Effetti termici nelle trasformazioni. Termodinamica dell Ingegneria Chimica

Documenti analoghi
Effetti termici nelle trasformazioni. Principi di Ingegneria Chimica Ambientale

Termochimica. La termochimica si occupa dell effetto termico associato alle reazioni chimiche. E i = energia interna molare H i = entalpia molare

Proprietà volumetriche delle sostanze pure. Principi di Ingegneria Chimica Ambientale

Proprietà volumetriche delle sostanze pure. Termodinamica dell Ingegneria Chimica

I liquidi. Viscosità Energia superficiale Pressione di vapore Temperatura di fusione Temperatura di ebollizione. Liquidi puri (proprietà) Liquidi

Termodinamica e termochimica

ESERCIZIO 1 Q = 6991, kj

Termodinamica: studio dei trasferimenti di energia

La termochimica. Energia in movimento

La reazione tra Mg metallico e CO 2 è 2Mg + CO 2(g) 2 MgO(s) + C (grafite)

3) La reazione tra Mg metallico e CO 2 è 2Mg + CO 2(g) 2 MgO(s) + C (grafite)

Termochimica : studio della variazione di entalpia nelle reazioni chimiche

Termodinamica e termochimica

La termochimica. Energia in movimento

Termochimica : studio della variazione di entalpia nelle reazioni chimiche e nelle transizioni di fase

Termodinamica chimica

TERMODINAMICA CHIMICA

Combustione 2H 2 CO 2. Entalpie standard di combustione

Termodinamica. Scienza che studia le relazioni tra il calore e le altre forme di energia coinvolte in un processo fisico o chimico

Lezione di Combustione

SCIENZA DEI MATERIALI. Chimica Fisica. VI Lezione. Dr. Fabio Mavelli. Dipartimento di Chimica Università degli Studi di Bari

Sistemi termodinamici. I sistemi aperti e chiusi possono essere adiabatici quando non è consentito lo scambio di calore

2 febbraio con 10 Pa, Pa, K, 1760 J mol e m mol. Con questi dati si ricava la temperatura finale. exp 422.

Capitolo 16 L energia si trasferisce

PASSAGGI DI STATO. sublimazione fusione ebollizione. solidificazione. condensazione. brinamento. Calore processi fisici endotermici ( H>0).

Sommario delle lezione17. Diagrammi di stato

PASSAGGI DI STATO. sublimazione fusione ebollizione. solidificazione. condensazione. brinamento. Calore. Scrittura in formule:

Energia e reazioni chimiche. Cap , 19-21, 27-30, 47-48, 50, 59-62

Valitutti, Falasca, Tifi, Gentile. Chimica. concetti e modelli.blu

Termochimica. Capitolo 6

La Termodinamica è la disciplina che si occupa dello studio degli scambi di energia e di materia nei processi fisici e chimici

L equilibrio chimico

ESERCIZI di TERMODINAMICA. Considerare una mole di gas ideale. [Risultato: q=- 17 kj]

CorsI di Laurea in Ingegneria Aereospaziale-Meccanica-Energetica. FONDAMENTI DI CHIMICA Docente: Cristian Gambarotti. Esercitazione del 03/11/2010

Definizioni: sistema ambiente sistema isolato sistema chiuso sistema adiabatico stato di un sistema. Termodinamica

CorsI di Laurea in Ingegneria Aereospaziale-Meccanica-Energetica. FONDAMENTI DI CHIMICA Docente: Cristian Gambarotti. Esercitazione del 26/10/2010

relazioni tra il calore e le altre forme di energia.

A+B"C+D. Stato finale 2. Stato finale 1. Stato iniziale

Chimica Generale ed Inorganica

Dinamica delle reazioni chimiche (attenzione: mancano i disegni)

Corso di Termofluidodinamica

14. Transizioni di Fase_a.a. 2009/2010 TRANSIZIONI DI FASE

TERMODINAMICA E TERMOCHIMICA

Equilibri chimici. Principi di Ingegneria Chimica Ambientale

PIANO DI STUDIO DELLA DISCIPLINA DISCIPLINA: SCIENZE E TECNOLOGIE APPLICATE PIANO DELLE UDA 2 DCH ANNO Anno 2017/2018

CORSO DI CHIMICA. Esercitazione del 7 Giugno 2016

Chimica Generale ed Inorganica: Programma del Corso

Un sistema è una porzione delimitata di materia.

Equilibri chimici. Consideriamo la seg. reazione chimica in fase omogenea: aa + bb î cc + dd Definiamo, in ogni istante della reazione:

Il I principio della termodinamica. Calore, lavoro ed energia interna

Il primo principio della termodinamica Argomenti

TERMODINAMICA. CONVENZIONE STORICA Q > 0 assorbito dal sistema W>0 fatto dal sistema Q < 0 ceduto dal sistema W<0 fatto sul sistema

Cambiamenti di stato

TERMODINAMICA E TERMOCHIMICA

CAPITOLO 1 GLI STRUMENTI DELLA TERMODINAMICA

Passaggi di stato. P = costante

RICHIAMI SULL EQUAZIONE DI CONSERVAZIONE DELL ENERGIA

L entalpia è una funzione di stato di un sistema ed esprime la quantità di energia che esso può scambiare con l'ambiente.

Corso di Studi di Fisica Corso di Chimica

Energia di Gibbs. introduciamo una nuova funzione termodinamica così definita. energia di Gibbs ( energia libera)

Programma: a che punto siamo? Sistema, equilibrio e fase Tre concetti fondamentali. Definizione di sistema in termodinamica

Corso di Studi di Fisica Corso di Chimica

Bilancio di materia in presenza di reazioni chimiche. Termodinamica dell Ingegneria Chimica

IMPIANTIDI CLIMATIZZAZIONE

Cambiamenti di stato. Equilibri tra le fasi: diagrammi di stato per un componente puro diagrammi di stato a due componenti

TERMODINAMICA. Scienza che studia le relazioni tra il calore e le altre forme di energia coinvolte in un processo fisico o chimico

Termodinamica. Termodinamica TERMODINAMICA. Termodinamica. Variabili di stato. Principi della Termodinamica

L ANALISI TERMICA determina l effetto prodotto da un aumento di temperatura su alcune proprietà fisiche del campione. (TG, DTA, TMA, EA, DSC, etc)

CICLI TERMODINAMICI. Introduzione 1

ESERCIZI DI TERMODINAMICA. costante di equilibrio della reazione. costante di equilibrio della reazione

ASPETTO TERMODINAMICO

Cambiamenti di stato Regola delle fasi

Impianti di. Climatizzazione. ing. Massimiliano Pancani

Esame di Chimica Generale 19 Febbraio 2013

IMPIANTI DELL INDUSTRIA DI PROCESSO ESERCITAZIONE N. 2. Bilanci di energia

Termodinamica II. Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Termodinamica I. Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Principali Caratteristiche di un Combustore GT

numero complessivo di variabili = c f + 2

SECONDO PRINCIPIO DELLA TERMODINAMICA

Chimica A.A. 2017/2018

Stati di aggregazione

Termochimica reazione esotermica: cede calore all ambiente 2Al + Fe 2 O 3 Al 2 O 3 + 2Fe 2Mg + CO 2 2MgO + C

Lo stato liquido: il modello

Transizione di fase liquido-vapore

Cap. 7 - Termochimica. Le variazioni di energia relative ai processi chimici

Viscosità Energia superficiale. Pressione di vapore. Liquido + Liquido. Liquido + Gas. Liquido + Solido

12/03/2013. Aria umida. Proprietà e trasformazioni

Lezione n. 5. Entalpia. a volume costante a pressione costante Calorimetria differenziale Reazione esotermiche ed endotermiche Legge di Hess

( ) ( ) ( ) mol. mol. Esercitazione Bovisa 14/10/2010. Es.1 Si consideri la seguente reazione:

SISTEMI ENERGETICI LM per allievi Ingegneri Meccanici Appello del 25 Giugno Proff. Consonni S., Chiesa P., Martelli E.

Esame di Chimica Generale del 14 Luglio 2017

Eventuale post-riscaldamento se la necessitàdi deumidificazione ha comportato una diminuzione eccessiva di temperatura

Energia e trasformazioni spontanee

Entropia, energia libera ed equilibrio

I Gas e Loro Proprietà (II)

Bilancio di energia: il Primo Principio della Termodinamica. Termodinamica dell Ingegneria Chimica

Transcript:

Effetti termici nelle trasformazioni Termodinamica dell Ingegneria Chimica

il diagramma P-T trasformazioni che implicano passaggio di fase trasformazioni che non implicano passaggio di fase Acqua Pc=221bar Pt=611,73 Pa Tc=647.3K =374.2 C Tt=273.16K =0.01 C

il diagramma P-H Acqua

L entalpia come funzione di stato 0 C, 1 atm ghiaccio ΔĤ Percorso reale vapore 300 C, 1 atm ΔĤ1 0 C, 1 atm liquido ΔĤ2 ΔĤ4 100 C, 1 atm liquido ΔĤ3 Percorso ipotetico vapore 100 C, 1 atm Attenzione: U ed H non vengono mai definiti in termini assoluti; si considerano sempre le differenze

L entalpia come funzione di stato Acqua Percorso reale Percorso ipotetico

Il calore specifico come funzione della temperatura La somministrazione di calore ad una specie chimica pura causa un aumento di temperatura. Questa quantità di calore prende il nome di calore sensibile Per un riscaldamento a pressione costante: dove stavolta abbiamo tenuto in conto il fatto che il Cp non è costante ma può dipendere dalla temperatura

Il calore specifico come funzione della temperatura i dati di Cp(T) sono solitamente espressi da polinomiali. Di frequente si tabellano i dati di Cp per i gas nello stato di Gas Ideale (ossia a P 0) Per i gas ideali Cp è funzione solo di T e Cp=Cv+R Per solidi e liquidi Cp è approx. funzione solo di T e Cp Cv

Il Cp medio entalpico Si definisce Cp medio entalpico, CpmH il rapporto a P costante Ovviamente, si ha che

Il calore latente La somministrazione di calore ad una specie chimica pura in equilibrio di fase non fa cambiare la temperatura, ma perfeziona la trasformazione. Questa quantità di calore prende il nome di calore latente Per un riscaldamento a pressione costante: dove λ è il calore latente della specie chimica (per unità di massa)

Il calore latente A seconda della trasformazione si avrà il calore latente di evaporazione, di fusione, di sublimazione Siccome il sistema in equilibrio è monovariante, il calore latente è funzione solo della Temperatura(oppure solo della Pressione)

Il calore latente Il calore latente di evaporazione al punto normale di ebollizione (ossia a P=1atm) può essere stimato con la relazione di Riedel La variazione del calore latente di evaporazione con la temperatura può essere stimata con la correlazione di Watson 0.38

L equazione di Clapeyron La pressione e la temperatura a cui avviene una trasformazione di fase sono legate dalla seguente correlazione termodinamica esatta in cui λ è il calore latente associato alla trasformazione e ΔV è la variazione di volume fra le due fasi all equilibrio

L equazione di Antoine E una correlazione empirica che consente di determinare la pressione a cui avviene l evaporazione di una specie chimica ad una data temperatura (questa pressione viene anche detta tensione di vapore, P sat ) I coeff. A, B e C sono tabellati. Nelle stesse tabelle sono indicati i limiti di validità di tali parametri

il diagramma P-T trasformazioni a calore latente trasformazioni a calore sensibile Acqua Pc=221bar Pt=611,73 Pa λfus λvap Cp G mhδt Cp L mhδt Tc=647.3K =374.2 C Tt=273.16K =0.01 C

Entalpie di Reazione a 298K Es. Combustione del Metano CH4 O2 298K, 1atm CH4+ 2O2 CO2+ 2H2O(g) Q. Scriviamo il bilancio di energia su questo reattore..... nch4 Ĥ CH4+nO2 Ĥ O2+Q-nCO2 Ĥ CO2+nH2O Ĥ H2O=0 CO2 H2O L entalpia assoluta delle specie non è nota. Per semplificare i termini nel bilancio prendiamo in considerazione le reazioni di formazione dei composti

Entalpie di Reazione a 298K Reazione 1: Metano C H2 Scriviamo il bilancio di energia su questo reattore, supponendo di voler ottenere 1mole/s di CH4. ĤC+2 ĤH2+Q1-ĤCH4=0 298K, 1atm. Q1 CH4 Da questa otteniamo l entalpia molare di CH4 :. ĤCH4=Q1+ĤC+2 ĤH2. Q1 è la quantità di calore necessaria ad ottenere 1 mole/s di CH4 a partire dagli elementi costituenti

Entalpie di Reazione a 298K Reazione 2: Anidride Carbonica C O2 Scriviamo il bilancio di energia su questo reattore, supponendo di voler ottenere 1mole/s di CO2. ĤC+ ĤO2+Q2-ĤCO2=0 298K, 1atm. Q2 CO2 Da questa otteniamo l entalpia molare di CH4 :. ĤCO2=Q2+ĤC+ ĤO2. Q2 è la quantità di calore necessaria ad ottenere 1 mole/s di CO2 a partire dagli elementi costituenti

Entalpie di Reazione a 298K Reazione 3: Acqua H2 O2 Scriviamo il bilancio di energia su questo reattore, supponendo di voler ottenere 1mole/s di H2O. ĤH2+½ ĤO2+Q3-ĤH2O=0 298K, 1atm. Q3 H2O Da questa otteniamo l entalpia molare di H2O :. ĤH2O=Q3+ĤH2+½ ĤO2. Q3 è la quantità di calore necessaria ad ottenere 1 mole/s di H2O a partire dagli elementi costituenti

Entalpie di Reazione a 298K Es. Combustione del Metano CH4 CH4+ 2O2 CO2+ 2H2O(g).... Q=2 Q3+ Q2 - Q1 O2 298K, 1atm Q. CO2 H2O Per calcolare il calore scambiato nella reazione di combustione, ho bisogno di conoscere le quantità di calore scambiate durante le reazioni di formazione dei soli composti (non degli elementi) nelle stesse condizioni

Entalpie di Formazione Consideriamo un sistema in cui entrano C (grafite) e ossigeno a T=298K e P=1bar ed esce anidride carbonica alla stessa T e P. C O2 298K, 1bar CO2 il bilancio di energia si scrive:

Entalpie di Formazione C O2 298K, 1bar CO2 L entalpia (molare) assoluta Ĥ non è definita. Tuttavia per convenienza si definisce uno stato di riferimento per ogni materiale. Gli elementi nel loro stato di equilibrio a 298K e 1bar (condizioni di riferimento) hanno per convenzione entalpia nulla. Nel bilancio indicato sopra, allora, ĤC e ĤO2 sono nulli

Entalpie di Formazione C O2 298K, 1bar CO2 Si verifica sperimentalmente che, nelle condizioni indicate, Q=-393kJ/mole (negativo perchè ceduto dal sistema) Se gli elementi nel loro stato di equilibrio in cond. di riferimento hanno entalpia nulla, i composti (come la CO2) avranno valori di entalpia non nulli nelle stesse condizioni: l entalpia specifica di un composto a 298K e 1bar viene chiamata entalpia standard di formazione a 298K ΔĤ f298

Entalpie di Reazione a 298K La variazione di entalpia per una reaz. chimica nelle condizioni di riferimento può essere calcolata partendo dalle entalpie di formazione delle specie coinvolte Es. Combustione del Metano CH4 O2 298K, 1atm CO2 H2O CH4+ 2O2 CO2+ 2H2O(g) Il simbolo (g) sta ad indicare che lʼacqua si trova nei prodotti allo stato gassoso

Entalpie di Reazione a 298K Es. Combustione del Metano CH4 CH4+ 2O2 CO2+ 2H2O(g) O2 298K, 1atm CO2 H2O Si può scrivere come la somma di altre tre equazioni a. C+O2 CO2 ΔĤa=ΔĤ f298(co2) b. 2H2+O2 2H2O(g) ΔĤb=2ΔĤ f298(h2o(g)) c. C+2H2 CH4 ΔĤc=ΔĤ f298(ch4) ΔĤ r298=δĥa+δĥb-δĥc =ΔĤ f298(co2)+2δĥ f298(h2o(g))-δĥ f298(ch4)

Entalpie di Reazione a 298K CH4+ 2O2 CO2+ 2H2O(g) ΔĤ r298=δĥ f298(co2)+2δĥ f298(h2o(g))-δĥ f298(ch4) In generale ΔĤ r298= ΣiνiΔĤ f298,i in cui i sono le specie chimiche che prendono parte alla reazione, νi sono i rispettivi numeri stechiometrici, ΔĤ f298,i sono le rispettive entalpie standard di formazione a 298K

Entalpie nette di Combustione a 298K I calcoli per le entalpie standard di reazione a 298K per le principali reazioni di combustione sono tabellati (Perry, 7 a ed. TABLE 2-221) potere calorifico inferiore: se l acqua nei prodotti di combustione viene considerata come vapore potere calorifico superiore: se l acqua nei prodotti di combustione viene considerata come liquido (si aggiunge il calore liberato durante la condensazione dell acqua

Entalpie di Reazione a T La variazione di entalpia per una reazione che avviene ad una temperatura diversa da 298 viene calcolata utilizzando la proprietà dell entalpia di essere funzione di stato: T ΔHReag= =Σini in CmHi(298-T) 298K Reagenti raffreddamento dei reagenti ΔHrT Percorso reale ΔH r298 riscaldamento dei prodotti T 298K Prodotti ΔHprod= =Σini out CmHi(T-298) ΔHrT=Σinreagite,iΔĤ f298,i+(σini out CmHi-Σini in CmHi)(T-298) Prodotti Reagenti

Entalpie di Reazione a T ΔHrT=Σinreagite,iΔĤ f298,i+(σini out CmHi-Σini in CmHi)(T-298) Prodotti Reagenti Siccome nreagite,i=νiε e ni out =ni in +νiε ΔHrT=ε[ΔĤ r298,i+δcmh(t-298)] con ΔCmH=ΣiνiCmHi

Temperatura adiabatica di fiamma La temperatura adiabatica di fiamma è la (massima) temperatura raggiunta quando un combustibile viene bruciato completamente in un sistema in cui non avviene nessuno scambio di calore o lavoro con l esterno Reagenti Prodotti (Combustibile+Aria o Ossigeno) il bilancio di energia si scrive: 0=Σini out Ĥi out -Σini in Ĥi in

Temperatura adiabatica di fiamma Taf Tin ΔH Percorso reale ΔHprod= =Σini out CmHi(Taf-298) ΔHReag= =Σini in CmHi(298-Tin) 298K Reagenti raffreddamento dei reagenti ΔH r298 riscaldamento dei prodotti 298K Prodotti 0=Σinreagite,iΔĤ f298,i+(σini out CmHi-Σini in CmHi)(T-298) Prodotti Reagenti Supponendo di conoscere Tin e nreagite (conversione completa?) l unica incognita è Taf (per tentativi)

Temperatura adiabatica di fiamma 0=Σinreagite,iΔĤ f298,i+σini out CmHi (Taf-298)-Σini in CmHi(Tin-298) Siccome: nreagite,i=νiε Prodotti ni out =ni in +νiε Reagenti CmHi (Taf-298K)=CmHi (Taf-Tin)+CmHi (Tin-298K) calcolato fra 298 e Taf Prodotti: ATTENZIONE AGLI INERTI!!! calcolato fra Taf e Tin Taf-Tin =-εδĥ r,tin/(σini out CmHi) calcolato fra 298 e Tin Taf aumenta all aumentare di ΔĤ r e al diminuire di ni out Supponendo di conoscere Tin e il grado di avanzamento (conversione completa?) l unica incognita è Taf (per tentativi)

Temperatura adiabatica di fiamma Taf-Tin =-εδĥ r,tin/(σini out CmHi) Conversione completa del reagente limitante p A = f o A na,in A =reagente limitante diminuzione degli inerti reazione endotermica aumento degli inerti condizioni isoterme reazione esotermica aumento degli inerti diminuzione degli inerti Tin= Temperatura di alimentazione