curve in forma parametrica in R φ : R R, φ(t) = (cos t, cos(t)), φ : R R, φ(t) = (1 + cos t, sen t) φ :], π/[ R, φ(t) = (sen t, cos t) φ : R R, φ(t)

Dettagli

Analisi Matematica III (Fisica) 07 Gennaio 2016

Analisi Matematica III (Fisica) 07 Gennaio 2016 Analisi Matematica III (Fisica 7 Gennaio 16 1. (1 punti Calcolare l area della sezione del cilindro x + y 4 determinata dal piano di equazione z x + y. (Possibilmente in due modi differenti Ci sono vari

Dettagli

ANALISI MATEMATICA 2 ING. ENERGETICA prof. Daniele Andreucci Prova tecnica del 22/01/2019

ANALISI MATEMATICA 2 ING. ENERGETICA prof. Daniele Andreucci Prova tecnica del 22/01/2019 I.1 ANALISI MATEMATICA ING. ENERGETICA prof. Daniele Andreucci Prova tecnica del /1/19 1. Si consideri la funzione x +y, x,y,, fx,y = [ln1+x +y ] 1, x,y =,. A Si dimostri che f è continua in,. B Si dimostri

Dettagli

A Analisi Matematica 2 (Corso di Laurea in Informatica) Simulazione compito d esame

A Analisi Matematica 2 (Corso di Laurea in Informatica) Simulazione compito d esame COGNOME NOME Matr. Firma dello studente A Analisi Matematica (Corso di Laurea in Informatica) Simulazione compito Tempo: ore. Prima parte: test a risposta multipla. Una ed una sola delle 4 affermazioni

Dettagli

k [ e x] k ke kx = lim ke kx = lim + + ke kδ =

k [ e x] k ke kx = lim ke kx = lim + + ke kδ = F. De Marchis F. Lanzara. Montefusco Se ammesso, sosterrò la prova orale: in questo appello in un appello successivo Istruzioni: tutti i ragionamenti devono essere adeguatamente motivati! sercizio 1. i.

Dettagli

Soluzione della Prova Scritta di Analisi Matematica 4-25/06/13. C.L. in Matematica e Matematica per le Applicazioni. Proff. K. R. Payne e E.

Soluzione della Prova Scritta di Analisi Matematica 4-25/06/13. C.L. in Matematica e Matematica per le Applicazioni. Proff. K. R. Payne e E. Soluzione della Prova Scritta di Analisi Matematica 4-5/6/ C.L. in Matematica e Matematica per le Applicazioni Proff. K. R. Payne e E. Terraneo Esercizio. a. Le funzioni f n (x) sono continue e quindi

Dettagli

Analisi II, a.a Soluzioni 5

Analisi II, a.a Soluzioni 5 Analisi II, a.a. 2017-2018 Soluzioni 5 1) Sia E un sottoinsieme chiuso e limitato di R n e x R n un punto qualunque. Chiamiamo d(x, E) = inf{d(x, y): y E} la distanza di x da E. Dimostrare che esiste un

Dettagli

Cognome:... Nome:... Matricola:

Cognome:... Nome:... Matricola: Cognome:... Nome:... Matricola: Università di Milano - Bicocca Corso di laurea di primo livello in Scienze statistiche ed economiche Corso di laurea di primo livello in Statistica e gestione delle informazioni

Dettagli

Analisi Matematica II Corso di Ingegneria Biomedica Compito del

Analisi Matematica II Corso di Ingegneria Biomedica Compito del Analisi Matematica II Corso di Ingegneria Biomedica Compito del -6- - È obbligatorio consegnare tutti i fogli, anche quelli della brutta. - Le risposte senza giustificazione sono considerate nulle. Esercizio.

Dettagli