LA GENETICA MENDELIANA



Documenti analoghi
La Genetica. Le leggi di Mendel

Genetica. Mendel e la genetica

La trasmissione dei caratteri ereditari. Le leggi di Mendel ( )

GENETICA... lessico. Genetica: studio dei geni e dell'ereditarietà

LE LEGGI DI MENDEL

Prima Legge di Mendel LEGGE DELLA SEGREGAZIONE IN PROPORZIONI UGUALI:

generazione filiale ibridi

LA GENETICA scienza che studia i caratteri ereditari e i meccanismi che ne regolano la trasmissione.

GENETICA MENDELIANA. Per i suoi studi, Mendel utilizzò piante di pisello odoroso (Pisum sativum) Facilità di coltivazione. Disponibilità di varietà

LA GENETICA. Dott.ssa Valentina Terio

TEORIA CROMOSOMICA : ALLEGATI

CORSO INTEGRATO DI GENETICA

= femmina. = maschio. = fenotipo banda bianca. = fenotipo pezzato. =fenotipo colore uniforme

Le leggi di Mendel esposte in modo ragionato e critico di Luciano Porta

Trasmissione del materiale ereditario

OMOZIGOTE Dominante. OMOZIGOTE Recessivo ETEROZIGOTE

Capitolo 3 Riproduzione e trasmissione dei cromosomi

ESTENSIONI DELLE LEGGI DI MENDEL

GENETICA MENDELIANA NELL UOMO

Le strategie mendeliane

EREDITA MENDELIANA IL CARATTERE E TRASMESSO CON GLI AUTOSOMI O E ASSOCIATO AI CROMOSOMI SESSUALI?

La Genetica. Le leggi di Mendel

Mendeliana Autosomica Dominante (AD) Autosomica Recessiva (AR) X-linked Recessiva (X-linked R) X-linked Dominante (X-linked D) Y-linked

4 modulo didattico - Modalità di trasmissione delle malattie

I.7.1 Malattie genetiche legate al sesso

SOMIGLIANZA TRA INDIVIDUI

Capitolo 5 Associazione e mappatura genetica negli eucarioti

La trasmissione delle malattie genetiche. Anna Onofri

SOLUZIONI AI PROBLEMI DEL CAPITOLO 2. Domande concettuali

Analisi dei Dati 12/13 Esercizi proposti 3 soluzioni

Corso di Laurea in Scienze e Tecnologie Biomolecolari. NOME COGNOME N. Matr.

CORSO INTEGRATO DI GENETICA ESERCIZI

GRUPPI SANGUIGNI. Supponendo che la popolazione italiana sia H-W, calcola la probabilità di ogni singolo allele e di ogni genotipo

Alberto Viale I CROMOSOMI

LE MALATTIE GENETICHE CLASSE 3 C

I MOTORI DELL EVOLUZIONE PT1. POMERIGGIO DI AGGIORNAMENTO PROF. M.A. ZORDAN, Ph.D UNIVERSITÀ DEGLI STUDI DI PADOVA

Prove associate al percorso UGUALI EPPUR DIVERSI

Test statistici di verifica di ipotesi


GENETICA GENERALE GENETICA UMANA E MOLECOLARE

CAPITOLO III CONFRONTI TRA DISTRIBUZIONI

u 1 u k che rappresenta formalmente la somma degli infiniti numeri (14.1), ordinati al crescere del loro indice. I numeri u k

MAPPE DI KARNAUGH. Nei capitoli precedenti si è visto che è possibile associare un circuito elettronico o elettrico ad una funzione logica.

Rappresentare i nessi logici con gli insiemi

Matematica generale CTF

Eredità non mendeliana

da 2 a 5 giocatori, dai 10 anni in su, durata 30 minuti

GENETICA seconda parte

Ereditarietà biologica: le leggi di Mendel, e le eccezioni alla ereditarietà mendeliana.

Sommario. Definizione di informatica. Definizione di un calcolatore come esecutore. Gli algoritmi.

Logica Numerica Approfondimento 1. Minimo Comune Multiplo e Massimo Comun Divisore. Il concetto di multiplo e di divisore. Il Minimo Comune Multiplo

UNA LEZIONE SUI NUMERI PRIMI: NASCE LA RITABELLA

GENOMA. c varia da pochi kb nei virus a milioni di kb in piante e animali

Parte I. Prima Parte

Edited by Foxit PDF Editor Copyright (c) by Foxit Software Company, 2004 For Evaluation Only.

Capitolo 4 Probabilità

-malattie monogeniche o mendeliane:

LA GENETICA MENDELIANA NELLA SPECIE UMANA!

TEST BIOLOGIA 1 ANNO ABEI Da inviare a connesso@alice.it entro e non oltre il 6 novembre 2015

( x) ( x) 0. Equazioni irrazionali

Statistica e biometria. D. Bertacchi. Variabili aleatorie. V.a. discrete e continue. La densità di una v.a. discreta. Esempi.

Ai fini economici i costi di un impresa sono distinti principalmente in due gruppi: costi fissi e costi variabili. Vale ovviamente la relazione:

Il concetto di valore medio in generale

Ottimizzazione Multi Obiettivo

Mappatura genetica. alberi genealogici (pedigree) stima del rischio genetico (counseling) analisi di linkage (lod score) Paolo Edomi - Genetica

Ulteriori problemi di fisica e matematica

APPUNTI DI MATEMATICA LE FRAZIONI ALGEBRICHE ALESSANDRO BOCCONI

LE SUCCESSIONI 1. COS E UNA SUCCESSIONE

Ricorsione. (da lucidi di Marco Benedetti)

Gaetano Graziano M E I O S I. La via per la diversità e l irripetibilità PREMESSA SIGNIFICATO PROCEDURA IMPORTANZA

Esercizi. Rappresentando le estrazioni con un grafo ad albero, calcolare la probabilità che:

CALCOLO COMBINATORIO

SEZIONE I - LA GENETICA MENDELIANA di Stefania Giannoni e Mauro Festa Larel

Esercizi di Macroeconomia per il corso di Economia Politica

Corso di Matematica. Corso di Laurea in Farmacia, Facoltà di Farmacia. Università degli Studi di Pisa. Maria Luisa Chiofalo.

Siamo così arrivati all aritmetica modulare, ma anche a individuare alcuni aspetti di come funziona l aritmetica del calcolatore come vedremo.

Osservazioni sulla continuità per le funzioni reali di variabile reale

ESERCIZI PER IL POTENZIAMENTO DELLA LETTO-SCRITTURA GRUPPO A

Slide Cerbara parte1 5. Le distribuzioni teoriche

Collegamento a terra degli impianti elettrici

MATEMATICA E STATISTICA CORSO B PROF. MARCO ABATE. 6 giugno 2007

Algebra booleana. Si dice enunciato una proposizione che può essere soltanto vera o falsa.

Percorsi, strategie e geometrie in gioco Complementi e spunti di lavoro Primaria e Secondaria Inferiore

Vincere a testa o croce

Bioinformatica e Biologia Computazionale per la Medicina Molecolare

SOLUZIONI AI PROBLEMI DEL CAPITOLO 5. Domande concettuali

Capitolo 2 Distribuzioni di frequenza

La propagazione delle onde luminose può essere studiata per mezzo delle equazioni di Maxwell. Tuttavia, nella maggior parte dei casi è possibile

Calcolo delle probabilità

IL CAPOLUOGO AL MICROSCOPIO

NOZIONI DI BASE DEL DIRITTO IL DIRITTO COME INSIEME DI REGOLE

Principi di mappatura genetica. Paolo Edomi - Genetica

1.07 Generalità Accrediti per compiti educativi

Interesse, sconto, ratei e risconti

Primi esercizi per gli studenti del corso di Statistica ed Elementi di Probabilita

Scienza che studia la

PROBABILITA CONDIZIONALE

Appunti sulla Macchina di Turing. Macchina di Turing

Page 1. Evoluzione. Intelligenza Artificiale. Algoritmi Genetici. Evoluzione. Evoluzione: nomenclatura. Corrispondenze natura-calcolo

Più processori uguale più velocità?

Transcript:

LA GENETICA MENDELIANA A partire dal 1856, Johann Gregor Mendel (1822 1884) iniziò una lunga serie di esperimenti sulle piante di pisello (Pisum sativum), con le quali era facile effettuare incroci ed agevole esaminare i risultati ottenuti. Uno dei caratteri ereditari presi in considerazione fu il colore del seme maturo, che poteva essere giallo o verde. Mendel aveva notato che piante di pisello a semi gialli, incrociate ripetutamente tra loro, davano origine sempre e immancabilmente a piante con semi gialli. Lo stesso risultato si otteneva incrociando piante con semi di colore verde: le generazioni a seguire producevano sempre semi verdi. Mendel chiamò queste piante, che differivano per il colore dei semi, linee pure. Una linea pura, quindi, può essere definita come una successione generazionale di individui che manifestano, senza variazioni, il carattere ereditario considerato (nel caso specifico, il particolare colore dei semi). Allorché egli passò ad un successivo esperimento di incrocio piante con i due diversi colori dei semi incrociate fra di loro si accorse di un fatto ben strano: le piante figlie prima generazione filiale o, più brevemente, F 1, generate da piante di differente linea pura per il colore del seme, mostravano tutte, senza eccezione, semi di colore giallo. Il carattere seme verde sembrava sparito! Egli proseguì la sperimentazione incrociando tra di loro questa volta le piante della F 1, tutte aventi semi gialli. Aspettò che maturassero i semi della seconda generazione (F 2 ), dopodiché li esaminò, riscontrando un risultato ancora più sorprendente di

quello precedente: tra le piante della F 2 ve ne erano circa ¼ con i semi verdi! Le altre, circa i ¾, avevano i semi gialli. Come potevano essere interpretati questi strani risultati? L unica cosa di cui egli era inizialmente certo, poiché l aveva direttamente sperimentata, era la modalità riproduttiva delle sue piante, tipicamente sessuata, durante la quale il polline fungeva da seme maschile, mentre l elemento femminile si trovava in profondità nell ovario del fiore. Mendel si rese conto che i caratteri ereditari dovevano essere contenuti nelle cellule responsabili del processo riproduttivo. Dai risultati dei suoi esperimenti si poteva intuire che l espressione dei diversi fattori ereditari, la loro manifestazione visibile come nel caso del colore dei semi, non ricorreva sempre con la stessa frequenza nel corso delle generazioni. Certi fattori genetici sembravano prevalere su altri. Nell esperimento appena descritto, il fattore seme giallo mascherava, nella F 1, l altro fattore, quello che determina il colore verde dei semi. Mendel chiamò dominanti i fattori ereditari che si manifestano sempre e comunque nelle successive generazioni, mentre definì recessivi quelli che, al contrario, si manifestano solo in certi individui di determinate generazioni. Ma quanti sono questi fattori ereditari, per ciascun carattere, in un singolo individuo? Se teniamo in considerazione che la riproduzione sessuata si attua normalmente attraverso il contributo genetico di due distinti individui uno di sesso maschile e l altro di sesso femminile la risposta più logica è che i fattori ereditari che controllano un determinato carattere in un certo individuo devono essere due: uno, per l appunto, di provenienza paterna, l altro di provenienza materna. Indichiamo allora con la lettera G il fattore ereditario che determina il colore giallo dei semi di pisello, e con g il fattore ereditario responsabile del colore verde degli stessi

semi. Il primo dei due fattori, cioè G, è quello definito dominante, mentre g è il fattore recessivo. E importante capire bene la differenza che esiste fra i due fattori, per cui, se hai ancora dei dubbi, rileggi le righe precedenti. Bisogna ricordare che Mendel aveva utilizzato, per il primo esperimento, piante di linea pura per queste due varianti del carattere colore del seme. Da quale coppia di fattori genetici sarà stata caratterizzata la linea pura di piante con semi di colore giallo? Senza dubbio da due fattori G. E quella delle piante con semi verdi? Da due fattori g. Dunque, la situazione iniziale doveva essere la seguente: G/G = piante di linea pura con semi gialli g/g = piante di linea pura con semi verdi Mendel incrociò ripetutamente tra loro questi due gruppi di piante. Così dovremo scrivere: G/G x g/g dove il simbolo x indica l incrocio, la riproduzione sessuata tra le piante. Supponendo che ciascun individuo contribuisca alla generazione successiva con uno solo dei due fattori genetici, avremo: contributo genetico di G/G = G contributo genetico di g/g = g Al momento della fecondazione - l unione della cellula riproduttiva maschile con quella femminile - i due diversi contributi si uniranno per formare: G/g La F 1 è costituita tutta da piante che possiedono un fattore dominante e uno recessivo nelle loro cellule. Di che colore avranno, presumibilmente, i semi? Poiché G domina su g, il colore dei semi di tutte le piante della F 1 sarà giallo. Mendel ottenne per l appunto tale risultato. In seguito, come detto, Mendel provò ad incrociare tra loro le piante così ottenute. Fece cioè questo: G/g x G/g

In questo caso i contributi genetici forniti dalle piante possono essere di due tipi: contributi genetici di G/g = G, oppure g Dobbiamo perciò considerarli entrambi. Se consideriamo molti eventi riproduttivi, il risultato previsto per la F 2, vale a dire per la seconda generazione, sarà il seguente: contributi genetici G g G G/G G/g g G/g g/g Si osserva che ¾ delle piante ricevono almeno un fattore G, e ¼ addirittura due, e quindi avranno semi di colore giallo, mentre ¼ delle piante riceverà due fattori g, manifestando il colore verde dei semi. Proprio come constatato da Mendel. Solo agli inizi del 900 i risultati di Mendel furono riconosciuti come validi ed espressi formalmente in quella legge oggi nota come prima legge di Mendel detta della segregazione dei fattori ereditari (o dei caratteri). Il significato di questa legge è il seguente: i due fattori ereditari che controllano un certo carattere, in un individuo, si separano (segregano) durante la formazione delle cellule riproduttive, i gameti, in ognuna delle quali ve ne sarà pertanto uno solo; al momento della riproduzione, e più precisamente durante il processo detto fecondazione, il fattore ereditario paterno e quello materno si riuniscono nello zigote (la prima cellula del nuovo individuo), ripristinando la coppia di fattori genetici per quel dato carattere. Chiarito il primo degli aspetti cruciali della trasmissione dei caratteri ereditari, Mendel si risolse ad affrontarne un secondo. Che tipo di caratteri, ed in quali rapporti,

si sarebbero manifestati nella progenie generata da piante che differivano per due diversi caratteri ereditari? Rispondere a questo interrogativo significava prendere in considerazione simultaneamente due coppie di fattori genetici. Mendel scelse di studiare la trasmissione simultanea della forma superficiale e del colore dei semi di pisello. Si ricorderà che la superficie del seme può essere liscia (fattore dominante) o rugosa (fattore recessivo); per quanto riguarda il colore, come già detto, esso può essere giallo (dominante) oppure verde (recessivo). Come nell esperimento descritto in precedenza, Mendel incrociò inizialmente due gruppi di piante di linea pura per entrambi i suddetti caratteri. Per cui, indicando con L il fattore genetico responsabile della forma liscia del seme, con l l analogo fattore recessivo per la forma rugosa, con G il fattore responsabile del colore giallo del seme, e con g il fattore recessivo per il colore verde, avremo: piante con semi lisci e gialli L/L G/G x l/l g/g piante con semi rugosi e verdi Da tali incroci, Mendel, come è facilmente intuibile, ottenne esclusivamente piante con semi lisci e gialli, quindi piante che manifestavano ambedue i caratteri dominanti. La F 1 era così composta da piante del seguente tipo: L/l G/g Fin qui, nulla di diverso rispetto al caso precedentemente esaminato. Le cose si complicavano in modo notevole quando Mendel passava a considerare la seconda generazione (F 2 ) prodotta incrociando, come al solito, le piante della F 1 tra loro. Le percentuali riscontrate tra piante con caratteri dominanti e recessivi si discostavano notevolmente dal rapporto ¾ e ¼, ed inoltre la varietà della progenie si mostrava ben più ricca. Egli infatti ottenne, approssimativamente, 9/16 di piante con semi lisci e gialli, 3/16 di piante con semi lisci e verdi, ancora 3/16 ma di piante con semi rugosi e gialli, infine 1/16 di piante con semi rugosi e verdi. Come furono interpretati questi nuovi rapporti? Ancora una volta occorre ragionare in termini probabilistici. Se supponiamo che le due coppie di fattori genetici siano indipendenti, nel momento della formazione delle cellule riproduttive avremo la

seguente situazione: L e l si separano, finendo ciascuno in una cellula diversa, e la stessa cosa succede a G e g. Quali fattori potremo allora trovare in ciascun gamete? Distinguiamo due casi: 1 L segrega con G, di conseguenza l segregherà con g ; 2 L segrega con g, di conseguenza l segregherà con G. Tutti e due i casi descritti hanno la stessa identica probabilità (50%) di verificarsi. Se consideriamo un elevato numero di gameti prodotti da ciascun individuo ci aspetteremo, a ragione, che circa ¼ delle cellule riproduttive contengano i fattori genetici L e G, ¼ contengano i fattori l e g, un altro ¼ i fattori L e g e, infine, ¼ i fattori l e G. Quattro diversi tipi di gameti, quindi, entrano in gioco per determinare la composizione genetica della seconda generazione ricavata da Mendel. Ricorrendo allo schema utilizzato in precedenza e sistemando i contributi genetici maschili e femminili rispettivamente in orizzontale e in verticale, otteniamo: gameti LG lg Lg lg LG L/L G/G L/l G/g L/L G/g L/l G/G lg L/l G/g l/l g/g L/l g/g l/l G/g Lg L/L G/g L/l g/g L/L g/g L/l G/g lg L/l G/G l/l G/g L/l G/g l/l G/G Dal quale schema ricaviamo che nove piante su sedici avranno semi lisci e gialli (L/- G/-), tre piante su sedici semi lisci e verdi (L/- g/g), tre su sedici semi rugosi e gialli (l/l G/-), ed infine una su sedici semi rugosi e verdi (l/l g/g).

Mendel capì che certi fattori ereditari assortiscono indipendentemente, vale a dire che segregano durante la formazione dei gameti e si riuniscono nel corso del processo di fecondazione seguendo semplici leggi probabilistiche. Anche queste ultime intuizioni furono successivamente formalizzate in una legge la seconda legge di Mendel che è conosciuta appunto come legge dell assortimento indipendente dei fattori ereditari (o dei caratteri). Gregor Mendel

Le parole della Genetica ALLELE = variante di un gene; può essere, ad esempio, dominante o recessivo, a seconda che si esprima o meno in un dato fenotipo. ETEROZIGOTE = una coppia di fattori ereditari (genotipo) diversi. Esempio: G/g. FENOTIPO = la manifestazione di un carattere ereditario (esempio: il colore giallo o la forma liscia dei semi del pisello). GAMETE = la cellula riproduttiva aploide (che contiene cioè solo una delle due varianti alleliche di ciascun carattere ereditario) che, unendosi ad un altro gamete (processo detto "fecondazione"), dà origine allo zigote, la prima cellula di un nuovo individuo. GENE = il fattore ereditario mendeliano responsabile della espressione (manifestazione) di un certo carattere ereditario. E' costituito da una o più sequenze specifiche di DNA. GENOTIPO = una qualunque coppia di fattori ereditari (alleli) presenti nel patrimonio ereditario di un individuo (Esempio: G/g o L/L). OMOZIGOTE = una coppia di fattori ereditari (genotipo) uguali. Esempio: G/G o g/g; il primo è detto omozigote dominante, il secondo omozigote recessivo.

Problemi svolti 1) Il colore nero del corpo del moscerino della frutta (Drosophila melanogaster) è determinato da un fattore genetico recessivo b, mentre il colore grigio dal dominante B. Una femmina con il corpo grigio viene fatta accoppiare con un maschio dal corpo nero e ne nascono moscerini con il corpo grigio e moscerini con il corpo nero. Spiega tale risultato. R.: Il risultato è possibile solo ammettendo che la femmina non sia di linea pura. Infatti, se fosse B/B, il suo contributo genetico alla generazione successiva sarebbe sempre e comunque B e tutti i moscerini figli, possedendo la coppia di fattori B/b (il recessivo ereditato dal padre b/b), avrebbero il corpo di colore grigio. La femmina quindi deve essere B/b, infatti: B/b x b/b dà come risultato proprio un 50% di individui con carattere dominante e un 50% con carattere recessivo. 2) La mancanza di pigmentazione nell uomo (e non solo) è definita albinismo e dipende da un fattore ereditario recessivo a. Il dominante A è invece responsabile della presenza di pigmento (melanina) nella pelle. Qual è la probabilità che una coppia di genitori non albini, che hanno avuto un figlio albino, generino un secondo figlio normale?

R.: I due genitori devono essere portatori del fattore recessivo, cioè devono essere entrambi A/a. Infatti, l incrocio fra due individui che esprimono il carattere dominante, ma che hanno nel loro patrimonio ereditario anche il carattere recessivo, può produrre una frazione di discendenti - esattamente ¼ - che manifestano il carattere recessivo. La restante frazione - ¾ - sarà composta da individui uguali ai genitori, per cui la probabilità che il secondo figlio sia normale è ¾. 3) Il pelo corto nei conigli è determinato dal fattore genetico L (dominante), mentre il pelo lungo dal recessivo l. Il colore nero del pelo è il risultato dell espressione del fattore B (dominante), mentre quello marrone del recessivo b. Calcola la percentuale di conigli con pelo lungo e nero attesa dall incrocio tra un coniglio L/l B/b e un altro dal pelo lungo e marrone. R.: Il coniglio con pelo lungo e marrone sarà evidentemente di linea pura e cioè l/l b/b. Quindi l incrocio è il seguente: L/l B/b x l/l b/b I gameti prodotti dal coniglio L/l B/b (pelo corto e nero) saranno dunque i seguenti: LB, lb, Lb, lb, mentre quelli prodotti dal coniglio l/l b/b (pelo lungo e marrone) tutti lb. Costruiamo il solito schema per visualizzare tutte le possibili combinazioni dei caratteri ereditari nella progenie: gameti LB lb Lb lb lb L/l B/b l/l b/b L/l b/b l/l B/b

Gli unici esemplari che manifesteranno i caratteri in questione (pelo lungo e colore nero) sono quelli l/l B/b, nella percentuale del 25%. Quesiti a scelta multipla 1) Una serie di individui, di varie generazioni, che manifestano lo stesso determinato carattere ereditario viene detta: linea pura linea dominante generazione dominante generazione segregante 2) I caratteri detti recessivi si manifestano solo se l individuo possiede: due fattori genetici recessivi un fattore recessivo che ha ereditato dal padre un fattore recessivo che ha ereditato dalla madre due fattori recessivi in ogni gamete

3) L espressione segregazione dei caratteri sta a significare che: i fattori genetici si separano durante la formazione dei gameti i caratteri si uniscono durante la fecondazione i fattori ereditari passano dal genitore al figlio sempre in coppia i caratteri dominanti e recessivi non si trovano mai insieme nello zigote 4) La probabilità che da due individui che manifestano entrambi un dato carattere dominante possa nascere un individuo che esprime il carattere recessivo può essere: 0% o 25% 0% o 50% 25% o 50% sempre del 25% 5) La probabilità che da due individui che manifestano entrambi due caratteri dominanti possa nascere un individuo che esprime ambedue i caratteri recessivi può essere: 0% o 6,25% 0% o 12, 5% 12,5% o 25% sempre del 12,5%

Problemi 1) Qual è la frazione di individui con carattere recessivo che si prevede di ottenere incrociando un individuo A/a con un individuo a/a? [R: ½] 2) La fenilchetonuria (PKU) è una malattia genetica determinata da un fattore genetico recessivo. Una coppia di genitori sani ha un figlio con ritardo mentale causato dalla PKU. Qual è la probabilità che il successivo figlio della stessa coppia sia sano? [R: ¾] 3) Il colore nero del pelo dei cani di razza Cocker Spaniel è determinato da un fattore genetico dominante B, mentre il colore ruggine dal recessivo b. L uniformità del colore è dovuta ad un altro fattore dominante S, mentre il pelo chiazzato dal recessivo s. Un maschio nero e di colore uniforme, non di linea pura, viene incrociato con una femmina dal pelo a chiazze e di color ruggine. Qual è la probabilità che da tale incrocio nascano cagnolini neri con pelo chiazzato? [R: ¼] 4) Nel pomodoro, il colore rosso (R) del frutto è dominante sul colore giallo (r), la pianta alta (A) è dominante su quella bassa (a). Incrociando due linee pure che differiscono per ambedue i caratteri si ottiene, come previsto, una F 1 costituita esclusivamente da piante alte con frutti rossi. Qual è la probabilità che incrociando la F 1 con il doppio recessivo si ottengano piante basse con frutti rossi? [R: ¼]