GEOTECNICA. LEZIONE 13 CEDIMENTI delle FONDAZIONI SUPERFICIALI. Ing. Alessandra Nocilla



Documenti analoghi
UNIVERSITA DEGLI STUDI DI ENNA

7.E. Il metodo edometrico per. il calcolo dei cedimenti

1) non deve portare a rottura il terreno sottostante. 2) non deve indurre nel terreno cedimenti eccessivi

MODELLO ELASTICO (Legge di Hooke)

LA TRAVE DI FONDAZIONE SU SUOLO ELASTICO STRATIFICATO DI SPESSORE LIMITATO CON MODULO ELASTICO VARIABILE CON LA PROFONDITÀ

Affidabilità del modello di Winkler

Prova penetrometrica dinamica: SPT (Standard Penetration Test)

Studio di Geologia Tecnica dr. ANGELO ANGELI Cesena, via Padre Genocchi, 222 tel fax

GEOTECNICA. ing. Nunziante Squeglia 14. FONDAZIONI SUPERFICIALI. Corso di Geotecnica Corso di Laurea in Ingegneria Edile - Architettura

TECNICA DELLE COSTRUZIONI: PROGETTO DI STRUTTURE LE FONDAZIONI

Docente: Ing. Giuseppe Scasserra

Pali di fondazione = elementi strutturali in grado di trasferire il carico applicato alla loro sommità a strati di terreno più profondi e resistenti

Normative di riferimento

Geotecnica e Laboratorio

Insegnamento di Progetto di Infrastrutture viarie

D.M : NTC2008:

MODELLO ELASTICO (Legge di Hooke)

Dimensionamento delle strutture

COMPRESSIBILITÀ E CONSOLIDAZIONE

RESISTENZA DEI MATERIALI TEST

GEOTECNICA LEZIONE 9 INDAGINI IN SITO. Ing. Alessandra Nocilla

RELAZIONE RISPOSTA A DOMANDA N. 2. Generalità. Fondazioni. Caratteristiche del terreno

Cedimenti di una fondazione superficiale

Lezione 7 GEOTECNICA. Docente: Ing. Giusy Mitaritonna g.mitaritonna@poliba.it

Carichi unitari. Dimensionamento delle sezioni e verifica di massima. Dimensionamento travi a spessore. Altri carichi unitari. Esempio.

Il concetto di valore medio in generale

'' ). INDICE. Parte I. Introduzione

' ) -.. 'v 1 c("t, _ (. Carlo Viggiani FONDAZIONI nuova edizione. ) r H E V E L I U S ED IZIONI

Figura 1 Planimetria schematica con indicazione della ubicazione dei sondaggi e delle prove CPT

Relazione Geologica e Relazione Geotecnica

UNIVERSITA DEGLI STUDI DI CAGLIARI FACOLTA DI INGEGNERIA DIPARTIMENTO DI INGEGNERIA STRUTTURALE PROVE SPERIMENTALI SU PIGNATTE IN PSE RELAZIONE

Lezione 9 GEOTECNICA

Basi di matematica per il corso di micro

Committente: Comune di Flero. Cantiere: via Paine Flero (BS) Progetto: Riqualificazione e ampliamento della scuola materna in via Paine

165 CAPITOLO 13: PROVE MECCANICHE IN SITO

Prova di verifica parziale N Nov 2008

Ing. Marco Franceschini Ordine Geologi del Veneto 04/09/2009

PARTE IV: RESISTENZA AL TAGLIO

GEOTECNICA. ing. Nunziante Squeglia 13. OPERE DI SOSTEGNO. Corso di Geotecnica Corso di Laurea in Ingegneria Edile - Architettura

LE FINESTRE E L ISOLAMENTO ACUSTICO

CONSIDERAZIONI GENERALI

Fondazioni a platea e su cordolo

(riprendendo un trasparente mostrato a proposito di indagini e campionamento) MEZZI D INDAGINE PROFILO STRATIGRAFICO PROPRIETÀ MECCANICHE

FONDAZIONI DIRETTE prof. Stefano Catasta

CARATTERIZZAZIONE GEOTECNICA DEI TERRENI SOTTO AZIONI DINAMICHE CON PROVE IN SITO E DI LABORATORIO

0.00 m. 1,75 m. ghiaiosa); γ 3 = 14,5 kn/m 3 c = 0 kpa ϕ = m m

LEZIONE 7. PROGETTO DI STRUTTURE IN LEGNO Parte II. Criteri di verifica. Corso di TECNICA DELLE COSTRUZIONI Chiara CALDERINI A.A.

GEOTECNICA. ing. Nunziante Squeglia 8. COMPORTAMENTO MECCANICO DEI TERRENI RESISTENZA DEI TERRENI

A.A Determinazione della resistenza dei terreni

Sussidi didattici per il corso di PROGETTAZIONE, COSTRUZIONI E IMPIANTI. Prof. Ing. Francesco Zanghì FONDAZIONI - III AGGIORNAMENTO 12/12/2014

1 Relazione Generale sull Intervento Determinazione dei parametri geotecnici Normativa di riferimento Relazione sui materiali...

SETTI O PARETI IN C.A.

COSTRUIRE SU TERRENI DIFFICILI Romolo Di Francesco e dott. Geol. Vittorio Gennari

Angolo d attrito in termini di sforzi efficaci. Metodo NTH (Norvegian Institute of Technology) Sandven et al. (1995)

STABILIZZAZIONE DELLE TERRE A CALCE STUDIO DI LABORATORIO DELLA MISCELA TERRA CALCE

Quadri fessurativi in situazioni particolari

Insegnamento di Fondamenti di Infrastrutture viarie

Esercitazione N. 1 Misurazione di resistenza con metodo volt-amperometrico

FONDAZIONI SU PALI TRIVELLATI

LEZIONI N 24 E 25 UNIONI SALDATE

I processi di tempra sono condotti sul manufatto finito per generare sforzi residui di compressione in superficie. Vengono sfruttate allo scopo

ESERCIZI DA ESAMI ( ) Prove triassiali

PORTANZA DELLE FONDAZIONI

L'input geotecnico nella progettazione di. fondazioni speciali

Lezione. Tecnica delle Costruzioni

CALCOLO ELETTRICO DELLE LINEE ELETTRICHE

--- durezza --- trazione -- resilienza

Trasportatori a nastro

75 CAPITOLO 6: PROVE EDOMETRICHE CAPITOLO 6: PROVE EDOMETRICHE

PROVA DI TRAZIONE L 0 = 5.65 S 0 PROVE MECCANICHE

Il calcolo delle sopraelevazioni in muratura in funzione del livello di conoscenza

Horae. Horae Software per la Progettazione Architettonica e Strutturale

Certificazione di produzione di codice di calcolo Programma CAP3

Prova scritta di Fisica Generale I Corso di studio in Astronomia 22 giugno 2012

Ristrutturazione del complesso ENAV di Roma ACC - Ciampino Roma Progetto definitivo delle strutture - RELAZIONE GEOTECNICA

1. Distribuzioni campionarie

Fasi del progetto geotecnico di una fondazione

Analisi e consolidamento di colonne e pilastri in muratura

CRITERI DI RESISTENZA DEI MATERIALI

engineering s.r.l. via del Rio, PONTEDERA PI tel fax

VALIDAZIONE DEL CODICE DI CALCOLO IS PLINTI

Idrogeologia. Velocità media v (m/s): nel moto permanente è inversamente proporzionale alla superficie della sezione. V = Q [m 3 /s] / A [m 2 ]

11. Criteri di analisi e di verifica

STRUTTURE MISTE ACCIAIO-CLS Lezione 2

GRANDEZZE ALTERNATE SINUSOIDALI

Introduzione all economia

UNIVERSITÀ DEGLI STUDI DI ROMA TOR VERGATA

TEST DI VALIDAZIONE DEL SOFTWARE VEM NL

TRAVE SU SUOLO ELASTICO

Transitori del primo ordine

PROGETTO ESECUTIVO PER LA MIGLIOR GESTIONE IRRIGUA INDICE

RESISTENZA A TAGLIO. Università degli Studi di Trento - Facoltà di Ingegneria Geotecnica A / Geotecnica B (Dr. A Tarantino) 1.1

ENERGIA. Energia e Lavoro Potenza Energia cinetica Energia potenziale Principio di conservazione dell energia meccanica

Le piastre Precompresse

Capitolo 26. Stabilizzare l economia: il ruolo della banca centrale. Principi di economia (seconda edizione) Robert H. Frank, Ben S.

All.n.7 GAD PEC RI12 INDAGINE GEOFISICA TRAMITE TECNICA MASW

FORMULE UTILIZZATE NEI CALCOLI

Università degli Studi di Bergamo Facoltà di Ingegneria

Normative sulla Tenuta dei Serramenti ad Aria, Acqua e Vento

Modelli di dimensionamento

Transcript:

GEOTECNICA LEZIONE 13 CEDIMENTI delle FONDAZIONI SUPERFICIALI Ing. Alessandra Nocilla 1

Principio delle tensioni efficaci (Terzaghi, 1923) CEDIMENTI in termini incrementali σ = σ - u In questa forma l equazione mostra che le tensioni efficaci possono variare, causando effetti misurabili, sia cambiando le pressioni neutre (o interstiziali) a tensioni totali costantisia cambiando le tensioni totali e mantenendo inalterate le pressioni interstiziali. Inoltre, se gli incrementi di tensione totale e neutre sono uguali tra loro, le tensioni efficaci restano invariate. Solo il cambiamento di tensioni efficaci influenza il cedimento del terreno! In questa lezione ci limiteremo al calcolo del cedimento dovuto al carico trasmesso dalle fondazioni superficiali. La stima dei cedimenti attesi è necessaria per valutarne l ammissibilità in condizioni di esercizio, e quindi per valori del carico e delle tensioni indotte molto inferiori a quelli che producono la rottura nel terreno (SLE e non SLU) 2

CEDIMENTI La progettazione di una qualunque struttura che interagisce con il terreno richiede la stima dei cedimenti della stessa, e nella maggioranza dei casi, la distribuzione nello spazio e nel tempo dei cedimenti costituisce il fattore che più condiziona le scelte progettuali. DEFINIZIONE DELLA TIPOLOGIA DEI CEDIMENTI EFFETTO DEI CEDIMENTI ENTITA DEL DANNO CEDIMENTI AMMISSIBILI CALCOLO DEI CEDIMENTI Calcolo delle tensioni TERRENI COESIVI TERRENI INCOERENTI 3

TIPOLOGIA DEI CEDIMENTI Cedimento uniforme Non sono in generale critici. La loro limitazione deriva da una convenienza tecnica: se superano i 150-300mm danno problemi alle tubazioni collegate alla struttura. Tilt (rotazione nel piano verticale) La rotazione causa l aumento progressivo della pressione sul piano verso dove si inclina, aggravando la situazione. Cedimento disuniforme Sono in generale critici. Alcune strutture perdono la loro funzionalità per valori molto piccoli del rapporto δ/l (distorsione angolare). La loro criticità è legata alla struttura e alla possibilità che essa ha di sopportarli. 4

CEDIMENTI AMMISSIBILI Cedimento ammissibile = massimo cedimento che una struttura può sopportare 5

CALCOLO DEI CEDIMENTI DIFFICOLTA La previsione dei cedimenti assoluti e differenziali costituisce un compito estremamente difficile. Le cause sono da ricercare in molteplici fattori, legati ai seguenti aspetti: 1. Esistono molte incertezze per quanto concerne il calcolo delle tensioniindotte in un mezzo caratterizzato da anisotropia e eterogeneità; 2. i parametri di deformabilità sono influenzati dalla storia tensionale del deposito, dal disturbo subito dal campione durante la fase di prelievo e preparazione in laboratorio, dalla tecnica di riconsolidazioneutilizzata, dal metodo adoperato per la misura delle deformazioni, dal livello delle sollecitazioni e dallo stress-path seguito; 3. L entità dei cedimenti differenziali è condizionata dalla natura del deposito, dalla variabilità spaziale delle sue caratteristiche meccaniche, dalle modalità esecutive della fondazione, dal tipo della fondazione e dalla rigidezza della sovrastruttura. Risulta quindi complicato elaborare un modelloche prenda in considerazione tutti questi fattori nel rispetto delle leggi della meccanica, che sia aderente alla realtà e sufficientemente agevole da poter essere facilmente adoperato. Nella pratica progettuale Si fa uso di METODI SEMPLIFICATI, a volte puramente empirici, la cui affidabilità è stata verificata confrontando le previsioni con le misure del comportamento di opere in vera grandezza. È necessario avere percezione della complessità del problema fisico e consapevolezza dei limiti dei modelli e schemi adottati. 6

METODI SEMPLIFICATI PER IL CALCOLO DEI CEDIMENTI FASI DEL CALCOLO DEI CEDIMENTI COI METODI SEMPLIFICATI 1. Si determina il profilo geotecnico del terreno, in base alle indagini eseguite. 2. Si calcolano gli incrementi di tensione verticale nel terreno di fondazione, incrementi determinati dai carichi agenti sul piano di fondazione. 3. Si scelgono le caratteristiche tensioni-deformazioni-tempo rappresentative dei vari strati di terreno interessate dalle variazioni di tensione verticale, sulla base delle indagini geotecniche, e si calcolano le tensioni verticali litostatiche. 4. Si calcolano le deformazioni dei vari strati. 5. Si valuta l andamento dei cedimenti nel tempo, per terreni a bassa permeabilità. Differenziazione fra un cedimento in condizioni non drenate (a breve termine) e uno in condizioni drenate (a lungo termine). 7

CALCOLO CEDIMENTO EDOMETRICO 8

CALCOLO DEL CEDIMENTO CALCOLO DEL CEDIMENTO TOTALE DI CONSOLIDAZIONE PRIMARIA IN TERRENO COESIVO CONDIZIONI EDOMETRICH E In condizioni edometriche èpossibile calcolare il cedimento H, considerando l altezza inziale dello strato H 0. L indice dei vuoti inziale e 0 e la variazione dell indice dei vuoti e, conseguente all applicazione del carico. V V = H = e e e = 1 + e 0 1 0 H 0 + e0 1 0 H = e 0 e 1 1+ e 0 H 0 = H 0 1+ e 0 e 9

CALCOLO DEL CEDIMENTO CALCOLO DEL CEDIMENTO TOTALE DI CONSOLIDAZIONE PRIMARIA IN TERRENO COESIVO CONDIZIONI EDOMETRICH E H = H 0 1+ e 0 e TERRENO SOVRACONSOLIDATO CON CARICO σ CHE SUPERA σ c : Facendo riferimento al grafico e- logσ v si può osservare che nel caso di terreno sovraconsolidato (assumendo C r = C s ) e= C r log σ ' c σ ' v0 +C c log σ ' v0 + σ v σ ' c H = H 0 C r log σ ' c + C c log σ ' + σ v0 v 1+ e 0 σ ' v0 σ ' c TERRENO SOVRACONSOLIDATO CON CARICO σche NON SUPERA σ c e= C r log σ ' v0 + σ v σ ' v0 TERRENO NORMALCONSOLIDATO H = H 0 C r log σ ' + σ v0 v 1+ e 0 σ ' v0 e= C c log σ ' + σ v0 v H = H 0 C c log σ ' + σ v0 v σ ' 1+ e 0 σ ' v0 v0 10

CALCOLO DEL CEDIMENTO CALCOLO DEL CEDIMENTO TOTALE DI CONSOLIDAZIONE PRIMARIA IN TERRENO STRATIFICATO CONDIZIONI EDOMETRICH E Se si fa riferimento all espressione con mv, si deve tenere conto che tale parametro dipende dal livello tensionale e quindi va scelto opportunamente in funzione dell intervallo considerato. H = n H 0i σ vi m vi i=1 Nel caso di carico uniformemente distribuito sul piano campagna. Il carico è costante con la profondità. σ vi = σ v H 0i m vi i H = n H 0i σ v m vi i=1 11

CALCOLO DELLE TENSIONI Per calcolare i cedimenti occorre conoscere lo stato di tensione prodotto nel terreno dai carichi applicati sul piano di fondazione. INCREMENTO DI CARICO IN CONDIZIONI EDOMETRICHE. z z q σ = γ z v0 σ v v0 = σ + q = γ z + q CEDIMENTO dello strato di spessore H: w = H ε dz H z 0 0 = mv σ vdz assumendo m v = cost e σ v = cost w = m v σ v H INCREMENTO DI CARICO DOVUTO A CARICO PUNTUALE z P z σ = γ z v0 σ v = σ v 0 +? 12

CALCOLO DELL INCREMENTO DELLO STATO TENSIONALE IN CONDIZIONI DI CARICO NON EDOMETRICHE 13

INCREMENTO DI TENSIONE DOVUTO A CARICO PUNTUALE CALCOLO DELLE TENSIONI L esperienza ha dimostrato che la tensione verticale può essere determinata, attendibilmente, ricorrendo alla TEORIA DELL ELASTICITA Boussinesq (1885), per mezzo semiinfinito elastico, omogeneo e isotropo. È indipendente da E e dal modulo di Poisson ν. 14 NB: il valore di σv èda intendersi come incremento, ovvero come un σ v. Il cedimento èdovuto solo all incremento.

INCREMENTO DI TENSIONE DOVUTO A CARICO PUNTUALE CALCOLO DELLE TENSIONI TENSIONE VERTICALE σ v σ z = q v = 3P ( 2π z3 r 2 + z 2 ) 5/2 = P z I 2 i Valutazione dell incremento di tensione verticale responsabile dei cedimenti. P 5/ 2 2 3 r FATTORE DI INFLUENZA: dipende dal rapporto I i = 1 + 2 π z r/z: lo si può calcolare una volte nota la posizione del punto rispetto al punto di applicazione. È quindi indipendente dal carico applicato. P Incrementi dello sforzo verticale causati da un carico puntuale. Curve di uguale pressione verticale 15

INCREMENTO DI TENSIONE DOVUTO A CARICO PUNTUALE CALCOLO DELLE TENSIONI TENSIONE VERTICALE σ v ANDAMENTO DELLA TENSIONE VERTICALE: Tensioni verticali indotte in un semispazio di Boussinesq da un carico P= 100kN alle profonditàz= 2m, 5m e 10m ANDAMENTO DELLA TENSIONE VERTICALE: Tensioni verticali indotte in un semispazio di Boussinesq da un carico P= 100kN alle distanze r = 0m, 2m e 5m 16

INCREMENTO DI TENSIONE DOVUTO A CARICO PUNTUALE CALCOLO DELLE TENSIONI TENSIONE VERTICALE σ v SOLUZIONE DI WESTERGAARD, 1938: altra soluzione presente in letteratura. Considera l ammasso elastico suddiviso in strati sottili orizzontali e vicini, formati da materiale non elastico che ammette deformazioni verticali ma non orizzontali. I risultati, rispetto a Boussinesq, sono diversi e la differenza diviene importante nelle immediate vicinanze dell impronta di carico. σ z = Q z qv = 2 I wi I wi 1 = 1 + 2 π r z 2 3/ 2 Boussinesq Westergaard 17

PRESSIONI DI CONTATTO RIGIDEZZA DELLA FONDAZIONE PRESSIONI DI CONTATTO: la distribuzione delle pressioni di contatto dipende dall entità e distribuzione del carico all estradosso della fondazione, dalla rigidezza della struttura di fondazione e dalla rigidezza del terreno di fondazione. schema su argilla su sabbia p p p p p a) fondazioni flessibili Wmin W min W W max max p p p b) fondazioni rigide q m in W q W q max max FONDAZIONE RIGIDA (ELEVATA RIGIDEZZA) : Se la fondazione ha rigidezza infinita, subisce cedimenti uniformi. Lo schema di fondazione infinitamente rigida si applica, ad esempio, a plinti in calcestruzzo, alti e poco armati. 1)ARGILLE (BASSA RIGIDEZZA ovvero RIGIDEZZA MINORE rispetto alla fondazione) : le pressioni di contatto sono massime al bordo e minime in mezzeria. 2)SABBIE (RIGIDEZZA ELEVATA) le pressioni di contatto sono massime al centro e minime al bordo. FONDAZIONE FLESSIBILE (BASSA RIGIDEZZA) : Lo schema si applica, ad esempio, alle fondazioni dei rilevati. 1)ARGILLE (BASSA RIGIDEZZA ovvero RIGIDEZZA UGUALE alla fondazione) la distribuzione delle pressioni di contatto è eguale alla distribuzione del carico applicato, e la sua deformata si adatta ai cedimenti del terreno. 2)SABBIE (RIGIDEZZA ELEVATA ovvero RIGIDEZZA PIU ELEVATA della fondazione) il cedimento è minimo in mezzeria e massimo al bordo. 18

PRESSIONI DI CONTATTO RIGIDEZZA DELLA FONDAZIONE Effetti della rigidezza su suolo di diversa rigidezza (argille o sabbie) CEDIMENTI Fondazione flessibile su suolo con bassa rigidezza (argilla) su suolo con elevata rigidezza (sabbia) PRESSIONE DI CONTATTO Fondazione rigida su suolo con bassa rigidezza (argilla) su suolo con elevata rigidezza (sabbia) 19

INCREMENTO DI TENSIONE DOVUTO A CARICO DISTRIBUITO SU AREA FINITA CALCOLO DELLE TENSIONI TENSIONE VERTICALE σ v Ipotesi: 1. Membrana flessibile 2. Carico distribuito uniforme. SOLUZIONE DI BOUSSINESQ: integrando la relazione per carico puntiforme ad un area di dimensioni finite, secondo il principio di sovrapposizione degli effetti. NELLE APPLICAZIONI PRATICHE vengono forniti: 1. L andamento di σ v (detto anche σ z ) in funzione di z sull asse o sul centro della superficie di carico 2. L andamento delle curve di uguale pressione verticale, in una sezione trasversale σ z = q = q v I s I s è un coefficiente adimensionale, funzione della forma della fondazione (ovvero dell area di distribuzione del carico) e del rapporto z/b(b= più piccola dimensione trasversale della superficie di carico). 20

INCREMENTO DI TENSIONE DOVUTO A CARICO DISTRIBUITO SU AREA FINITA CALCOLO DELLE TENSIONI TENSIONE VERTICALE σ v Cerchio di raggio R (B=2R), piastra rigida ANDAMENTO IN CORRISPONDENZA DELLA VERTICALE AL CENTRO DELL AREA DI CARICO. Cerchio di raggio R (B=2R), piastra flessibile Fondazione nastriforme 1, 2, 3, Fondazione rettangolare con diversi valori di L/B 21

INCREMENTO DI TENSIONE DOVUTO A CARICO DISTRIBUITO SU AREA FINITA CALCOLO DELLE TENSIONI TENSIONE VERTICALE σ v Curve di uguale pressione verticale 22

INCREMENTO DI TENSIONE DOVUTO A CARICO DISTRIBUITO SU AREA FINITA CALCOLO DELLE TENSIONI TENSIONE VERTICALE σ v ANDAMENTO SULLA VERTICALE per L ANGOLO di AREA RETTANGOLARE DI CARICO. ABACO DI FADUM: grazie al principio di sovrapposizione degli effetti, consente la determinazione dell incremento di tensione al di sotto di qualsiasi area flessibile, caricata uniformemente, che possa essere suddivisa in rettangoli. 23

INCREMENTO DI TENSIONE DOVUTO A CARICO DISTRIBUITO SU AREA FINITA ESEMPIO 1 TENSIONE VERTICALE σ v Immaginiamo di applicare un carico di 1500kN su una fondazione superficiale quadrata con B=L =2m. Determinare la tensione verticale per un punto alla profondità z di 5m sotto il centro della fondazione nelle ipotesi: 1. Il carico è uniformemente distribuito sul piano della fondazione 2. Il carico è puntuale sul centro del piano della fondazione. CARICO UNIFORME 1500 q = = 2 375 kn / 2 m 2 CARICO PUNTUALE r z = 0 m = n = B / 2 z = 1 5 = 0,2 K Fadum (come in verde slide precedente) = 0,018 1 3 2 4 σ = 4qK = 4 375 0.018 27kN / m z = 2 σ I p = I i = 0,478 Q 1500 = Ii = 0,478 2 z 5 z = 29kN / 2 m 2 z =5m, B=2m, ovvero z < 3B, l assunzione del carico puntuale, per profonditàinferiori a 3B (in questo caso intesa come la massima dimensione della fondazione), non dovrebbe considerarsi, perché comporta una sovrastima dell incremento del carico. 24

INCREMENTO DI TENSIONE DOVUTO A CARICO DISTRIBUITO SU AREA FINITA ESEMPIO 2 TENSIONE VERTICALE σ v Si immagini di applicare un carico di 300kN/m 2 su una fondazione superficiale rettangolare di 6m x 3m. Determinare la tensione verticale per un punto alla profondità z di 3m nel punto A (a 1,5m dal bordo) in corrispondenza all asse centrale della fondazione. B = 3m L = 6m Per la sovrapposizione degli effetti si possono sommare gli apporti + dei rettangoli (1) e gli apporti dei rettangoli (2) B = m L 4,5 B = m L 1, 5 1 3 1 = 2 3 2 = APPORTO POSITIVO RETTANGOLI (1) B 3 L 1 1 4,5 m = = = 1 n = = = 1, 5 z 3 z 3 Fadum K 1 = 0,193 APPORTO NEGATIVO RETTANGOLI (2) B 3 L 2 2 1,5 m = = = 1 n = = = 0, 5 z 3 z 3 Fadum K 2 = 0,120 σ z = q K1 2 q K2 = 2 300 0,193 2 300 0,120 = 44kN / 2 m 2 25

INCREMENTO DI TENSIONE DOVUTO A CARICO DISTRIBUITO SU AREA FINITA CALCOLO DELLE TENSIONI METODO APPROSSIMAT O Se si fa riferimento all espressione con mv, si deve tenere conto che tale parametro dipende dal livello tensionale e quindi va scelto opportunamente in funzione dell intervallo considerato. Nel caso in cui il carico sia distribuito uniformemente su area finita, il conseguente incremento della tensione verticale si riduce al crescere della profonditàe varia in direzione orizzontale. Tale incremento è calcolato con la teoria dell elasticità in funzione della geometria dell impronta di carico. In prima approssimazione si piò ipotizzare che il carico si diffonda con un rapporto 2:1. APPROCCIO SEMPLIFICATO σ ' v (z) = q L B (L + z) (B+ z) 26

CALCOLO DEI CEDIMENTI PER TERRENI COESIVI 27

CALCOLO DEI CEDIMENTI TERRENI COESIVI S t = S i + S c + S s Il cedimento totale è pari alla somma del cedimento istantaneo (a breve termine, in CND) più il cedimento legato alla consolidazione(a lungo termine, CD) più infine, il cedimento legato a fenomeni di consolidazione secondaria. S i S c S s Il cedimento istantaneo (a breve termine, in CND) avviene, in terreni a bassa permeabilità come le argille, a volume pressochècostante (distorsione). Il cedimento di consolidazione (a lungo termine, in CD) avviene contemporaneamente al fenomeno della consolidazione primaria e alla dissipazione delle u insorte all applicazione istantanea del carico. Il cedimento secondario è legato a fenomeni di creep, raggiustamento dello scheletro solito sotto carico costante. Termine spesso trascurato. Può essere rilevante per le argille organiche e le torbe. S = S + t i S c Rilevante solo per terreni argillosi ad alta e media plasticità o per bassa plasticità e struttura instabile. 28

CEDIMENTO IMMEDIATO S i CALCOLO DEI CEDIMENTI TERRENI COESIVI Il cedimento immediato si manifesta via via che viene applicato il carico durante la costruzione dell opera geotecnica, e pertanto spesso è poco temibile, sia perché può essere recuperato riportando in quota la struttura, sia perché normalmente precede la messa in opera delle parti più vulnerabili (pavimentazioni, rivestimenti, finiture). Viene di norma calcolato in termini di tensioni totali e in CND con la teoria dell elasticità(tde). S i = teoria dell' elasticità L applicazione della TDE è in parte giustificata dal basso valore delle tensioni (e quindi delle deformazioni) indotte dal carico di esercizio. Incertezza sulla scelta dei parametri elastici più appropriati. COEFFICIENTE DI POISSON ν In CND le variazioni di volume sono nulle. ε v = 0. Per la LEGGE DI HOOKEsi ha: ( ) ε 1 = 1 E σ 1 ν σ 2 +σ 3 MODULO DI DEFORMAZIONE E u Si fa riferimento al modulo secante per deformazioni assiali ε a pari a ½ o ⅓ del valore della ε a a rottura. Valori troppo cautelativi se non si hanno apparecchiature che misurano tale rigidezza con estrema precisione e accuratezza su campioni di minimo disturbo. Meglio riferirsi a correlazioni empiriche. ε V = ε 1 +ε 2 +ε 3 = 1 2 ν E (σ 1 +σ 2 +σ 3 ) = 0 Da cui deriva che : ν = 0,5 29

CEDIMENTO IMMEDIATO S i CALCOLO DEI CEDIMENTI JANBU ET. AL. (1956) TERRENI COESIVI L/B µ 1 Mezzo elastico E u e ν= 0,5 In cui µ 1 e µ 0 sono fattori dipendenti rispettivamente dallo spessore dello strato comprimibile e dalla profonditàdel piano di fondazione H/B S i = qb µ 0 µ 1 E u µ 0 L/B D/B 30

CEDIMENTO DI CONSOLIDAZIONE CALCOLO DEI CEDIMENTI TERRENI COESIVI L applicazione di un carico su area finita in superficie producono in generale incrementi delle tensioni principali maggiori e minori diverse fra loro ( σ 1 σ 2 ). Il cedimento di consolidazione èdovuto alla dissipazione delle u che si determinano per effetto di questo incremento di tensioni e che possono essere valutate secondo l espressione fornita da Skempton: u = B σ 3 + A σ 1 σ 3 ( ) Con A e B parametri di Skempton (vedi lezione 8), se il terreno èsaturo B = 1. Ciò premesso, il cedimento di consolidazione di una fondazione superficiale di area finita su argilla satura dovrebbero essere determinare tenendo in considerazione le effettive condizioni al contorno, che in generale non corrispondono alle condizioni edometriche. Tuttaviala stima dei cedimenti èabitualmente ottenuta con un metodo calcolo semplificato (METODO DI TERZAGHI) che si basa sulle ipotesi di consolidazione edometrica, tenendo conto dell effettivo incremento del carico valutato con la teoria dell elasticità e modificando il risultato ottenuto con opportuni coefficienti correttivi che tengono contro delle approssimazione indotto. 31

CEDIMENTO EDOMETRICO S ed CALCOLO DEI CEDIMENTI METODO DI TERZAGHI (1943) TERRENI COESIVI Valutazione di un cedimento di tipo monodimensionale, prodotte da carico di limitate dimensioni. APPROCCIO EMPIRICO. Hp: 1. Deformazioni del terreno solo verticali (ε r =0). 2. Sovrappressione inziale in c. edometriche ( u= σ v ). Operativamente : -Si determinano i profili della pressione efficace preesistente σ v0 -Si determinano i profili della pressione pressione consolidazione σ c. Per terreni NC σ v0 = σ c -Si determina la pressione verticale netta trasmessa alla fondazione p= q- γd. -Si suddividono gli strati argillosi in strati di modesto spessore -Si determinano gli incrementi netti di tensione al centro di ogni strato ( σ z ) con la TDE fino a quando σ z > 0,1 σ v0. -Si utilizzano i parametri di compressibilità edometrica significativi per i vari strati per il calcolo del cedimento. Si determinano quindi, al centro di ciascuno strato, i valori di σ v0, σ c, σ z, e 0, C c, C r (o, in alternativa, m v ) - Si stima il cedimento di ogni strato secondo quanto riportato nella diapositiva seguente. -Si stima il cedimento totale S tot = Σ H i 32

CEDIMENTO EDOMETRICO S ed CALCOLO DEI CEDIMENTI METODO DI TERZAGHI (1943) TERRENI COESIVI Noti i valori di σ v0, σ c, σ z, e 0, C c, C r, il cedimento di ogni strato va valutato: -Se σ c = σ v0 terreno NC: -Se σ c > (σ v0 + σ v ) terreno OC: H i = H i C ci log σ ' + σ v0i vi 1+ e 0i σ ' v0i H i = H i C ri log σ ' + σ v0i vi 1+ e 0i σ ' v0i -Se (σ v0 + σ v ) > σ c > σ v0 terreno OC che diventa NC: H i = H i C ri log σ ' ci +C ci log σ ' + σ v0i vi 1+ e 0i σ ' v0i σ ' ci In alternativa, noti i valori di m v, il cedimento di ogni strato va valutato: Con m vi, in generale, variabile per ogni strato: H i = H i σ vi m vi 33

CEDIMENTO DI CONSOLIDAZIONE S c CALCOLO DEI CEDIMENTI CORREZIONI DI SKEMPTON E BJERRUM (1957) TERRENI COESIVI Il cedimento di consolidazione viene calcolato modificando opportunamente quello edometrico perchéin generale u < σ v. Le deformazioni reali sono in genere inferiori a quelle valutate con il metodo di Terzaghi. S c = µ S ed (*) il cedimento di consolidazione è legato alla dissipazione delle u che si creano. Il coefficiente µ dipende dallo spessore dello strato compressibile e dal parametro di Skempton A, funzione della geometria del problema, di OCR e della storia tensionale. Condizioni di carico monodimensionale, considerata con Terzaghi 3 σ σ u = σ v u = + A ( 1 3) σ ( ) µ = A + α 1 A Skempton Bjerrum tengono conto u < σ v La relazione (*) èpiùaderente alla realtà, per quanto riguarda le u, ma rimane fondamentalmente ancorata all ipotesi che la relazione tra la deformazione assiale e tensione verticale sia di tipo edometrico. α H 0 = H 0 σ dz 3 σ dz 1 A Dal grafico è possibile notare che i valori di µ sono inferiori a 1 eccetto che per le argille sensibili (dette anche sensitive) e che, a parità di rapporto H/B, diminuisce all aumentare del grado di sovraconsolidazione. 34

CEDIMENTO TOTALE S t CALCOLO DEI CEDIMENTI BURLAND ET AL. (1978) TERRENI COESIVI ARGILLE NC ARGILLE OC S i = 0,1 S t Il cedimento istantaneo è un piccola parte di quello totale S c = S ed i valori di µsono prossimi a 1 1 2 S i = S 3 3 Il cedimento istantaneo è un aliquota importante dii quello totale. Burland et al.(1977). 1/3 per terreni con pronunciato comportamento anisotropo e eterogeneo, 2/3 per strati di spessore rilevante e modulo constante con la profondità. In generale possiamo dire che: S i = 0, 6 S ed t S c = 0, 4 S ed S t = S i + S c =1,1 S ed Relazione ricavata tramite osservazione diretta sul comportamento di opere reali. S t = S ed 35

INFLUENZA DELLA RIGIDEZZA DELLA FONDAZIONE CALCOLO DEI CEDIMENTI POULOS E DAVIS (1974), JANBU ET. AL. (1956) TERRENI COESIVI Il calcolo, fino adesso, èstato condotto nell ipotesi di carichi applicati su una superficie flessibile. Se la fondazione è infinitamente rigida: CEDIMENTO DI CONSOLIDAZIONE superfici rigide circolari o nastriformi superfici rigide rettangolari soluzione di Poulos e Davis (1956): S fond.rigida = 1 ( 2 S centro + S bordo ) fond. flessibile S fond.rigida = 1 ( 2 2 S centro + S bordo ) fond. flessibile CEDIMENTO IMMEDIATO Teoria dell elasticità.- soluzione di Janbu et al. (1956) S i = qb E u I w S i = cedimento immediato medio; q = carico uniforme B = dimensione della fondazione I w = coefficiente di influenza che dipende dalla forma, dalla rigidezza della fondazione, dallo spessore H dello strato deformabile e della profondità D del piano di posa. Sono stati proposti dei diagrammi dagli stessi autori per stimare il cedimento medio ND di aree rettangolari uniformemente caricate, poste alla profondità D e con uno strato rigido alla profondità H sotto il piano di fondazione. Questi diagrammi valgono per ν = 0.5 (condizioni non drenate) e nell ipotesi che lo strato rigido non influenzi la distribuzione delle tensioni verticali e orizzontali. 36

CALCOLO DEI CEDIMENTI LAMBE (1964) TERRENI COESIVI Metodo dello stress path metodo molto più sofisticato a) Calcolo degli incrementi di tensione in più punti significativi al di sotto della fondazione b) Esecuzione in laboratorio di prove triassiali seguendo percorsi tensionali (stress paths) prima determinati. c) Uso delle deformazioni misurate nelle prove per calcolare i cedimenti 37

CALCOLO DEL CEDIMENTO SECONDARIO S s CALCOLO DEI CEDIMENTI TERRENI COESIVI Il cedimento di consolidazione secondaria, salvo il caso delle torbe e delle argille organiche, viene trascurato. Viceversa viene usualmente condotto utilizzando la relazione: S s = c αε log t H0 t 100 dove C αε αε = coefficiente di consolidazione secondaria, pari all incremento di deformazione che si ha nel corso di una prova edometrica (sotto tensioni efficaci costanti) per ciclo logaritmico del tempo; H 0 = altezza dello strato compressibile; t 100 = tempo necessario all esaurimento del processo di consolidazione primario. HP: a) La consolidazione secondaria inizia dopo l esaurimento del processo di consolidazione primaria. b) Il valore di C αε può ritenersi costante durante tutto l evolversi del cedimento secondario. 38

CALCOLO DEI CEDIMENTI PER TERRENI INCOERENTI 39

Per i terreni non coesivi: l entità dei cedimenti è sicuramente in molti casi più contenuta. Il loro calcolo, ad ogni modo, risulta assai complesso essendo i parametri di compressibilità non facili da ricavare difficoltà di prelevare campioni indisturbati. La maggior parte dei metodi si basa sull uso diretto dei risultati delle prove in sito. METODO DI BURLAND E BURBIDGE (1985) Tale metodo èutilizzato per la stima del cedimento di fondazioni su sabbie NC e OC, dai risultati di prove SPT, e si basa su un analisi statistica di oltre 200 casi reali, comprendenti fondazioni con 0.8m<B<135m S in mm 2 q' σ v 3 B 0,7 = C1C 2C3 0 Ic CALCOLO DEI CEDIMENTI TERRENI NON COESIVI Nel quale q rappresenta la pressione efficace media sul piano della fondazione in kpa, σ v0 la pressione verticale efficace preesistente sullo stesso piano in kpa, B la larghezza della fondazione in metri. Tiene conto della forma della fondazione Tiene conto dello spessoreh dello strato deformabile per H<z i (z i = profonditàsignificativa) Tiene conto della compressione secondaria, dove t 3 è il tempo in anni dopo la fine costruzione, R 3 =0,3 per carichi statici o 0,7 per carichi ciclici. R t =0,2 per carichi statici o 0,8 per carichi ciclici. I c = 1, 706 N 1,4 SPTm L indice di compressibilità I c è calcolato in funzione del valore di N SPTm che rappresenta il valore medio di N SPT alla profonditàsignificativa z i prima indicata, quando N SPT è costante o crescente con la profondità. Con valori decrescenti di N SPT, la media va fatta entro una profondità pari a 2B. Per sabbie fini e/o limosesotto faldan SPT va corretto: N = 15 + 0.5(N SPT -15) Per ghiaie e/o sabbie con ghiaian SPT va incrementato del 25% N = 1,25 N SPT. 40

CALCOLO DEI CEDIMENTI METODO DI BURLAND E BURBIDGE (1985) TERRENI NON COESIVI z i = profonditàsignificativa Valori della z i, profonditàsignificativa, in funzione della larghezza della fondazione B. (Burland e Burbidge, 1985) 41

Z S = C1C C 3 2 q METODO DI SHMERTMANN (1970) E SHMERTMANN ET AL. (1978) n z2 I z z q Per i terreni non coesivi: si basa sull uso diretto dei risultati delle prove in sito e, in particolare, della prova penetrometrica statica CPT. 0 Il valore di Iz diventa nullo a 2B (fondazioni circolari o quadrate) o 4B (fondazioni continue). c I z CALCOLO DEI CEDIMENTI TERRENI NON COESIVI qn=q - σ v0 rappresenta la pressione netta applicata dalla fondazione, q la pressione efficace media sul piano della fondazione in kpa, σ v0 pressione verticale efficace preesistente sullo stesso piano inkpa, z 2 la profonditàsignificativa, zgenerico strato in cui èsuddiviso lo spessore z 2, qcle resistenza di punta media dello strato z (da prove CPT). Fondazioni circolari o quadrate Fondazioni continue Tiene conto della profonditàdel piano della fondazione (C1 0,5) Tiene conto della compressione secondaria dove t rappresenta il tempo in anni dopo la fine della costruzione. I z = Fattore di deformazione. Varia con la profondità in funzione della geometria e dell entitàdi q n 42

CALCOLO DEI CEDIMENTI METODO DI SHMERTMANN (1970) E SHMERTMANN ET AL. (1978) TERRENI NON COESIVI S = C1C C 3 2 q n z2 I z z q 0 c C 3 èun fattore dipendente dalla forma del carico z 2 èla profonditàsignificativa, z 1 èla profonditàcorrispondente a Izmax. Valori dei parametri z 1 z 2 ec 3 al variare della forma della fondazione. NB: è necessaria un adeguata suddivisione della profondità significativa in vari strati per i quali i valori del fattore di deformazione I z e il valore del modulo E possano ritenersi costanti. 43

NORMATIVA VECCHIA NORMATIVA 44

NORMATIVA NTC FONDAZIONI SUPERFICIALI E C d d E d valore di progetto dell effetto delle azioni C d prescritto valore limite dell effetto delle azioni. Da definirsi in funzione del comportamento della struttura in elevazione FONDAZIONI PROFONDE 45