Generalità delle onde elettromagnetiche

Documenti analoghi
Teoria Atomica Moderna. Chimica generale ed Inorganica: Chimica Generale. sorgenti di emissione di luce. E = hν. νλ = c. E = mc 2

Capitolo 8 La struttura dell atomo

Struttura elettronica degli atomi. La teoria dei quanti e la meccanica ondulatoria. La moderna descrizione dell atomo

Struttura elettronica degli atomi. La teoria dei quanti e la meccanica ondulatoria. La moderna descrizione dell atomo

L ATOMO SECONDO LA MECCANICA ONDULATORIA IL DUALISMO ONDA-PARTICELLA. (Plank Einstein)

Esploriamo la chimica

Si arrivò a dimostrare l esistenza di una forma elementare della materia (atomo) solo nel 1803 (John Dalton)

Le Caratteristiche della Luce

Lezione n. 19. L equazione. di Schrodinger L atomo. di idrogeno Orbitali atomici. 02/03/2008 Antonino Polimeno 1

Atomo. Evoluzione del modello: Modello di Rutherford Modello di Bohr Modello quantomeccanico (attuale)

Teoria Atomica di Dalton

Struttura Elettronica degli Atomi Meccanica quantistica

Lezioni di Meccanica Quantistica

L atomo di Bohr. Argomenti. Al tempo di Bohr. Spettri atomici 19/03/2010

L atomo. Il neutrone ha una massa 1839 volte superiore a quella dell elettrone. 3. Le particelle fondamentali dell atomo

La struttura dell atomo

LE ONDE E I FONDAMENTI DELLA TEORIA QUANTISTICA

Il modello atomico fino all Ottocento

Modello atomico ad orbitali e numeri quantici

Unità 2. La teoria quantistica

La teoria atomica moderna: il modello planetario L ELETTRONE SI MUOVE LUNGO UN ORBITA INTORNO AL NUCLEO

Teoria atomica. Dr. Lucia Tonucci Ingegneria delle Costruzioni

Fenomeni quantistici

Come superare le critiche al modello di Bohr? 1 1

ATOMO. Legge della conservazione della massa Legge delle proporzioni definite Dalton

CORSO DI LAUREA IN OTTICA E OPTOMETRIA

Quadro di Riferimento della II prova di Fisica dell esame di Stato per i Licei Scientifici

GLI ORBITALI ATOMICI

Corso di CHIMICA LEZIONE 2

La nascita della fisica moderna. (un racconto di inizio 900)

Interferenza di elettroni e! Principio di Indeterminazione

La struttura della materia

La teoria del corpo nero

Università Primo Levi

INDICE 1. LA CRISI DELLA FISICA CLASSICA

Come si può definire la chimica? Quella scienza che studia la composizione, la struttura e le trasformazioni della materia. Cosa si intende per

COMPETENZE ABILITÀ CONOSCENZE. descrivere la. Comprendere ed applicare analogie relative ai concetti presi in analisi. struttura.

CHIMICA E SCIENZA E TECNOLOGIA DEI MATERIALI ELETTRICI

Il principio di indeterminazione di Heisenberg

FISICA QUANTISTICA LIMITI AL MODELLO ATOMICO DI RUTHERFORD. e - Per spiegare la disposizione degli elettroni nell atomo (STRUTTURA ELETTRONICA)

La Meccanica Quantistica

Problemi con l'atomo. Significato delle righe spettrali. Modello dell'atomo

Il metodo scientifico

TEORIA QUANTISTICA E STRUTTURA ATOMICA

Tabella periodica degli elementi

Bohr e la struttura dell atomo. Lezioni 11-12

LASER. Light Amplification by Stimulated Emission of Radiation. Introduzione. Assorbimento, emissione spontanea, emissione stimolata

La Struttura degli Atomi

STRUTTURA ATOMICA E CONFIGURAZIONE ELETTRONICA

Quarta unità didattica. Disposizione degli elettroni nell atomo

Radiazione e Materia. Insegnamento di Chimica Generale CCS CHI e MAT. Scuola di Ingegneria Industriale e dell Informazione

La Teoria dei Quanti e la Struttura Elettronica degli Atomi. Capitolo 7

Ma se dobbiamo trattare l elettrone come un onda occorre una funzione (che dobbiamo trovare) che ne descriva esaurientemente queste proprietà.

Estrazione di elettroni da un metallo illuminato. Prime osservazioni Hertz 1857 Esperimento di Lenard 1902 Spiegazione teorica di Einstein

4.Semplificare e modellizzare con strumenti matematici e disciplinari situazioni reali al fine della risoluzione di semplici problemi

Lezione n. 13. Radiazione elettromagnetica Il modello di Bohr Lo spettro dell atomo. di idrogeno. Antonino Polimeno 1

PROFILO IN USCITA PER IL PRIM0 ANNO FISICA Sezioni internazionale ad opzione Inglese (L,M,N,O,P,Q)

Spettroscopia. Spettroscopia

Nell'atomo l'energia dell'elettrone varia per quantità discrete (quanti).

P. Sapia Università della Calabria. a.a. 2009/10

LA CRISI DELLA FISICA CLASSICA

Un introduzione alla Meccanica Quantistica

Particelle Subatomiche

Nel 1926 Erwin Schrödinger propose un equazione celebre e mai abbandonata per il calcolo delle proprietà degli atomi e delle molecole

I QUANTI DI PLANCK 1

Sulla nascita di questo libro. Introduzione 1

La radiazione elettromagnetica. aumento della frequenza n della radiazione aumento dell energia E della radiazione

LA RADIAZIONE ELETTROMAGNETICA. c = λ ν. c = 2, m s-1 (nel vuoto)

6) Modello atomico a ORBITALI

Incontriamo la Fisica: la Meccanica Quantistica. Stefano Spagocci, GACB

Quantum Theory. E la natura dell'atomo. M. Orlandelli, A. Peloni

1. La struttura atomica Le particelle subatomiche L atomo, per molti secoli ritenuto indivisibile, è formato da particelle più piccole.

Fisica atomica. Marcello Borromeo corso di Fisica per Farmacia - Anno Accademico

Struttura dell Atomo. Insegnamento di Chimica Generale CCS CHI e MAT. Scuola di Ingegneria Industriale e dell Informazione

J.J. Thomson (1897): dimostra l esistenza dell elettrone E. Ruthenford (1911): dimostra l esistenza del nucleo

Chimica. La chimica studia composizione, struttura, proprietà e trasformazioni della materia

MODELLO ATOMICO DI BOHR - ULTERIORI APPROFONDIMENTI

La Fisica Quasi Moderna La Meccanica Quantistica Classica. Particelle a velocità Molto inferiore alla luce

L atomo di idrogeno (1) H T = p2 1 2m 1. + p2 2 2m 2. + V ( r 1 r 2 ) (2) Definiamo le nuove variabili: 1. La massa totale M M = m 1 + m 2 (3)

Indice. Elettrostatica in presenza di dielettrici Costante dielettrica Interpretazione microscopica 119. capitolo. capitolo.

Enrico Silva - diritti riservati - Non è permessa, fra l altro, l inclusione anche parziale in altre opere senza il consenso scritto dell autore

Fisica Moderna per Matematica (Meccanica Quantistica Elementare) Udine, A.A. 2000/2001

La rappresentazione degli orbitali Orbitali s ( l = 0 )

L energia assorbita dall atomo durante l urto iniziale è la stessa del fotone che sarebbe emesso nel passaggio inverso, e quindi vale: m

Introduzione ai fenomeni quantistici

LE RIVOLUZIONI QUANTISTICHE e ERWIN SCHRÖDINGER. Alice Marchi 5 G Liceo Scientifico Giacomo Ulivi A.S. 2015/2016

FAM. T 1) α ν. (e α ν T 1) 2. (con l ipotesi ν > 0) si ottiene

FACOLTÀ DI SCIENZE MM.FF.NN. CORSO DI LAUREA IN CHIMICA Chimica Fisica II a.a

Introduzione al corso di Fisica dei Semiconduttori

Fisica quantistica. Liceo Malpighi, a.s. 2016/17

Natura della luce. Qualsiasi tipo di onda è caratterizzato da:

il modello atomico di Bohr

Per poter descrivere la struttura elettronica degli atomi è quindi prima necessario considerare la natura delle radiazioni elettromagnetiche

Come sono disposti gli elettroni intorno al nucleo in un atomo?

E. SCHRODINGER ( )

2.1 (p. 37) Bohr descrisse un orbitale atomico come una traiettoria circolare seguita dall elettrone. Un orbitale è una

3. Struttura dell atomo

La complessa semplicità dell'atomo di idrogeno!

Transcript:

Generalità delle onde elettromagnetiche Ampiezza massima: E max (B max ) Lunghezza d onda: (m) E max (B max ) Periodo: (s) Frequenza: = 1 (s-1 ) Numero d onda: = 1 (m-1 ) = v Velocità della luce nel vuoto c=2.9979 10 8 m s -1 = c = c (nel vuoto) (nel vuoto) Generalità delle onde elettromagnetiche Ultravioletto Infrarosso E 1

Generalità delle onde elettromagnetiche La diffrazione della luce La diffrazione della luce 2

La crisi della Fisica classica Problemi di stabilità dimensionale degli atomi Effetto fotoelettrico Emissione del corpo nero Interpretazione degli spettri di emissione degli atomi Struttura elettronica degli atomi -- Modello atomico di Rutherford + + + -- -- Incompatibilità con le leggi classiche dell elettromagnetismo: una carica elettrica in moto non rettilineo ed uniforme perde progressivamente energia emettendo onde elettromagnetiche per cui l elettrone collasserebbe sul nucleo in 10-11 -10-12 secondi seguendo una traiettoria a spirale. 3

Emissione del corpo nero Emissione del corpo nero Risultati sperimentali Previsione classica, La catastrofe ultravioletta 4

La teoria di Planck Scambio di energia tra materia e radiazione elettromagnetica avviene per pacchetti discreti ovvero QUANTI E = h h costante di Planck 6.626 x 10-34 J s la distribuzione delle loro energie segue la legge statistica di Boltzmann Effetto fotoelettrico 5

L effetto fotoelettrico h e - E ma x E = h > E o E cin = E E o = h( o ) o Costante di Planck h = 6.626 10-34 J s L intensità degli elettroni emessi è proporzionale all intensità della radiazione incidente. L emissione di elettroni avviene solo se l energia (e quindi la frequenza) della radiazione incidente è superiore ad un certo valore E 0 L energia cinetica è invece indipendente dall intensità della radiazione incidente ma dipende dalla frequenza E cin =h( - 0 ) Ipotesi di Einstein: radiazione elettromagnetica costituita da particelle (fotoni) con energia : E = h Nell interazione con la materia il fotone colpendo un atomo gli può cedere la sua energia h : se questa è superiore all energia necessaria per strappare un elettrone all atomo, l elettrone viene espulso ed assume energia cinetica pari alla differenza tra l energia del fotone incidente e la propria energia di legame E 0 6

Spettro di emissione dell atomo di idrogeno Spettro a righe Analizzatore ottico Spettro di emissione dell atomo di idrogeno n = 1 = R H m 2 1 n 2 Valida anche per ioni idrogenoidi (He +, Li ++, Be +++,... R H = 109677.76 cm -1 m = 1, 2, 3,, n = m + 1,, 7

L atomo di Bohr Base di partenza: fisica classica, in cui però Bohr inserì i suoi due postulati. 1. Quantizzazione del raggio dell orbita dell elettrone e di conseguenza dei livelli di energia; 2. Emissione (o assorbimento) di radiazione elettromagnetica solo in corrispondenza del passaggio da uno stato quantico ad un altro + r - Il modello atomico di Bohr: : secondo postulato Emissione E A > E B A > B A < B 8

Lo spettro di emissione dell idrogeno secondo la meccanica quantistica [da P Atkins, L. Jones Chimica Generale Zanichelli] Il modello atomico di Bohr h = E n ' E n " = E n ' E n " h = c = E n ' E n " E n = 1 2 2 me 4 hc n 2 h 2 Legge di Bohr = 2 2 me 4 1 h 3 c n' 2 1 1 n" 2 = R H m 2 1 n 2 109737 cm -1 R H = 109677.76 cm -1 9

Spettroscopia di emissione Spettroscopia di assorbimento Litio Sodio Potassio Rubidio 10

Critica al modello atomico di Bohr Uso di leggi della meccanica classica Introduzione di postulati senza giustificazione ORBITE di elettroni intorno al nucleo? Moto di un punto materiale nel piano x-y Per conoscere la traiettoria di un corpo è necessario conoscere posizione e velocità del punto materiale in un dato istante Principio di indeterminazione di Heisemberg (Nobel 1932) È impossibile determinare con precisione contemporaneamente la posizione e la velocità di una particella di massa molto piccola Effetto Compton fotone microscopio microscopio elettrone fotone elettrone Principio di indeterminazione di Heisemberg Per corpi di massa estremamente piccola, che si muovono a velocità prossime alla velocità della x (m v x ) h luce, non è possibile conoscere con precisione la y (m v y ) h posizione, se è nota la quantità di moto, o z (m v z ) h viceversa. 11

Principio di indeterminazione di Heisemberg (Nobel 1932) Sfera di massa m = 10-5 g x v x h m = 6.6 10 27 erg s 10 5 g = 6.6 10 22 cm 2 s 1 x = 10 10 cm v x = 6.6 10 12 cm s 1 Incertezza trascurabile Elettrone m = 10-27 g x v x h m = 6.6 10 27 erg s 10 27 g = 6.6cm 2 s 1 x = 10 10 cm v x = 6.6 10 10 cm s 1 V x indeterminata Louis DeBroglie : Le onde di De Broglie Alla propagazione di raggi elettronici si accompagna un fenomeno ondulatorio come accade per la propagazione dei raggi luminosi = h mv Particella m (g) v (m s -1 ) (nm) Elettrone lento Elettrone veloce Sferetta Sferetta 9.1 x 10-28 9.1 x 10-28 10-6 1 1 5.9 x 10 7 0.01 0.01 7.3 x 10 7 1.2 6.6 x 10-12 6.6 x 10-18 12

Dualismo onda particella Radiazione elettromagnetica (luce) Fascio di fotoni Elettroni Foglio metallico policristallino o cristallo 1927, Davisson, Germer e Thomson Fascio di elettroni Dualismo onda particella Sia il comportamento della luce che quello della materia può essere spiegato in alcuni casi considerandole come particelle in altri come onde. luce Comportamento ondulatorio: materia Elettromagnetismo ed ottica in generale Comportamento particellare: Effetto fotoelettrico Effetto Compton Comportamento particellare: In tutti i casi di aggregati di più atomi Comportamento ondulatorio: Diffrazione di raggi di elettroni 13

La meccanica ondulatoria - L equazione L di Schrödinger Propagazione delle onde elettro-magnetiche delle onde sonore, delle vibrazioni di una corda Onde e.m. 2 f x 2 + 2 f y 2 + 2 f z 2 = 1 2 f c 2 t 2 f : E,B densità di energia ( E / V ) f 2 (num. fotoni)/volume probabilità di trovare un fotone La meccanica ondulatoria - L equazione L di Schrödinger Studio del moto degli elettroni attraverso le onde di De Broglie ad essi associate 2 ' x 2 + 2 ' y 2 + 2 ' z 2 = 1 2 ' v 2 t 2 Equazione dell onda di De Broglie associata ad una particella ' 2 probabilità di trovare la particella in un dato punto dello spazio in certo istante Descrizione PROBABILISTICA del moto degli elettroni 14

Equazione di Schrödinger valida per gli stati stazionari (indipendente dal tempo) 2 2 2 2 8 m + + + ( E 2 2 2 2 x y z h E p ) = 0 E p = e2 r La funzione deve: essere nulla all infinito essere continua e ad un solo valore in ogni punto dello spazio, insieme alle sue derivate 2 soddisfare la condizione di normalizzazione v= dv = 1 soddisfare la condizione di ortogonalità v= m n dv = 0 L atomo di idrogeno secondo la meccanica quantistica E possibile risolvere in modo rigoroso l eq. d onda per l atomo di idrogeno Si determinano una serie di soluzioni (autofunzioni) in corrispondenza di valori diversi dell energia (autovalori) ORBITALI atomici di H Lo stato dell elettrone nell atomo è descritto da uno degli infiniti orbitali 15

Risoluzione dell eq eq.. di Schrödinger per l atomo l di idrogeno 2 x 2 + 2 y 2 + 2 z 2 + 8 m h 2 E + e2 r = 0 Integrando: Soluzioni accettabili solo per determinati valori dell energia E (autovalori): E n = 1 2 2 me 4 n 2 h 2 n = 1, 2, 3,..., Numero quantico principale coincide con l espressione dedotta da Bohr! Quantizzazione dell energia energia (livelli energetici discreti): non da postulati arbitrariamente imposti (Bohr) conseguenza logica della natura dell equazione e delle condizioni che la funzione d onda deve soddisfare per avere un significato fisico valido Numeri quantici Le funzioni d onda soluzioni dell equazione di Schrödinger (autofunzioni) sono funzioni matematiche complicate delle coordinate dello spazio che contengono tre numeri quantici e sono completamente definite dai loro valori Numero quantico principale n Numero quantico secondario o azimutale l Numero quantico magnetico m l p z = m l h 2 p = l(l +1) h 2 n =1,2,3,..., l = 0,1,2,...,n 1 m l = l, (l 1),...,0,+(l 1),+l 16

Numeri quantici Il numero quantico n è in relazione con la dimensione e l energia dell orbitale Il numero quantico l è in relazione con la forma degli orbitali atomici Il numero quantico m l è in relazione con l orientazione relativa degli orbitali nello spazio Numeri quantici e orbitali Ogni autofunzione associata ad una definita terna di valori di numeri quantici n, l, m l viene chiamata ORBITALE. Ogni orbitale corrisponde ad un determinato stato quantico possibile dell elettrone, la cui energia è: E n = 1 2 2 me 4 n 2 h 2 Tipi di orbitali l = 0 l = 1 l = 2 l = 3 Orbitale s Orbitale p Orbitale d Orbitale f 17

Numeri quantici e orbitali n =1,2,3,..., l = 0,1,2,...,n 1 m l = l, (l 1),...,0,+(l 1),+l n = 1 l = 0 m l = 0 1 orbitale 1s n = 2 l = 0 m l = 0 1 orbitale 2s l = 1 m l = 0,±1 3 orbitali 2p n = 3 l = 0 m l = 0 1 orbitale 3s l = 1 m l = 0,±1 3 orbitali 3p l = 2 m l = 0,±1,±2 5 orbitali 3d n = 4 l = 0 m l = 0 1 orbitale 4s l = 1 m l = 0,±1 3 orbitali 4p l = 2 m l = 0,±1,±2 5 orbitali 4d l = 3 m l = 0,±1,±2,±3 7 orbitali 4f Numeri quantici e orbitali 18

Livelli energetici degli orbitali atomici dell idrogeno Per l atomo di idrogeno il valore dell energia di un dato orbitale dipende soltanto dal numero quantico principale n. Orbitali caratterizzati dallo stesso livello energetico (2s-2p, 3s-3p-3d, ecc.) sono detti DEGENERI. 4s 4p 4d 4f 3s 3p 3d energia 2s 1s 2p Livelli energetici degli orbitali atomici dell idrogeno Rappresentazione degli orbitali atomici ORBITA (meccanica classica) definita da un equazione matematica che ne determina completamente il tipo e la rappresentazione geometrica nello spazio ORBITALE (meccanica quantistica) definita da un equazione matematica complicata la funzione d onda non ha un significato fisico diretto 2 probabilità di trovare l elettrone nel punto considerato 19

Rappresentazione degli orbitali s dell atomo di idrogeno 2 probabilità per unità di volume 2 è chiamata densità di probabilità y z r dr x 2 dv = 2 4 r 2 dr = dp probabilità nel volume infinitesimo di guscio sferico compreso fra r e r+dr dp /dr = funzione di distribuzione della probabilità 20