UNIVERSITÀ DEGLI STUDI DI TERAMO FACOLTÀ DI SCIENZE POLITICHE CORSO DI LAUREA IN ECONOMIA BANCARIA FINANZIARIA ED ASSICURATIVA

Documenti analoghi
UNIVERSITÀ DEGLI STUDI DI TERAMO FACOLTÀ DI SCIENZE POLITICHE CORSO DI LAUREA IN ECONOMIA BANCARIA FINANZIARIA ED ASSICURATIVA

A titolo di esempio proponiamo la risoluzione del sistema sia con il metodo della matrice inversa sia con il metodo di Cramer.

ESERCIZI PROPOSTI. det A = = per cui il sistema si può risolvere applicando le formule di Cramer, cioè: dove: = =

Soluzioni del Foglio 2 I sistemi lineari

Esercizi sui sistemi di equazioni lineari.

Corso di Geometria BIAR, BSIR Esercizi 3: soluzioni

I sistemi lineari di n equazioni in n incognite

SISTEMI LINEARI. x y + 2t = 0 2x + y + z t = 0 x z t = 0 ; S 3 : ; S 5x 2y z = 1 4x 7y = 3

I. Foglio di esercizi su vettori linearmente dipendenti e linearmente indipendenti. , v 2 = α v 1 + β v 2 + γ v 3. α v 1 + β v 2 + γ v 3 = 0. + γ.

Istituzioni di Matematica I. Esercizi su sistemi lineari. & % x + y " #z = "1 & '#x " y+ z =1

0.1 Soluzioni Esercitazione III, del 21/10/2008

Introduzione soft alla matematica per l economia e la finanza. Marta Cardin, Paola Ferretti, Stefania Funari

MATEMATICA. a.a. 2014/ Sistemi di equazioni lineari

CORSO DI ALGEBRA LINEARE Anno Accademico 2004/2005 Appunti su SISTEMI di EQUAZIONI LINEARI

Geometria BAER I canale Foglio esercizi 2

0.1 Soluzioni esercitazione IV, del 28/10/2008

SISTEMI LINEARI: APPROFONDIMENTI ED ESEMPI

Sistemi Lineari. Andrea Galasso

Federica Gregorio e Cristian Tacelli

PROBLEMA. Costruire matrici quadrate contenute. Fare i determinanti delle matrici quadrate contenute in A

Il teorema di Rouché-Capelli

Corso di Matematica Generale M-Z Dipartimento di Economia Universitá degli Studi di Foggia ALGEBRA LINEARE. Giovanni Villani

UNIVERSITA DEGLI STUDI LA SAPIENZA DI ROMA POLO DI RIETI FACOLTA DI INGEGNERIA CORSO DI LAUREA IN INGEGNERIA DELL AMBIENTE E DEL TERRITORIO

UNIVERSITÀ DEGLI STUDI DI TERAMO FACOLTÀ DI SCIENZE POLITICHE CORSO DI LAUREA IN ECONOMIA BANCARIA FINANZIARIA ED ASSICURATIVA

il determinante che si ottiene da A, sopprimendo la i - esima riga e la j - esima colonna. Si definisce complemento algebrico dell'elemento a ij

UNIVERSITÀ DEGLI STUDI DI TERAMO FACOLTÀ DI SCIENZE POLITICHE CORSO DI LAUREA IN ECONOMIA BANCARIA FINANZIARIA ED ASSICURATIVA

1. Sistemi di equazioni lineari. 1.1 Considerazioni preliminari

Istituzioni di Matematiche Modulo A (ST)

Risoluzione di sistemi lineari

Note sull algoritmo di Gauss

Sistemi II. Sistemi II. Elisabetta Colombo

Lezione 10: Teorema di Rouchè-Capelli e la classificazione dei sistemi lineari

1. [15 punti] Calcolare il rango della seguente matrice a coefficienti reali: ( 1/2) 1 (1/2)

Geometria BAER I canale Foglio esercizi 2

CORSO DI LAUREA IN INGEGNERIA EDILE/ARCHITETTURA

Riassumiamo le proprietà dei numeri reali da noi utilizzate nel corso di Geometria.

UNIVERSITÀ DEGLI STUDI DI TERAMO FACOLTÀ DI SCIENZE POLITICHE CORSO DI LAUREA IN ECONOMIA BANCARIA FINANZIARIA ED ASSICURATIVA

SISTEMI LINEARI. x 2y 2z = 0. Svolgimento. Procediamo con operazioni elementari di riga sulla matrice del primo sistema: R 2 R 2 3R

2x 5y +4z = 3 x 2y + z =5 x 4y +6z = A =

Esercitazione 6 - Soluzione

A.A CORSO DI ALGEBRA 1. PROFF. P. PIAZZA, E. SPINELLI. SOLUZIONE ESERCIZI FOGLIO 5.

Metodi per la risoluzione di sistemi lineari

ESEMPIO DI SISTEMA LINEARE CON SOLUZIONE. Esercizio Si consideri il sistema di equazioni lineari dipendente da un parametro λ R:

Registro Lezioni di Algebra lineare del 15 e 16 novembre 2016.

Un sistema di equazioni lineari ( o brevemente un sistema lineare) di m equazioni in n incognite, si presenta nella forma:

1 Risoluzione di sistemi lineari con l uso dei determinanti

CORSO DI LAUREA IN INGEGNERIA. k R 1 2k 3 0. Il rango di una matrice A corrisponde al massimo ordine di una sottomatrice quadrata di A con deteminante

CORSO DI LAUREA IN INGEGNERIA EDILE/ARCHITETTURA

Metodi per la risoluzione di sistemi lineari

Argomento 13 Sistemi lineari

r 2 r 2 2r 1 r 4 r 4 r 1

Ax = b ; b = b 1 b 2. a 11 a 12 a 1n a 21 a 22 a 2n. b m. a m1 a m2 a mn

1 Esercizi 13. 3x + λy + 2z = 0 (1 λ)x + 5y + 3z = 0 3x + 2y + z = 0

CORSI DI LAUREA IN MATEMATICA E FISICA

Geometria BAER I canale Foglio esercizi 3

Riassumiamo le proprietà dei numeri reali da noi utilizzate nel corso di Geometria.

SISTEMI LINEARI MATRICI E SISTEMI 1

Dipendenza e indipendenza lineare (senza il concetto di rango)

ESERCIZI DI ALGEBRA LINEARE E COMPLEMENTI DI GEOMETRIA

SISTEMI LINEARI, METODO DI GAUSS

Ingegneria Gestionale - Corso di Analisi II e Algebra anno accademico 2008/2009

Corso di GEOMETRIA Dipartimento di Ingegneria ed Architettura Università degli Studi di Trieste Prof. Fabio Perroni. 3. Sistemi di equazioni lineari

Esercizi di geometria per Fisica / Fisica e Astrofisica

UNIVERSITÀ DEGLI STUDI ROMA TRE Corso di Laurea in Matematica GE110 - Geometria 1 a.a Prova scritta del TESTO E SOLUZIONI

Manlio Bordoni. APPUNTI SULLA RAPPRESENTAZIONE DEI SOTTOSPAZI VETTORIALI DI R n I MODO. v 11. v n1

Università degli Studi di Bergamo Modulo di Geometria e Algebra Lineare (vecchio programma) 2 settembre 2013 Tema A

ESERCIZI SULLE MATRICI

AUTOVALORI, AUTOVETTORI, AUTOSPAZI

Analisi dei dati corso integrato - Algebra lineare, e a b c 0. le soluzioni del sistema lineare omogeneo x d e f 2. a b c.

Esercitazione N.2. Sistemi lineari con parametro. di sistemi lineari con parametro. La regola di Cramer Discussione e risoluzione

Note sui sistemi lineari per il Corso di Geometria per Chimica, Facoltà di Scienze MM.FF.NN., UNICAL (Dott.ssa Galati C.) Rende, 4 Maggio 2010

Esercizi svolti. risolvere, se possibile, l equazione xa + B = O, essendo x un incognita reale

Appunti su Indipendenza Lineare di Vettori

Si consideri il sistema a coefficienti reali di m equazioni lineari in n incognite

Sistemi lineari. Lorenzo Pareschi. Dipartimento di Matematica & Facoltá di Architettura Universitá di Ferrara

0.1 Condizione sufficiente di diagonalizzabilità

A =, c d. d = ad cb. c d A =

0.1 Complemento diretto

8 novembre Soluzione esame di geometria - 12 crediti Ingegneria gestionale - a.a COGNOME... NOME... N. MATRICOLA...

Esempio. L immagine di f è l insieme dei vettori w = (w 1, w 2 ) R 2 che hanno w 1 = w 2. Quindi:

1 Equazioni parametriche e cartesiane di sottospazi affini di R n

Corso di Geometria BIAR, BSIR Esercizi 4: soluzioni

Esercizi di Matematica di Base Scienze biologiche e Scienze e Tecnologie dell Ambiente

Algebra lineare Geometria 1 11 luglio 2008

= (cioè le due terne di numeri direttori ( devono essere ) proporzionali). Tale uguaglianza non è verificata, poiché risulta ρ

Applicazioni eliminazione di Gauss

Capitolo 5 Applicazioni lineari Esercizi svolti Tutorato di geometria e algebra lineare. Marco Robutti

PreCorso di Matematica - PCM Corso M-Z

Corso di GEOMETRIA Dipartimento di Ingegneria ed Architettura Università degli Studi di Trieste Prof. Fabio Perroni. 5. Rango

Compito di MD A.A. 2013/14 4 Settembre 2014

Note per le esercitazioni di Geometria 1 a.a. 2007/08 A. Lotta. Metodi per il calcolo del rango di una matrice

CORSI DI LAUREA IN MATEMATICA E FISICA. Esercizio 1.1. Risolvere graficamente e algebricamente i seguenti sistemi di due equazioni in due incognite:

ALGEBRA LINEARE PARTE III

APPLICAZIONI. Im f = {b B a A tale che f (a) = b}.

UNIVERSITÀ DEGLI STUDI ROMA TRE Corso di Laurea in Matematica GE110 - Geometria 1 a.a Prova scritta del TESTO E SOLUZIONI

1 Caratteristica di una matrice

Matematica (proff. Archetti e Pellizzari) Corso di laurea COMES 3 settembre 2012

La riduzione a gradini e i sistemi lineari (senza il concetto di rango)

Pagine di Algebra lineare. di premessa al testo Pagine di Geometria di Sara Dragotti. Parte terza: SISTEMI LINEARI

e non ci possono chiaramente essere minori di ordine più grande per cui il rango per minori è 2. Rango per pivot: Svolgiamo la riduzione

Transcript:

UNIVERSITÀ DEGLI STUDI DI TERAMO FACOLTÀ DI SCIENZE POLITICHE CORSO DI LAUREA IN ECONOMIA BANCARIA FINANZIARIA ED ASSICURATIVA II Parziale - Compito B 3/05/005 A. A. 004 005 ) Risolvere il seguente sistema lineare: x+ y 3z 5 x + y 4 x + y z 3 con il metodo della matrice inversa e verificare che la soluzione trovata è esatta risolvendo lo stesso sistema con il metodo di Cramer. Osserviamo in primo luogo che il sistema dato è un sistema quadrato di tre equazioni in tre incognite, precisamente x, y e z, ovvero di ordine 3 3. Tenendo conto che nella seconda equazione manca l incognita z, la matrice dei coefficienti associata al sistema è la seguente: 3 A 3 3 0 mentre la colonna dei termini noti è data da: 5 N 3 4 3 Metodo della matrice inversa Poiché è ben noto che una matrice quadrata ammette l inversa se e solo se il suo determinante è diverso da zero, dobbiamo innanzitutto verificare l esistenza o meno dell inversa di A. Calcoliamone, pertanto, il suo determinante: 3 Dunque: det A 0 6+ 6+ 0 A, inversa di A det A

Calcoliamo ora l inversa di A utilizzando, ad esempio, il metodo dei complementi algebrici, ovvero la relazione: * t ( A ) A det A Dobbiamo quindi scrivere, in primo luogo, la matrice dei complementi algebrici A * : A A A3 * A A A A 3 A3 A3 A 33 Risulta allora: 0 0 A + ; A + ; A + 0; 3 3 3 A 5; A + + 4 ; A ; 3 3 3 A + + 3; A 3 ; A + + 3 3 33 0 0 da cui segue: 0 5 3 * * t A 5 4 ( A ) 4 3 3 3 0 Pertanto: 5 3 5 3 5 3 * t A ( A ) 4 3 4 3 4 3 det A 0 0 0 Dunque: 5 3 A 4 3 0 Poiché sappiamo che un sistema lineare può scriversi, in forma compatta, come AX N (A è la matrice dei coefficienti del sistema dato, X è il vettore colonna costituito dalle incognite del sistema, N è la colonna dei termini noti del sistema), moltiplicando a sinistra ambo i membri di tale equazione per A, otteniamo: A AX A N IX A N X A N

da cui, sostituendo i valori di X, di A e di N, nell equazione X 3 (A ) 3 3N 3, segue: x 5 3 5 y 4 3 4 z 0 3 e, moltiplicando al secondo membro le righe di A per le colonne di N, otteniamo una matrice di ordine 3, precisamente: x 5+ 039 x 6 y 5 6 39 y + z 0+ 83 z 5 Dunque la soluzione del nostro sistema, con il metodo della matrice inversa, è data dalla terna: ( xyz,, ) ( 6,, 5) Metodo di Cramer Poiché ci troviamo di fronte ad un sistema quadrato ed abbiamo verificato già in precedenza che il determinante della matrice dei coefficienti del sistema è diverso da zero, essendo det A, possiamo affermare che è soddisfatta la condizione necessaria e sufficiente imposta dal Teorema di Cramer (condizione necessaria e sufficiente affinché un sistema quadrato ammetta soluzioni è che il determinante della matrice dei coefficienti del sistema sia diverso da zero). Dunque, sempre per il Teorema di Cramer, il sistema dato ammette una ed una sola soluzione data da: y x z ( xyz,, ),, dove: det A ; x è il determinante della matrice ottenuta da A sostituendo la colonna dei coefficienti dell incognita x con la colonna N dei termini noti; y è il determinante della matrice ottenuta da A sostituendo la colonna dei coefficienti dell incognita y con la colonna N dei termini noti; z è il determinante della matrice ottenuta da A sostituendo la colonna dei coefficienti dell incognita z con la colonna N dei termini noti

Poiché: risulta: N y z A 3 3 3 0 ed 3 5 N 4 3 5 3 5 4+ 39+ 46 x 4 0 3 x N z 5 3 8 39+ 4+ 5 y 4 0 3 x y N 5 6+ 8+ 50506 3 5 z 4 3 da cui, applicando la regola di Cramer per il calcolo delle soluzioni, otteniamo: y 6 5 x z ( xyz,, ),,,, ( 6,, 5) Dunque la soluzione del nostro sistema, con il metodo di Cramer, è data dalla terna: ( xyz,, ) ( 6,, 5) che è esattamente la stessa trovata precedentemente con il metodo della matrice inversa. ) Risolvere il seguente sistema lineare: 3x+ y z 5 x + y 8z 3 4x + y z La matrice dei coefficienti associata al sistema è: 3 A 8 4

da cui segue: 3 det A 8 33 + 8+ 4 0 det A 0 4 Poiché il determinante della matrice dei coefficienti associata al sistema è nullo, dobbiamo verificare se il sistema ammette o meno soluzioni utilizzando il Teorema di Rouché-Capelli, ovvero calcolando i ranghi delle due matrici, quella incompleta e quella completa. Consideriamo, in primo luogo, la matrice incompleta, ovvero quella dei coefficienti del sistema. Osserviamo subito che: 0 r(a) 3 Inoltre, essendo det A 0, risulta necessariamente r(a) 3, da cui: 0 r(a) ed essendo A diversa dalla matrice nulla, segue anche che r(a) 0. Dunque: 0 < r(a) Verifichiamo ora se risulta r(a). Consideriamo, pertanto, un minore del secondo ordine estratto dalla matrice A diverso da zero: 3 M 3 0 r(a) Scriviamo ora la matrice completa, aggiungendo alla matrice A (dei coefficienti del sistema) la colonna dei termini noti: 3 5 ( AN) 8 3 0 < r(a N) 3 4 A N Per il calcolo del rango della matrice completa utilizziamo, per comodità, il Teorema di Kronecker. Consideriamo, a tal proposito, un minore del secondo ordine diverso da zero, ad esempio proprio M, ed i suoi due minori orlati. Risulta: 3 3 5 8 det A 0 e 3 3 + 5+ 5039 0 4 4 Quindi, poiché tutti i minori orlati del terzo ordine sono nulli, segue che r(a N). È dunque soddisfatta la condizione necessaria e sufficiente del Teorema di Rouchè- Capelli, essendo r(a) r(a N).

n r 3 Il sistema dato ammette, pertanto, soluzioni (n 3 è il numero delle incognite del sistema, r è il rango delle due matrici), che dipenderanno da n r parametri. Per determinare tali soluzioni scriviamo ora un sistema equivalente al dato, costituito proprio da quelle equazioni i cui coefficienti delle incognite sono stati considerati per trovare un minore del secondo ordine non nullo, ovvero M ; dobbiamo poi tenere ben in mente il fatto che, nel calcolo del minore M di ordine, sono stati tralasciati i coefficienti dell incognita z, che diventerà, quindi, il nostro parametro. In virtù delle precedenti osservazioni possiamo quindi considerare il seguente sistema: 3x+ y z 5 con z t R x + y 8z 3 che può essere scritto anche nel modo seguente: 3x+ y 5+ t x + y 3 + 8t che si può risolvere con Cramer, essendo il determinante della matrice dei coefficienti del sistema, rappresentato proprio da M, diverso da zero. Pertanto: 5+ t 3+ 8t 5+ t 38t 6t 8 x x 3t 4 3 5+ t y 3+ 8t 39+ 4t 5 t t + 34 y t+ 7 Al variare di t in R, quindi, otteniamo le seguenti soluzioni del sistema: xyz,, 3t 4,t + 7, t ( ) ( ) 3) Determinare, se esiste, l inversa della seguente matrice utilizzando il metodo della matrice identità: 3 7 A 0 3 4

Iniziamo con il vedere se esiste o meno la matrice inversa di A calcolando il suo determinante. Risulta pertanto: 3 7 det A 0 484 44 0 3 4 Affianchiamo ora alla matrice data, di ordine 3 3, la matrice identità dello stesso ordine: 3 7 0 0 [ A I3] 0 0 0 3 4 0 0 A I 3 Effettuiamo ora le operazioni elementari sulle righe, o sulle colonne, di [A I 3 ] in modo tale da ottenere, alla fine, una matrice della forma [I 3 B], dove la matrice B sarà proprio l inversa A di A: 3 7 0 0 3 7 0 0 [ A I3] 0 0 0 R 0 0 0 3 R 3+ R 3 4 0 0 0 3 0 3 7 0 0 6 0 0 3 0 R R R3 R R 3 0 R 0 3 0 0 3 0 6 0 0 6 0 0 3 0 0 3 4 R R+ R R3 R3 3R 0 0 3 4 0 3 0 0 0 4 8 9 4 7 0 0 4 0 0 4 33 4 3 0 0 3 4 0 0 R R+ R R R 0 0 4 8 9 4 R R 9 7 R3 R 3 0 0 4 4 I 3 A A

Dunque risulta: A 7 4 3 9 7 4 4) Individuare se i seguenti vettori sono linearmente dipendenti o indipendenti: v ( 0,0,), v (,0,), v 3 (,,0) Primo metodo Sfruttiamo la definizione di lineare dipendenza o indipendenza di vettori. Scriviamo una combinazione lineare dei tre vettori e la eguagliamo al vettore nullo, precisamente: (*) kv + kv + kv 0 3 3 dove i k i (i,, 3) sono degli scalari ovvero dei numeri reali. Poniamo ora nella (*), al posto dei vettori, le terne assegnate: k( 0,0,) + k (,0,) + k3(,,0) ( 0,0,0) Moltiplichiamo ciascuna componente del vettore per il corrispondente scalare: ( 0,0, k) + ( k,0, k) + ( k3, k3,0) ( 0,0,0) Sommiamo ora componente per componente: ( 0 + k + k3,0+ 0 + k3, k+ k + 0) ( 0,0,0) cioè: ( k + k3, k3, k+ k) ( 0,0,0) Affinché l equazione sopra scritta sia soddisfatta, i due membri devono essere uguali, ovvero i due vettori (quello che figura al primo membro e quello che figura al secondo membro) devono avere uguali le componenti che si trovano nella medesima posizione, precisamente deve risultare: k + k3 0 k 0 3 k + k 0 Resta quindi da risolvere il sistema sopra riportato, ovvero determinare i valori delle incognite k i (i,, 3), osservando che se sono tutti nulli allora i vettori assegnati sono linearmente indipendenti, mentre se ne esiste uno diverso da zero allora siamo nel caso della lineare dipendenza dei vettori.

Osserviamo, in primo luogo, che si tratta di un sistema quadrato di tre equazioni in tre incognite. Dalla seconda equazione otteniamo: k 3 0 Sostituiamo tale valore, ad esempio, nella prima equazione: k 0 Sostituiamo i valori fino ad ora trovati nella terza equazione: k 0 Abbiamo così ottenuto: k 0 k 0 k 3 0 Dunque il sistema ammette solo la soluzione nulla data dalla terna: (k, k, k 3 ) (0, 0, 0) Poiché gli scalari, soluzione del nostro sistema, sono tutti nulli i tre vettori assegnati risultano essere linearmente indipendenti. Secondo metodo Sfruttiamo la nozione di rango. Consideriamo la matrice costituita dai quattro vettori riga assegnati: 0 0 A 3 3 0 0 Determiniamo il rango di A, sapendo che due o più vettori sono linearmente indipendenti se il rango della matrice ad essi associata è massimo. Risulta, pertanto: 0 < r(a) 3 Applichiamo Kronecker e consideriamo il seguente minore di ordine diverso da zero: 0 M 0 r ( A) Calcoliamo adesso l unico minore orlato di M : 0 0 0 0 0 Dunque, poiché tale minore è diverso da zero risulta r(a) 3, cioè il rango di A è massimo. I vettori sono pertanto linearmente indipendenti.

5) Determinare il rango della seguente matrice utilizzando il metodo di Kronecker: 3 A 5 3 3 9 6 Iniziamo con l osservare che la matrice A è rettangolare di ordine m n 3 4, per cui risulta: 0 r(a) min{m, n} min{3, 4} 3 Poiché, inoltre, la matrice A non è la matrice nulla segue che r(a) 0. Dunque: 0 < r(a) 3 Consideriamo ora un minore del secondo ordine diverso da zero. Sia esso, ad esempio: 3 M 5 3 0 r( A) 5 Calcoliamoci ora i minori orlati di M, osservando che se sono tutti nulli allora è r(a), mentre se ne esiste almeno uno non nullo è r(a) 3. Allora otteniamo: 3 5 6 45+ 36+ 6+ 45 36 0 3 9 6 3 5 6 + 45366 45+ 36 0 3 9 6 Poiché abbiamo trovato che tutti i minori orlati di M del terzo ordine sono uguali a zero possiamo affermare che: r(a)