I Polinomi. Michele Buizza. L'insieme dei numeri interi lo indicheremo con Z. è domenica = non vado a scuola. signica se e solo se.



Documenti analoghi
Siamo così arrivati all aritmetica modulare, ma anche a individuare alcuni aspetti di come funziona l aritmetica del calcolatore come vedremo.

Numeri naturali numeri naturali minore maggiore Operazioni con numeri naturali

APPUNTI DI MATEMATICA LE FRAZIONI ALGEBRICHE ALESSANDRO BOCCONI

Lezioni di Matematica 1 - I modulo

Lezione 1. Gli Insiemi. La nozione di insieme viene spesso utilizzata nella vita di tutti i giorni; si parla dell insieme:

Dimensione di uno Spazio vettoriale

risulta (x) = 1 se x < 0.

LE FUNZIONI A DUE VARIABILI

4 3 4 = 4 x x x 10 0 aaa

STRUTTURE ALGEBRICHE

LE SUCCESSIONI 1. COS E UNA SUCCESSIONE

Schemi delle Lezioni di Matematica Generale. Pierpaolo Montana

Funzioni - Parte II. 1 Composizione di Funzioni. Antonio Lazzarini. Prerequisiti: Funzioni (Parte I).

Convertitori numerici in Excel

Lezione 9: Cambio di base

Il principio di induzione e i numeri naturali.

PROPRIETA' ASSOCIATIVA La somma di tre o più addendi non cambia se al posto di alcuni di essi si sostituisce la loro somma.

Per lo svolgimento del corso risulta particolarmente utile considerare l insieme

3 GRAFICI DI FUNZIONI

SISTEMI DI NUMERAZIONE E CODICI

Esercizi su lineare indipendenza e generatori

Iniziamo con un esercizio sul massimo comun divisore: Esercizio 1. Sia d = G.C.D.(a, b), allora:

Capitolo 2. Operazione di limite

1. PRIME PROPRIETÀ 2

Dispense di Informatica per l ITG Valadier

Le funzioni continue. A. Pisani Liceo Classico Dante Alighieri A.S A. Pisani, appunti di Matematica 1

G. Pareschi ALGEBRE DI BOOLE. 1. Algebre di Boole

f(x) = 1 x. Il dominio di questa funzione è il sottoinsieme proprio di R dato da

INTRODUZIONE AGLI ALGORITMI INTRODUZIONE AGLI ALGORITMI INTRODUZIONE AGLI ALGORITMI INTRODUZIONE AGLI ALGORITMI

CONCETTO DI LIMITE DI UNA FUNZIONE REALE

1 Giochi a due, con informazione perfetta e somma zero

Logica Numerica Approfondimento 1. Minimo Comune Multiplo e Massimo Comun Divisore. Il concetto di multiplo e di divisore. Il Minimo Comune Multiplo

4. Operazioni binarie, gruppi e campi.

Matematica 1 - Corso di Laurea in Ingegneria Meccanica

4 Dispense di Matematica per il biennio dell Istituto I.S.I.S. Gaetano Filangieri di Frattamaggiore EQUAZIONI FRATTE E SISTEMI DI EQUAZIONI

IL CONCETTO DI FUNZIONE

SOMMARIO I radicali pag I radicali aritmetici pag Moltiplicazione e divisione fra radicali aritmetici pag.

I sistemi di numerazione

Anello commutativo. Un anello è commutativo se il prodotto è commutativo.

Capitolo I STRUTTURE ALGEBRICHE ELEMENTARI

Parte 2. Determinante e matrice inversa

10. Insiemi non misurabili secondo Lebesgue.

FUNZIONI ELEMENTARI - ESERCIZI SVOLTI

I SISTEMI DI NUMERAZIONE

UNIVERSITÀ DEGLI STUDI DI TERAMO

Proof. Dimostrazione per assurdo. Consideriamo l insieme complementare di P nell insieme

MATRICI E DETERMINANTI

Statistica e biometria. D. Bertacchi. Variabili aleatorie. V.a. discrete e continue. La densità di una v.a. discreta. Esempi.

Parte 3. Rango e teorema di Rouché-Capelli

24 : 3 = 8 con resto 0 26 : 4 = 6 con resto 2

Basi di matematica per il corso di micro

Parte 6. Applicazioni lineari

Applicazioni lineari

LEZIONE 23. Esempio Si consideri la matrice (si veda l Esempio ) A =

4. Operazioni elementari per righe e colonne

Misure di base su una carta. Calcoli di distanze

Esercizi su. Funzioni

APPUNTI SU PROBLEMI CON CALCOLO PERCENTUALE

ESEMPIO 1: eseguire il complemento a 10 di 765

Funzioni. Parte prima. Daniele Serra

Prodotto libero di gruppi

Funzioni funzione dominio codominio legge argomento variabile indipendente variabile dipendente

UNA LEZIONE SUI NUMERI PRIMI: NASCE LA RITABELLA

Alcune nozioni di base di Logica Matematica

Teoria degli insiemi

CRITERI DI CONVERGENZA PER LE SERIE. lim a n = 0. (1) s n+1 = s n + a n+1. (2) CRITERI PER LE SERIE A TERMINI NON NEGATIVI

LA MOLTIPLICAZIONE IN CLASSE SECONDA

L espressione torna invece sempre vera (quindi la soluzione originale) se cambiamo contemporaneamente il verso: 1 < 0.

Matematica generale CTF

Guardiamo ora però la cosa da un altro punto di vista analizzando il seguente grafico a forma di torta. La torta in 5 parti

Complemento al corso di Fondamenti di Informatica I corsi di laurea in ingegneria, settore dell informazione Università la Sapienza Consorzio Nettuno

Le equazioni. Diapositive riassemblate e rielaborate da prof. Antonio Manca da materiali offerti dalla rete.

Alessandro Pellegrini

1 Applicazioni Lineari tra Spazi Vettoriali

La prof.ssa SANDRA VANNINI svolge da diversi anni. questo percorso didattico sulle ARITMETICHE FINITE.

4. Operazioni aritmetiche con i numeri binari

Obiettivo Principale: Aiutare gli studenti a capire cos è la programmazione

Vademecum studio funzione

DOMINI A FATTORIZZAZIONE UNICA

Politecnico di Milano. Facoltà di Ingegneria Industriale. Corso di Analisi e Geometria 2. Sezione D-G. (Docente: Federico Lastaria).

Il simbolo. è è = = = In simboli: Sia un numero naturale diverso da zero, il radicale. Il radicale. esiste. esiste 0 Il radicale

Tavola riepilogativa degli insiemi numerici

INTRODUZIONE I CICLI DI BORSA

IL MODELLO CICLICO BATTLEPLAN

G3. Asintoti e continuità

Aritmetica: operazioni ed espressioni

0. Piano cartesiano 1

APPLICAZIONI LINEARI

ESTRAZIONE DI RADICE

ESERCIZI APPLICAZIONI LINEARI

LEZIONE 7. Esercizio 7.1. Quale delle seguenti funzioni è decrescente in ( 3, 0) e ha derivata prima in 3 che vale 0? x x2. 2, x3 +2x +3.

Considero 2x e sostituisco elemento del dominio con x, 2(-3)=6, oppure e il doppio?

Esponenziali elogaritmi

NOME:... MATRICOLA:... Scienza dei Media e della Comunicazione, A.A. 2007/2008 Analisi Matematica 1, Esame scritto del x 1.

Processo di risoluzione di un problema ingegneristico. Processo di risoluzione di un problema ingegneristico

Le Macchine di Turing

1 Serie di Taylor di una funzione

Teoria dei Giochi. Anna Torre

11) convenzioni sulla rappresentazione grafica delle soluzioni

Logaritmi ed esponenziali

Transcript:

I Polinomi Michele Buizza 1 Insiemi In questa prima sezione ricordiamo la simbologia che useremo in questa breve dispensa. Iniziamo innanzitutto a ricordare i simboli usati per i principali insiemi numerici. L'insieme dei numeri naturali lo indicheremo con N. L'insieme dei numeri interi lo indicheremo con Z. L'insieme dei numeri razionali lo indicheremo con Q. Per completezza scriviamo anche i simboli usati per indicare gli altri due insiemi fondamentali della matematica, ma per per il momento non verranno presi in considerazione. L'insieme dei numeri reali lo indicheremo con R. L'insieme dei numeri complessi lo indicheremo con C. Sottolineiamo poi come tutto quello che riguarda gli insiemi dovrebbe essere conosciuto e quindi qui si fa soltanto un breve riassunto. Se ci sono dei dubbi potete chiedere spiegazioni in classe. 1.1 Quanticatori Nel linguaggio matematico si cerca di usare dei simboli invece delle parole perché sono di più immediata lettura, una volta che li si conosce. Per questo useremo i seguenti simboli: signica per ogni; signica esiste;! signica esiste un unico. Questi tre simboli si dicono quanticatori. quanticatri su Wikipedia. Useremo anche altri simboli: Se questo non è chiaro basta cercare una linea verticale (o leggermente inclinata /) che signica tale che. = signica allora. Ad esempio signica se e solo se. Ad esempio è domenica = non vado a scuola. è il 25 dicembre è Natale. 1

1.2 Simbologia degli insiemi Qui ricordiamo i simboli fondamentali della teoria degli insiemi. Per aiutare la comprensione useremo egli esempi. Fissiamo quindi due insiemi. L'insieme A = {0, 1, 2, 3, 4, 5}, l'insieme B = {1, 3, 5, 7, 9} e l'insieme C = {1, 2, 3}. Possiamo anche descrivere gli insiemi A, B, C come segue. A = {n N n 5}, B = {numeri dispari minori di 10} e C = {x A x B}. 1.2.1 Appartenenza: Dato un insieme X qualunque e preso un suo elemento x, per dire che x appartiene a X scriveremo x X ad esempio usando l'insieme A possiamo scrivere che 3 A. Se invece un elemento x non appartiene all'insieme X scriveremo x / X; ad esempio 7 / A. 1.2.2 Sottoinsieme: Dati due insiemi X e Y, se ogni elemento di X appartiene anche a Y allora diremo che X è un sottoinsieme di Y. Possiamo anche dire che X è contenuto in Y. Scriveremo X Y Scritto con i quanticatori: X Y x X, x Y Se invece questo non è vero scriveremo X Y. possiamo dire che: C A ma A C. Usando gli insiemi A, B, C 1.2.3 Intersezione: Dati due insiemi X e Y, un elemento appartiene alla loro intersezione se e solo se appartiene ad entrambi: quindi Nell'esempio A B = {1, 3, 5} 1.2.4 Unione: z X Y z X e z Y X Y := {x X x Y }. Dati due insiemi X e Y, un elemento appartiene alla loro unione se e solo se appartiene ad almeno uno dei due: z X Y z X oppure z Y quindi Nell'esempio A B = {0, 1, 2, 3, 4, 5, 7, 9}. 2

1.2.5 Insieme vuoto: C'è un insieme particolare che è quello che non ha nessun elemento. Questo insieme è detto insieme vuoto e viene indicato con il simbolo. Ad esempio se due insiemi non hanno alcun elemento in comune, allora l'intersezione tra di essi non avrà nessun elemento. Esempio: 1.2.6 Dierenza: \ {a, b, c, f} {d, e, g} = Dati due insiemi X e Y la dierenza è denita nel seguente modo: X\Y := {x X x / Y } Nell'esempio A\C = {0, 4, 5}. Notiamo che questa operazione non è commutativa, cioè C\A =. 2 Anello dei polinomi a coecienti interi 2.1 Nozioni preliminari Vogliamo introdurre un simbolo, la X, che nella pratica sarà la variabile (o indeterminata). Per indicare che la aggiungiamo ai numeri interi scriveremo Z[X]. Otteniamo così degli oggetti che sono formati da numeri interi e da X elevata a qualche potenza. Avremo quindi che in generale un elemento in Z[X] sarà scritto come nella seguente denizione. Denizione 2.1. L'insieme Z[X] := { a n X n + a n 1 X n 1 + + a 2 X 2 + a 1 X + a 0 n N; a i Z, i = 0,..., n } si dice anello dei polinomi a coecienti interi. Vedremo tra qualche paragrafo perché lo chiamiamo anello e non semplicemente insieme. Un elemento in Z[X] si dice per l'appunto polinomo. I numeri a n, a n 1,..., a 2, a 1, a 0 si dicono coecienti del polinomio. In particolare il numero a i che è moltiplicato per X i si dice coeciente di grado i. Notiamo inoltre che se vogliamo indicare un elemento generico dell'insieme Z[X] scriviamo p(x) Z[X] Si dice monomio un polinomio del tipo p(x) = a n X n Per capire cosa intendiamo con questa scrittura che inizialmente appare oscura faremo degli esempi, ma prima notiamo che (essendo la X solamente un simbolo) ogni polinomio è determinato completamente dai suoi coecienti. e in genere usiamo la lettara p perché è l'iniziale della parola polinomio mentre la X tra parentesi indica qual'è l'incognita. 3

2.2 Corrispondenza tra polinomio e suoi coecienti Partiamo con un esempio dettagliato. Consideriamo il polinomio 2X 3 + X 2 3X + 5 Come detto nella denizione 2.1, indichiamo con a i il coeciente di grado i, quindi nel nostro esempio il coeciente di grado tre è 2. Scriveremo allora che a 3 = 2. Procediamo ora con il coeciente di grado due che è 1. Scriveremo allora che a 2 = 1. Continuando così avremo anche gli altri coecienti a 1 = 3 e a 0 = 5. Notiamo che il coeciente di grado uno è quello della X, infatti X = X 1. Invece il coeciente di grado zero si chiama in questo modo perchè è il coeciente di X 0, ma X 0 = 1 e quindi 5 X 0 = 5. Sottolineiamo che se non scriviamo un coeciente signica che esso è zero. Facciamo ora altri esempi scrivendo a sinistra un polinomio e a destra i suoi coecienti. 4X 3 + 5X 2 3X + 7 a 3 = 4, a 2 = 5, a 1 = 3, a 0 = 7 3X 6 + 2X 5 6X 3 + 2X 1 a 6 = 3, a 5 = 2, a 3 = 6, a 1 = 2, a 0 = 1 6X 5 3 a 5 = 6, a 0 = 3 4X 3 + X a 3 = 4, a 1 = 1 X + 1 a 1 = 1, a 0 = 0 Facciamo ora l'operazione inversa, cioè dati i coecienti scriviamo il polinomio corrispondente. a 3 = 2, a 2 = 1, a 1 = 0, a 0 = 4 X 3 = 2 X 2 + 4 a 6 = 7, a 2 = 1, a 1 = 1, a 0 = 0 7X 6 + X 2 + X a 0 = 3, a 1 = 4, a 2 = 1 X 2 + 4X + 3 a 4 = 3, a 2 = 5, a 1 = 0, a 0 = 3 3X 4 5X 2 + 3 a 0 = 1, a 1 = 0, a 5 = 3, a 3 = 5 3X 5 + 5X 3 + 1 Questi esempi, che sono gli stessi fatti in classe, sono stati fatti, come già detto, per mostrare che i polinomi sono determinati completamente dai loro coecienti. 3 Operazioni tra polinomi Vogliamo qui parlare delle operazioni che si possono fare tra i polinomi. Proprio questa possibilità è il motivo per cui Z[X] non è un semplice insieme ma è un anello. Per chiarire ulteriormente questa idea facciamo una breve digressione per parlare delle operazioni che si fanno in Z. Chi si sente abbastanza forte in questo argomento può saltare il prossimo paragrafo e passare direttamente al punto 3.2. 3.1 Operazioni binarie in Z Le operazioni binarie in Z sono le solite, cioè l'addizione e la moltiplicazione. Si chiamano operazioni binarie perché prendiamo due elementi in Z e ne otteniamo uno. Vedremo nei rispettivi paragra come le rappresenteremo. 4

3.1.1 Addizione in Z Alle elementari la prima operazione che viene insegnata è l'addizione di due numeri naturali. Si spiega poi la sottrazione, ma questa è in realtã l'addizione di due numeri interi. Ad esempio se scriviamo 2 3 noi in realtã intendiamo la somma di +2 e di 3, cioè (+2) + ( 3) anche se quasi sempre usiamo la scrittura semplicata. Cerchiamo quindi di dare una chiara denizione dell'addizione. Denizione 3.1. Si dice addizione l'operazione binaria Essa soddisfa le seguenti proprietà: + : Z Z Z (a, b) a + b i) commutativa: a, b Z a + b = b + a esempio: +2 3 = 3 + 2 = 1 ii) associativa: a, b, c Z esempio: (+1-3)-5=+1+(-3-5)=-7 (a + b) + c = a + (b + c) iii) esistenza dell'elemento neutro: esiste un unico elemento 0 Z tale che a Z esempio: -4+0=0-4=-4 a + 0 = 0 + a = a iv) esistenza dell'opposto: a Z esiste un unico elemento ( a) Z tale che a + ( a) = a + a = 0 esempio: dato +5 esiste -5 tale che 5 + 5 = +5 5 = 0. Ripeto queste cose perché ho riscontrato dicoltà ad eseguire questa operazione senza la quale non si può fare nulla in matematica. Vi prego quindi di non farvi scrupoli nel domandare chiarimenti riguardo all'addizione e alla moltiplicazione, che sipiegheremo ora. 5

3.1.2 Moltiplicazione in Z Ancora una volta iniziamo a dare la denizione formale della moltiplicazione. Segnaliamo che per indicarla useremo il simbolo e non perché può confondersi facilmente con la x, simbolo che useremo frequentemente. Addirittura vedremo in seguito che col calcolo letterale potremo addirittura omettere tale simbolo (che useremo comunque sempre in caso di moltiplicazione di numeri come ad esempio 3 7) e scriveremo ad esempio ab invece che a b per intendere che moltiplichiamo a per b. Denizione 3.2. Si dice moltiplicazione l'operazione binaria Essa soddisfa le seguenti proprietà: : Z Z Z (a, b) a b v) commutativa: a, b Z esempio: 2 ( 3) = 3 2 = 6 a b = b a vi) associativa: a, b, c Z (a b) c = a (b c) esempio: ( 3 2) ( 5) = 3 (2 ( 5)) = 30 vii) esistenza dell'elemento neutro: esiste un unico elemento 1 Z tale che a Z esempio: ( 4) 1 = 1 ( 4) = 4 a 1 = 1 a = a Notiamo che nella moltiplicazione in Z non abbiamo la proprietà che corrisponde alla iv) che avevamo per l'addizione, cioè dato un elemento a Z non esiste un elemento 1 1 a Z tale che a a = 1. Proprio per questo motivo sono stati inventati i numeri razionali e vedremo come in Q esisterà sempre tale elemento che verrà chiamato inverso. 3.1.3 Relazioni tra addizione e moltiplicazione Di fondamentale importanza è la seguente proprietà che crea una connessione tra l'addizione e la moltiplicazione. viii) distributiva: a, b, c Z abbiamo che a (b + c) = a b + a c (b + c) a = b a + c a 3.1.4 Conclusioni sulle operazioni in Z Per indicare che in Z abbiamo l'addizione e la moltiplicazione scriveremo (Z, +, ). Aggiungiamo per concludere che se consideriamo un generico insieme A con due operazioni binarie possiamo dare la seguente denizione 6

Denizione 3.3. Un insieme A dotato di due operazioni binarie: (A, +, ) che soddisfano tutte le proprietà elencate in precedenza (dalla i alla viii) si dice anello commutativo. Quindi (Z, +, ) è un anello commutativo. Vedremo che anche in Z[X] possiamo denire due operazioni binarie e anche in questo caso avremo che (Z[x], +, ) è un anello commutativo. 3.1.5 Teoremi fondamentali Di questa sezione chiedo soltanto che si sappiano le regole presenti nell'enunciato del teorema, ma per avere il massimo dei voti in matematica, bisogna sapere anche le dimostrazioni. Quindi le scrivo in modo da dare la possibilità alle più curiose di capire che ogni risultato in matematica deve essere provato. Sottolineo in questa sezione che anche le proprietà (i viii) di cui godono l'addizione e la moltiplicazione andrebbero dimostrate. Noi però dimostriamo solo quanto segue e speriamo che le regole qui sotto siano già conosciute. In sostanza il primo punto dice che qualsiasi cosa moltiplicata per zero è zero; il secondo che meno per più fa meno e la terza che meno per meno fa più. Teorema 3.4. Siano a, b elementi in Z. Allora (i) a 0 = 0 a = 0 (ii) ( a) b = a b (iii) ( a) ( b) = a b Dimostrazione. Le dimostrazioni possono essere scritte in una riga e se vi viene chiesto di provarle basta questa riga. Io però per chiarezza spiegherò ogni passaggio. (i) 0 + a 0 = a 0 = a (0 + 0) = a 0 + a 0 Quindi sommando da entrambi i lati a 0 otteniamo 0 = a 0 Spiegazione: la prima e la seconda uguaglianza valgono perché zero è elemento neutro per l'addizione (vedi proprietà iii) dell'addizione). La terza per la proprietà distributiva. (ii) 0 = 0 b = (a + ( a)) b = a b + ( a)b Quindi sommando da entrambi i lati ab otteniamo a b = ( a) b Spiegazione: la prima ugualianza vale per il punto precedente, la seconda per l'esistenza dell'opposto (proprietà iv) dell'addizione) la terza per la proprietà distributiva. 7

(iii) ( a)( b) = (a( b)) = ( (ab)) = ab Spiegazione: le prime due uguaglianza valgono per il punto precedente, l'ultima per l'esistenza dell'opposto, infatti in generale dato a Z, il suo opposto è ( a) = a. Osservazione 3.5. Sottolineiamo che il Teorema 3.4 vale per qualsiasi anello commutativo (A, +, ) e la dimostrazione è identica a quella svolta per il caso (Z, +, ). In particolare quindi, lo stesso teorema varrà per l'anello di polinomi (Z[X], +, ). 3.2 Addizione in Z[X] Possiamo ora tornare all'argomento che ci interessa, cioè le operazioni con i polinomi, iniziando con l'addizione. La situazione è molto simile a quella della denizione 3.1. Denizione 3.6. Si dice addizione in Z[X] l'operazione binaria denita nel seguente modo. Siano + : Z[X] Z[X] Z[X] (p(x), q(x)) p(x) + q(x) p(x) = a n X n + a n 1 X n 1 + + a 1 X + a 0 q(x) = b m X m + b m 1 X m 1 + + b 1 X + b 0 Allora, se m n, la somma di p(x) con q(x) è : p(x)+q(x) := a n X n +a n 1 X n 1 + +(a m +b m )X m + +(a 1 +b 1 )X +(a 0 +b 0 ) cioè sommiamo i coecienti dello stesso grado usando l'addizione denita in Z. Per capire meglio scriviamo l'operazione usando una tabella. + X n X n 1... X m... X 2 X 1 p(x) a n a n 1... a m... a 2 a 1 a 0 q(x) 0 0... b m... b 2 b 1 b 0 p(x) + q(x) a n a n 1... a m + b m... a 2 + b 2 a 1 + b 1 a 0 + b 0 Cerchiamo di capire meglio quanto detto con un esempio. Esempio 3.7. Dati p(x) = 7X 6 X 3 + 3X 2 4X + 7 q(x) = 3X 4 X 2 + 2X 5 usando il metodo della tabella vista poco prima scriviamo 8

quindi + X 6 X 5 X 4 X 3 X 2 X 1 p(x) 7 0 0-1 3-4 7 q(x) 0 0-3 0-1 2-5 p(x) + q(x) 7 0-3 -1 2-2 2 p(x) + q(x) = 7X 6 3X 4 X 3 + 2X 2 2X + 2 In generale però, come quando nel caso dei numeri interi abbiamo una sequenza di numeri e scriviamo 4 3 + 5 3 + 4 8 2 + 3 11 = 11 anche nel caso dei polinomi abbiamo una serie di termini che dobbiamo sommare. Possiamo però facilmente usare anche qui il metodo della tabella. Dopo aver preso suciente condenza con questo metodo non sarà più necessario fare tale tabella ma basterà partire dai coecienti di grado più alto e fare mentalmente la somma e scrivere direttamente il risultato. Vediamo un altro esempio. Esempio 3.8. Supponiamo di avere il seguente polinomio: p(x) = 3X 2 + X 4 5X 4X 2 + 6 X + X 3 2 2X + X 4 + 5 + 8X 2X 4 Vogliamo riscriverlo, se possiamo in maniera più compatta e quindi vedremo se possiamo eseguire delle somme. Inserendo ogni monomio nella tabella avremo X 4 X 3 X 2 X 1 1 1 3-5 6 1-4 -1-2 -2-2 5 8 0 1-1 0 9 quindi p(x) può essere riscritto molto più semplicemente come: p(x) = X 3 X 2 + 9 Anche in questo caso abbiamo che l'addizione in Z[X] soddisfa le quattro proprietà che soddisfava l'addizione in Z, cioè essa è : i) commutativa; ii) associativa; iii) esistenza dell'elemento neutro (anche qui lo 0) iv) esistenza dell'opposto: p(x) Z esiste un unico elemento p(x) Z tale che p(x) p(x) = 0 3.3 Moltiplicazione in Z[X] Deniamo ora la moltiplicazione. La denizione astratta può risultare di dicile lettura. Noi la diamo comunque. Non è necessario saperla ma è necessario riuscire ad eseguirla nella pratica. Faremo però prima molti esempi per chiarire come funziona nella pratica. 9

3.3.1 Moltiplicazione tra polinomi e numeri interi Partiamo innanzitutto dalla moltiplicazione di un polinomio per un numero intero. Se b Z e p(x) = a n X n + a n 1 + + a 2 X 2 + a 1 X + a 0 allora p(x) b = b p(x) = b a n X n + b a n 1 + + b a 2 X 2 + b a 1 X + b a 0 Esempio 3.9. Ad esempio se moltiplichiamo X 3 5X 2 + 4 per 3 abbiamo ( 3) (X 3 5X 2 + 4) = ( 3) X 3 + ( 3)( 5X 2 ) + ( 3) 4 = 3X 3 + 15X 2 12 Diamo ora altri esempi saltando il passaggio intermedio. Per vericare che si è capito quanto detto, non guardare subito il risultato ma provare a svolgere l'operazione, che in questo caso in pratica consiste esclusivamente in moltiplicazioni di numeri interi. Esempio 3.10. 5 (4X 6 + 2X 2 3X 2) = 20X 6 + 10X 2 15X 10 ( 7) ( 3X 6 + 2X 2 ) = 21X 6 14X 2 9 (X 2 5X + 1) = 9X 2 45X + 9 ( 1) (X 3 X 2 + X 1) = X 3 + X 2 X + 1 3.3.2 Moltiplicazione tra monomi Se abbiamo due monomi a n X n e b m X m e li moltiplichiamo tra loro, allora Vediamo qualche esempio: Esempio 3.11. a n X n b m X m = a n b m X n+m 3X 5X = 15X 2 X X = X 2 3X 2X 3 = 6X 4 2X 3 ( 11)X 7 = 22X 10 3.3.3 Moltiplicazione tra un monomio e un polinomio Questo caso è molto simile al precedente. Applichiamo in sostanza la proprietà distributiva. Sia quindi p(x) = a n X n + + a 1 X + a 0 un polinomio in Z[X] e moltiplichiamolo per il monomio b m X m, avremo: b m X m (a n X n + + a 1 X + a 0 ) = a n b m X m+n + + a 1 b m X m+1 + a 0 b m X m Vediamo qualche esempio: Esempio 3.12. X (5X 3 X 2 + X 1) = 5X 4 X 3 + X 2 X 3X (5X 3 X 2 + X 1) = 15X 4 + 3X 3 3X 2 + 3X X 2 (3X 6 X 3 + X 1) = 3X 8 + X 5 X 3 + X 2 2X 7 ( 4X 5 + X 3 2X 4) = 8X 12 + 2X 10 2X 8 8X 7 10

3.3.4 Moltiplicazione tra due polinomi generici Iniziamo dando la denizione generale per poi passare come al solito a numerosi esempi. Denizione 3.13. Si dice moltiplicazione in Z[X] l'operazione binaria denita nel seguente modo. Siano : Z[X] Z[X] Z[X] (p(x), q(x)) p(x) q(x) p(x) = a n X n + a n 1 X n 1 + + a 1 X + a 0 q(x) = b m X m + b m 1 X m 1 + + b 1 X + b 0 Allora il prodotto di p(x) con q(x) è : p(x) q(x) := a n X n q(x)+a n 1 X n 1 q(x)+ +a 2 X 2 q(x)+a 1 X q(x)+a 0 q(x) cioè moltiplichiamo q(x) per ciascuno dei monomi che compongono p(x) e questa operazione la sappiamo già fare grazie all'esercizio 3.12. Vediamo qualche esempio: Esempio 3.14. (X 1) (X + 1) = X(X + 1) 1(X + 1) = X 2 + X X 1 = X 2 1 Esempio 3.15. (X 1) (X 1) = X(X 1) 1(X + 1) = X 2 X X + 1 = X 2 2X + 1 Esempio 3.16. (3X 4) (1 X) = 3X(1 X) 4(1 X) = 3X 3X 2 4 + 4X = 3X 2 + 7X 4 Esempio 3.17. (2X 3 4X) (X 2 + X + 1) = 2X 3 (X 2 + X + 1) 4X(X 2 + X + 1) = 2X 5 + 2X 4 + 2X 3 4X 3 4X 2 4X = 2X 5 + 2X 4 2X 3 4X 2 4X 11

Anche in questo caso la moltiplicazione in Z[X] soddisfa le tre proprietà che soddisfava in Z, cioè essa è : v) commutativa vi) associativa vii) esistenza dell'elemento neutro: anche qui è 1. Abbiamo inoltre la proprietà viii) distributiva che è proprio quella che ci ha permesso di ridurre il prodotto di due polinomi nella somma del prodotto di un polinomio per monomi. Abbiamo quindi che è un anello commutativo. (Z[X], +, ) 3.3.5 Elevazione a potenze Ovviamente come nel caso dei numeri interi n n n n n = n 5 allo stesso modo se p(x) Z[X] possiamo scrivere p(x) p(x) p(x) p(x) = p(x) 4 Ad esempio (X + 1)(X + 1)(X + 1) = (X + 1) 3. Notiamo inoltre che (p(x) n )m = p(x) n m Ad esempio (2X 2 ) 3 = 8X 6. 3.3.6 Prodotti notevoli Chiudiamo la sezione sulla moltiplicazione in Z[X] mostrando come si trovano i prodotti notevoli. Essi sono comodi da imparare a memoria, ma se non si ricordano basta fare la moltiplicazione in tutti i suoi passi. Non chiederò quindi di saperli a memoria, ma si dovranno saper calcolare facendo le moltiplicazioni necessarie. Anche in questo caso per maggiori informazioni consultare Wikipedia. (p + q)(p q) = p 2 q 2 (p + q) 2 = p 2 + 2pq + q 2 quindi ad esempio Esempio 3.18. (2X + 7)(2X 7) = (2X) 2 (7) 2 = 4X 2 49 ( 3X 2 2X 5 )( 3X 2 + 2X 5 ) = ( 3X 2 ) 2 (2X 5 ) 2 = 9X 4 4X 10 ( X + 3) 2 = ( X) 2 + 2( X)(+3) + 3 2 = X 2 6X + 9 (X 2 4X) 2 = X 4 8X 3 + 16X 2 12

3.4 Forma normale di un polinomio Dopo aver visto gli esercizi sui coecienti di un polinomio (sezione 2.2) e le varie operazioni, possiamo introdurre una comoda nozione in base alla quale ogni polinomio potrà essere scritto in un modo specico. Ad esempio dato un polinomio p(x) con coecienti a 3 = 0, a 2 = 3, a 1 = 2, a 0 = 7, come fatto negli esempi precedenti scriviamo p(x) = 3X 2 + X 2 7. Non sarebbe errato scrivere p(x) = 0X 3 + 3X 2 + X 2 7 ma non lo facciamo per non complicarci la vita. Facciamo un altro esempio: sia p(x) = 3X 2 2X 7X 2, anche qui facendo le somme necessarie possiamo riscrivere il polinomio più semplicemente come p(x) = 4X 4 2X. Ancora un altro esempio: se p(x) = X(X 3) possiamo scrivere questo polinomio come p(x) = X 2 3X. Ebbene: Denizione 3.19. La forma normale (o standard) di un polinomio è quella in cui sono presenti solo i monomi con coecienti non nulli ordinati (senza ripetizioni) dal grado maggiore al grado minore. Esempio 3.20. Dati i polinomi sulla sinistra scriviamo a destra la loro forma normale X(0X 4 3X 3 X + 2X 3 ) X 4 X 2 X 2 (2X 3 3X 2 0X + 2X 3 ) 4X 5 3X 4 (X 2 1)(0X 3 + X 2 ) X 4 X 2 Sottolineiamo come in precedenza abbiamo praticamente sempre usato la forma normale anche se non l'avevamo esplicitato. 3.5 Grado di un polinomio Denizione 3.21. Cosideriamo un polinomio p(x) Z[X] in forma normale p(x) = a n X n + a n 1 X n 1 + + a 2 X 2 + a 1 X + a 0 in particolare avremo che a n 0. Si dice grado del polinomio p(x) il numero n, cioè l'esponente del monomio di massimo grado con coeciente non nullo. Per indicarlo scriveremo deg(p(x)) = n 13

Esempio 3.22. In questo esempio scriviamo il grado di alcuni polinomi. Gli ultimi tre polinomi sono quelli dell'esempio 3.20. deg(5) = 0 deg(x) = 1 deg(x n ) = n deg(2x 3 + 4) = 3 deg(1 + 2X + 3X 2 ) = 2 deg(x(0x 4 3X 3 X + 2X 3 )) = 4 deg(x 2 (2X 3 3X 2 0X + 2X 3 )) = 5 deg((x 2 1)(0X 3 + X 2 )) = 4 14