F = q E + q v x B, dove v è la velocità di q. Il campo magnetico non agisce su una carica q ferma. Unità di misura: [E] = N/C = V/m, [B] = T.

Documenti analoghi
Produzione dei raggi X

Unità didattica 10. Decima unità didattica (Fisica) 1. Corso integrato di Matematica e Fisica per il Corso di Farmacia

Fenomeni quantistici

LA PRODUZIONE DEI RAGGI X

Capitolo 8 La struttura dell atomo

Spettroscopia. Spettroscopia

Esploriamo la chimica

Fisica delle Apparecchiature per Radioterapia, lez. III RADIOTERAPIA M. Ruspa 1

Spettro elettromagnetico

LE ONDE E I FONDAMENTI DELLA TEORIA QUANTISTICA

Lezione n. 13. Radiazione elettromagnetica Il modello di Bohr Lo spettro dell atomo. di idrogeno. Antonino Polimeno 1

L ATOMO SECONDO LA MECCANICA ONDULATORIA IL DUALISMO ONDA-PARTICELLA. (Plank Einstein)

RADIAZIONI ELETTROMAGNETICHE E PRODUZIONE DI RAGGI X

p e c = ev Å

Le onde elettromagnetiche

Teoria Atomica di Dalton

Problemi con l'atomo. Significato delle righe spettrali. Modello dell'atomo

Elettricità e Fisica Moderna

L energia assorbita dall atomo durante l urto iniziale è la stessa del fotone che sarebbe emesso nel passaggio inverso, e quindi vale: m

4. Lo spettro discreto: emissione e assorbimento di luce da parte di atomi stato fondamentale stati eccitati

3. (Da Veterinaria 2006) Perché esiste il fenomeno della dispersione della luce bianca quando questa attraversa un prisma di vetro?

FISICA APPLICATA 2 FENOMENI ONDULATORI - 1

Unità Didattica 3. L atomo di idrogeno

Le Caratteristiche della Luce

SPETTROSCOPIA UV-VIS LEZIONE 9

Interazione radiazione materia Dott.ssa Alessandra Bernardini

Produzione di un fascio di raggi x

L atomo. Il neutrone ha una massa 1839 volte superiore a quella dell elettrone. 3. Le particelle fondamentali dell atomo

Schema di un tubo a raggi X

INTERAZIONI DELLE RADIAZIONI CON LA MATERIA

CORSO DI LAUREA IN OTTICA E OPTOMETRIA

ATOMO. Legge della conservazione della massa Legge delle proporzioni definite Dalton

La teoria atomica moderna: il modello planetario L ELETTRONE SI MUOVE LUNGO UN ORBITA INTORNO AL NUCLEO

Theory Italiano (Italy)

S P E T T R O S C O P I A. Dispense di Chimica Fisica per Biotecnologie Dr.ssa Rosa Terracciano

I rivelatori. Osservare il microcosmo. EEE- Cosmic Box proff.: M.Cottino, P.Porta

Pinzani, Panero, Bagni Sperimentare la chimica Soluzioni degli esercizi Capitolo 9

L INDUZIONE ELETTROMAGNETICA. V Scientifico Prof.ssa Delfino M. G.

ONDE ELETTROMAGNETICHE

FAM. T 1) α ν. (e α ν T 1) 2. (con l ipotesi ν > 0) si ottiene

Si arrivò a dimostrare l esistenza di una forma elementare della materia (atomo) solo nel 1803 (John Dalton)

Unità 2. La teoria quantistica

Esercizio8: il lavoro di estrazione per il tungsteno é 4.49 ev. Calcolare la lunghezza d onda massima per ottenere effetto fotoelettrico [275.6 nm].

Esempi di esercizi per la preparazione al secondo compito di esonero

Esercizio8: il lavoro di estrazione per il tungsteno é 4.49 ev. Calcolare la lunghezza d onda massima per ottenere effetto fotoelettrico [275.6 nm].

Atomo. Evoluzione del modello: Modello di Rutherford Modello di Bohr Modello quantomeccanico (attuale)

5.4 Larghezza naturale di una riga

La radiazione elettromagnetica. aumento della frequenza n della radiazione aumento dell energia E della radiazione

ONDE ELETTROMAGNETICHE

Sulla superficie interna del guscio sferico (induzione totale) si avrà la carica indotta q distribuita uniformemente, quindi

Teoria Atomica Moderna. Chimica generale ed Inorganica: Chimica Generale. sorgenti di emissione di luce. E = hν. νλ = c. E = mc 2

COMPETENZE ABILITÀ CONOSCENZE. descrivere la. Comprendere ed applicare analogie relative ai concetti presi in analisi. struttura.

Fisica II - CdL Chimica. La natura della luce Ottica geometrica Velocità della luce Dispersione Fibre ottiche

Generalità delle onde elettromagnetiche

CRISI DELLA FISICA CLASSICA e FISICA DEI QUANTI Esercitazione

Misura del rapporto carica massa dell elettrone

Spettroscopia. 05/06/14 SPET.doc 0

Fisica atomica. Marcello Borromeo corso di Fisica per Farmacia - Anno Accademico

INTERAZIONE DELLA RADIAZIONE CON CON LA LA MATERIA. Dal punto di vista dell interazione con la materia le radiazioni IONIZZANTI si classificano in:

Radiazioni ionizzanti

Dipartimento di Fisica a.a. 2004/2005 Fisica Medica 2 Radiazioni X 11/3/2005

Il corpo nero e l ipotesi di Planck

2.1 (p. 37) Bohr descrisse un orbitale atomico come una traiettoria circolare seguita dall elettrone. Un orbitale è una

Lo Spettro Elettromagnetico

Le onde. Definizione e classificazione

13 ottobre Prof. Manlio Bellesi

Lezione 5 Moti di particelle in un campo magnetico

Onde e oscillazioni. Fabio Peron. Onde e oscillazioni. Le grandezze che caratterizzano le onde

Problema n. 1: L effetto Mössbauer

Trasmissione di calore per radiazione

L atomo di Bohr. Argomenti. Al tempo di Bohr. Spettri atomici 19/03/2010

LASER. Light Amplification by Stimulated Emission of Radiation. Introduzione. Assorbimento, emissione spontanea, emissione stimolata

Energia del campo elettromagnetico

La struttura della materia

n(z) = n(0) e m gz/k B T ; (1)

INTERFERENZA - DIFFRAZIONE

Che cosa è la luce? 1

Corso di Campi Elettromagnetici

Radiazione e Materia. Insegnamento di Chimica Generale CCS CHI e MAT. Scuola di Ingegneria Industriale e dell Informazione

Radiazione elettromagnetica

Misura del coefficiente di assorbimento di vari materiali in funzione dell'energia del fascio dei fotoni incidenti

Si intende la risposta di un materiale all esposizione alle radiazioni elettromagnetiche ed in particolare alla luce visibile.

Modelli atomici. Teoria atomica Dalton (1803) La materia non è continua, ma costituita da particelle.

Lezione 21 - Onde elettromagnetiche

Enrico Silva - diritti riservati - Non è permessa, fra l altro, l inclusione anche parziale in altre opere senza il consenso scritto dell autore

La Teoria dei Quanti e la Struttura Elettronica degli Atomi. Capitolo 7

TECNICHE SPETTROSCOPICHE

INTERAZIONE RADIAZIONE MATERIA


Nell'atomo l'energia dell'elettrone varia per quantità discrete (quanti).

- hanno bisogno di un mezzo elastico per propagarsi

Radiazioni. Produzione ed Assorbimento. Radiazioni elettromagnetiche. ! Raggi X e raggi γ Radiazioni corpuscolari. ! Raggi α, β, protoni, neutroni,...

La teoria del corpo nero

Convezione Conduzione Irraggiamento

Estrazione di elettroni da un metallo illuminato. Prime osservazioni Hertz 1857 Esperimento di Lenard 1902 Spiegazione teorica di Einstein

Atomi a più elettroni

ESERCIZI W X Y Z. Numero di massa Neutroni nel nucleo Soluzione

La radiazione infrarossa si trova nella parte dello spettro elettromagnetico tra le regioni del visibile e delle microonde. La porzione di maggiore

La radioattività. La radioattività è il fenomeno per cui alcuni nuclei si trasformano in altri emettendo particelle e/ radiazioneni elettromagnetiche.

Transcript:

CAMPI ELETTRICI E MAGNETICI La presenza di cariche modifica le proprietà dello spazio. Questa modifica viene quantificata assegnando due campi vettoriali: il campo elettrico E ed il campo magnetico B. Su una carica di prova q posta in una regione dello spazio che sia sede di E e B agisce una forza F data da F = q E + q v x B, dove v è la velocità di q. Il campo magnetico non agisce su una carica q ferma. Unità di misura: [E] = N/C = V/m, [B] = T. ONDE ELETTROMAGNETICHE Le leggi cui i campi E e B obbediscono prevedono che un campo elettrico variabile generi un campo magnetico variabile e che anche un campo magnetico variabile produca a sua volta un campo elettrico variabile. Questo meccanismo è alla base della propagazione delle onde elettromagnetiche (o.e.m.). Le o.e.m. sono costituite da campi elettrici e campi magnetici variabili, tra di loro perpendicolari, e che si propagano nello spazio nella direzione perpendicolare alle prime due. Si tratta di onde trasversali. La descrizione dei fenomeni coinvolti può essere espressa come sovrapposizione (Fourier) di oscillazioni sinusoidali (componenti armoniche) in quanto le leggi che governano questi fenomeni sono lineari. Le o.e.m. possono propagarsi anche nel vuoto. 1

Frequenza dell onda elettromagnetica La descrizione del comportamento delle o.e.m. risulta facilitata se se ne analizzano le componenti armoniche. In un assegnato punto dello spazio una componente armonica dell o.e.m. si scrive dandone le componenti di E e B in funzione del tempo t come E x (t) = E 0 cos (2 π t /T) = E 0 cos (2 π f t) ; B y (t) = B 0 cos (2 π f t), (1) da cui risulta che i campi elettrico e magnetico di un o.e.m. sono tra di loro perpendicolari ed oscillano allo stesso modo (ossia sono in fase). La quantità T è detta periodo ([T] = s) e dà la periodicità temporale dell oscillazione. Questo significa che per ogni intero k valgono E x (t + k T) = E x (t) e B y (t + k T) = B y (t). La quantità f definita come il reciproco di T f = 1/T è la frequenza ([f ] = s -1 = Hz). Le onde elettromagnetiche possono essere classificate in base alla loro frequenza (vedere la Tabella 1). Velocità di propagazione delle onde elettromagnetiche Le o.e.m. si propagano nel vuoto con la velocità c 3. 10 8 m/s (convenzioni metrologiche hanno posto c = 299 792 458 m/s esattamente). Si tratta della velocità con cui la luce si propaga nel vuoto. La velocità nei mezzi materiali è data da c m = c/n dove n è l indice di rifrazione del materiale. Si ha c m c poiché per l indice di rifrazione vale n 1. L uguaglianza vale per il vuoto e, approssimativamente, per l aria. Lunghezza d onda La lunghezza d onda λ definisce la periodicità spaziale di un onda ([λ] = m). Nel caso di una componente armonica di un o.e.m., il suo profilo spaziale ad un istante fissato sarà dato da E x (z) = E 0 cos (2 π z /λ) ; B y (z) = B 0 cos (2 π z / λ). (2) Per ogni numero intero k varranno E x (z + k λ) = E x (z) e B y (z + k λ) = B y (z). La seguente relazione generale, valida per ogni tipo di onde, λ = c T = c/f lega lunghezza d onda λ, velocità di propagazione c e periodo T (o, alternativamente, frequenza f ). Utilizzando tale relazione è possibile riclassificare le o.e.m. in base alla loro lunghezza d onda nel vuoto (vedere ancora la Tabella 1). A questo proposito risulta opportuno osservare che al variare del mezzo in cui l onda si propaga la frequenza f resta sempre la stessa mentre la lunghezza d onda cambia in 2

base alla relazione λ m = λ/n (n = indice di rifrazione). Pertanto in un mezzo la relazione fondamentale per le onde va scritta come segue λ m = c m T = c m /f e lega λ m = λ/n, lunghezza d onda nel mezzo, alla corrispondente velocità c m = c/n. Anche il periodo T non cambia passando da un mezzo ad un altro. Relazione tra le ampiezze di E e B nell onda elettromagnetica Le relazioni che governano le o.e.m. pongono vincoli tra le ampiezze dei campi E e B costituenti un onda. Tra i moduli E e B di questi campi deve valere (nel vuoto) la relazione E = c B. (3) Quindi, con riferimento alle relazioni (1) e (2), dove E 0 e B 0 sono rispettivamente le ampiezze di oscillazione di E e B, dovrà valere E 0 = c B 0. Densità di energia associata ai campi E e B Alla presenza dei campi E e B si associano rispettivamente le densità di energia w E e w B (si tratta di energia per unità di volume, si ha [w E ] = [w B ] = J/m 3 ) date da w E = ε 0 E 2 /2 ; w B = B 2 /(2 µ 0 ), dove ε 0 8.85418. 10-12 F/m è la costante dielettrica del vuoto e µ 0 = 4π. 10-7 H/m è la permeabilità magnetica del vuoto. Si può dimostrare che la velocità c delle o.e.m. è collegata alle costanti appena introdotte dalla relazione c = (ε 0 µ 0 ) -½. (4) In un o.e.m. esistono tanto E quanto B ed i loro moduli devono obbedire alla (3). Mediante la (3) e la (4) si può facilmente dimostrare che nel caso dell o.e.m. le densità di energia w E e w B di E e B sono uguali. Pertanto la densità totale w T può essere scritta come w T = w E + w B = 2 w E = 2 w B = ε 0 E 2 = B 2 /µ 0. Intensità di un onda elettromagnetica La densità di energia w T viene trasportata dall o.e.m. e viaggia con la sua stessa velocità c. Si definisce intensità I dell o.e.m. il prodotto w T c che dà la potenza trasportata dall onda che attraversa l unità di superficie ([I] = W m -2 ). Si può dimostrare (vedere il file onde3.pdf a pag. 17-18) che vale 3

I = w T c = E B/µ 0. L intensità I varia con il tempo in quanto sia E che B nell o.e.m. variano con il tempo. La quantità significativa dal punto di vista fisico è I*, il valore medio di I valutato su di un intervallo di tempo abbastanza lungo. Nel caso di un o.e.m. armonica (1) si può esprimere l intensità media in funzione delle ampiezze di oscillazione E 0 e B 0 come segue I* = E 0 B 0 /(2 µ 0 ). = E 0 2 (ε 0 /µ 0 ) ½ /2. Nel caso di una generica o.e.m., essa è decomponibile in tante o.e.m. armoniche di frequenze diverse. Se ne possono sommare le corrispondenti intensità medie per dare l intensità media complessiva. Nel caso della radiazione solare si ha I* 1400 W/m 2 come valore complessivo incidente sull alta atmosfera. Se la radiazione fosse monocromatica, a questo valore di intensità corrisponderebbe un ampiezza E 0 10 3 V/m. La quantità Z 0 = (µ 0 /ε 0 ) ½ viene detta impedenza del vuoto, ha le dimensioni di una resistenza e vale circa 377 Ω. Quantizzazione dell energia di un onda elettromagnetica: i fotoni In base alle precedenti relazioni l energia trasportata da un o.e.m. può variare con continuità, al variare di E 0 (o di B 0 ), di quantità piccole a piacere. La meccanica quantistica esclude questa possibilità. L energia di un o.e.m. può variare solo di quantità discrete (quanti di energia). In base alla meccanica quantistica un o.e.m. è schematizzabile come un insieme di particelle (fotoni) ciascuna delle quali - possiede una quantità di energia pari ad un quanto E fotone, - si muove con la stessa velocità c con cui viaggia la densità di energia. Questo modello si chiama teoria corpuscolare della radiazione elettromagnetica. Esso prevede altresì che il quanto di energia E fotone trasportato da un fotone dipenda dalla frequenza f della radiazione secondo la seguente relazione E fotone = h f = h c/λ (5) dove h, la costante di Planck, ha il valore h = 6.626. 10-34 J s. Dalla (5) discende che l energia E fotone è direttamente proporzionale alla frequenza f e, quindi, inversamente proporzionale alla lunghezza d onda λ. Dalla (5) si ottengono per E fotone valori di energia espressi in Joules (J). In questo contesto è comune esprimere le energie nell unità di misura pratica elettronvolt (ev). L elettronvolt è l energia potenziale posseduta da un protone che si trova ad un 4

potenziale elettrico di 1 V. Il valore della carica elementare e = +1.602. 10-19 C (carica posseduta da un protone) fornisce il fattore di conversione tra ev e J. Valgono le relazioni 1 ev = 1.602. 10-19 J ; 1 J = 6.242. 10 +18 ev ; h = 4.136. 10-15 ev s. Utilizzando la relazione (5) è possibile introdurre un ulteriore classificazione delle o.e.m. basata sui valori delle energie E fotone dei fotoni corrispondenti. Spettro delle onde elettromagnetiche Tabella 1 Le o.e.m. possono essere classificate in base alla frequenza lunghezza d onda valore dell energia dei fotoni corrispondenti. ------------------------------------------------------------------------------------------------------- Denominazione λ f E fotone ------------------------------------------------------------------------------------------------------- Onde radio > 10 cm < 3 GHz < 1.24. 10 5 ev Microonde 1 mm 10 cm 300 GHz 3 GHz 1.24. 10 3 ev 1.24. 10 5 ev Infrarosso 700 nm 1 mm 4.3. 10 14 Hz 300 GHz 1.77 ev 1.24. 10 3 ev Visibile 400 nm 700 nm 7.5. 10 14 Hz 4.3. 10 14 Hz 3.10 ev 1.77 ev Ultravioletto 100 nm 400 nm 3.0. 10 15 Hz 7.5. 10 14 Hz 12.4 ev 3.10 ev Raggi X, raggi γ < 100 nm > 3. 10 15 Hz > 12.4 ev ------------------------------------------------------------------------------------------------------- Nello spettro delle o.e.m. la porzione del visibile corrisponde a valori di λ compresi tra 400 nm e 700 nm e valori di E fotone compresi tra 1.8 ev e 3.1 ev circa. Vengono dette radiazioni ionizzanti le o.e.m. i cui fotoni hanno energia E fotone > 10 ev. Il valore di 10 ev corrisponde ad una frequenza f = 2.42. 10 15 Hz e ad una lunghezza 5

d onda λ = 124 nm. I raggi X e γ sono radiazioni ionizzanti. I raggi X sono 10 4 10 7 volte più energetici della radiazione visibile. I raggi γ, che hanno origine da fenomeni fisici localizzati in nuclei atomici, possono avere energie ben più alte. L unica differenza tra X e γ è la loro sorgente. Va precisato che l insieme di tutte le radiazioni ionizzanti non contiene solo i raggi X e γ, che costituiscono la parte ionizzante dello spettro delle o.e.m., ma anche la parte particellare, come ad esempio i neutroni, i protoni e le particelle alfa e beta. Le onde radio, la radiazione infrarossa e visibile sono radiazioni non ionizzanti. QUANTIZZAZIONE DEI LIVELLI ENERGETICI DI UN ATOMO L atomo di idrogeno Un atomo di idrogeno è composto da un elettrone e da un protone. In un modello classico l elettrone ruoterebbe attorno al protone descrivendo un orbita kepleriana. Consideriamo al momento un orbita circolare di raggio r. L atomo di idrogeno avrà un energia E data dalla somma dell energia cinetica e potenziale elettrica dell elettrone. Classicamente tale energia E è data da E = - e 2 /( 8 π ε 0 r ). (6) Dalla (6) si vede E che può assumere valori variabili con continuità in funzione del valore del raggio r il quale, a sua volta, può variare di quantità piccole a piacere. In realtà l atomo descritto dal modello classico non potrebbe esistere in quanto instabile. Infatti occorre tenere presente che ogni carica soggetta ad un moto accelerato emette energia sotto forma di o.e.m. (Bremsstrahlung). Secondo il modello classico l elettrone, in quanto animato da moto accelerato (accelerazione centripeta), perderebbe energia sotto forma di fotoni di Bremsstrahlung e finirebbe spiraleggiando sul nucleo (r 0). Questo è contrario all evidenza sperimentale. Invece la meccanica quantistica fornisce un modello dell atomo di idrogeno consistente con la realtà sperimentale. In questo modello l energia E dell atomo di idrogeno non può variare con continuità, ma può assumere solo un insieme di valori discreti (livelli energetici ammessi). Livelli di energia ammessi I livelli energetici ammessi sono normalmente classificati tramite il numero intero n detto numero quantico principale, il quale può assumere i valori 1, 2, 3, 4, ecc., ecc.. I corrispondenti livelli energetici E n permessi per l atomo di idrogeno sono dati dalla relazione E n = - 13.60 ev /n 2. (7) All aumentare di n l energia aumenta (in senso algebrico) e così pure il raggio r n dell orbita. 6

Orbitali Le possibili orbite (da non intendersi in senso kepleriano) degli elettroni si chiamano orbitali ed al variare di n vengono denominate secondo la seguente tabella. ------------------------------------------------------------------------------------------------------- numero quantico principale n orbitale 1 K 2 L 3 M 4 N 5 O ecc Al valore n = 1 si associa il valore di energia più basso, corrispondente a quello che viene denominato stato fondamentale dell atomo. L energia E 1 dello stato fondamentale dell atomo di idrogeno vale, in base alla (7), -13.60 ev. Tutti gli altri stati hanno energie maggiori di E 1. Quelli con energie negative sono denominati stati eccitati. Si tratta pur sempre di stati legati, essendo l elettrone vincolato a muoversi attorno al protone. Esistono anche stati con energie positive, ma questi non sono stati legati. In questi casi l elettrone ha energia sufficiente ad abbandonare il protone: si dice che l elettrone è libero dal protone e che l atomo è ionizzato. Noto il valore di energia dello stato fondamentale E 1 = -13.60 ev, dalla (6) si può ricavare l espressione per i valori dei raggi ammessi come r n = - e 2 n 2 /( 8 π ε 0 E 1 ). Per n = 1 si ottiene r 1 5.29. 10-11 m, denominato raggio dell atomo di idrogeno (... ricordarsi di convertire E 1 in Joules!). Quindi si ha r n = n 2 r 1 7

Transizioni di livello L emissione o l assorbimento di fotoni da parte di un atomo può avvenire soltanto durante una transizione, cioè in corrispondenza di una variazione di n (tradotto classicamente, in corrispondenza di una variazione di raggio r). Se n aumenta l energia aumenta e questo corrisponde all assorbimento di un fotone da parte dell atomo. Viceversa se n diminuisce, l energia diminuisce e questo corrisponde all emissione di un fotone che contiene l energia persa. Comunque l energia dell atomo non può scendere al di sotto del valore di energia dello stato fondamentale. La transizione da un livello E n ad un livello E m si chiama - eccitazione dell atomo se E m > E n, - diseccitazione dell atomo se E m < E n, - ionizzazione dell atomo se l energia finale è nulla o positiva (E m 0). L energia del fotone emesso o assorbito in una transizione dallo stato n allo stato m è eguale al valore assoluto della differenza di energia E m - E n tra i livelli, cioè E fotone = h f = E m - E n (8) E fotone pertanto risulta anch essa quantizzata. Livelli energetici in un atomo di idrogeno. Sono mostrate in figura una transizione di eccitazione (1 2) ed una di diseccitazione (3 2) ed è indicata l energia del rispettivo fotone (assorbito o emesso). Dalla figura risulta altresì che l energia di ionizzazione dell atomo di idrogeno è pari a 13.6 ev. Atomi complessi Numero atomico Il numero atomico Z rappresenta il numero di protoni presenti nel nucleo di un atomo. Poiché la carica di un protone è eguale in valore assoluto alla carica di un 8

elettrone (ma è positiva), la carica del nucleo di un atomo avente numero atomico Z vale +Ze. Il numero atomico Z definisce le proprietà chimiche dell atomo e la sua posizione nel sistema periodico degli elementi. Atomi complessi - Livelli energetici e orbitali Anche l energia degli elettroni degli atomi complessi è quantizzata su più livelli. L energia dei vari livelli è ancora definita sulla base di un numero quantico principale n e gli orbitali relativi sono ancora designati con le lettere K, L, M ecc..., anche se in generale i valori esatti delle varie energie sono difficili da calcolare. Esistono delle regole che determinano il numero massimo di elettroni che possono avere lo stesso n, per cui all interno dell atomo gli elettroni si distribuiranno su orbitali diversi. In particolare nell orbitale K possono esistere solo 2 elettroni. La loro energia E 1 è valutabile approssimativamente con la stessa espressione (7) per l energia dei livelli dell idrogeno, calcolata per n = 1 e moltiplicata per un fattore Z 2 E 1 13.6 ev Z 2 / 1 2. (9) Esempio: livelli e orbitali del tungsteno (W) Il tungsteno ha numero atomico Z = 74. Nello stato fondamentale i 74 elettroni si distribuiscono nei 5 orbitali K, L, M, N, O corrispondenti ai 5 valori del numero quantico principale n da 1 a 5. Gli elettroni K, i più interni (n=1), hanno energia E K = E 1 = -69.5 kev mentre gli elettroni O, i più esterni (n=5), hanno energia E O = -6 ev. La formula (9) per Z = 74 dà E 1 = -74.5 kev, valore che differisce da quello esatto in quanto la (9) è solo un approssimazione. Produzione di raggi X Se facciamo oscillare un elettrone di moto armonico con un assegnata frequenza, esso genera un o.e.m. della stessa frequenza. Più in generale viene prodotta un o.e.m. ogni qualvolta si sottopone una carica elettrica ad un accelerazione. Ciò avviene quindi non solo nei moti armonici ma anche in quelli dove una carica elettrica percorre orbite circolari o altre traiettorie dotate di accelerazione. L urto violento di un elettrone contro un metallo produce sull'elettrone una fortissima decelerazione poiché la sua velocità v scende in un tempo brevissimo da un valore elevato a valori molto inferiori, prossimi anche a zero. Avremo pertanto un emissione di o.e.m. con energia massima pari all energia cinetica posseduta dall elettrone prima dell urto. Il processo di emissione di o.e.m. da parte di carica decelerata viene denominato con il termine tedesco di Bremsstrahlung. I Raggi X sono onde elettromagnetiche di lunghezza d onda λ 0.01 Å 10 Å (1 Å = 10-10 m = 10-8 cm) frequenza f 3. 10 20 Hz 3. 10 17 Hz energia di un fotone h f 1.24 MeV 1.24 kev 9

Il range sopraindicato per lunghezze d onda/frequenze/energie vale per i cosiddetti raggi X duri. Secondo un antica nomenclatura sono considerati raggi X molli quelli con valori di λ compresi nell intervallo 10 Å 100 Å ed, infine, raggi X limite quelli con valori di λ compresi nell intervallo 100 Å 1000 Å, con estremo superiore confinante con l ultravioletto. I raggi X vengono prodotti da una rapida decelerazione di un fascio di elettroni di energia maggiore di circa 5 kev. 1 ev = energia acquistata da un e - accelerato da una ddp di 1 V, quindi 1 ev = 1.602. 10-19 C. 1 V = 1.602. 10-19 J. L energia cinetica E c di un elettrone (massa m e 9.11. 10-31 kg) è espressa dalla formula (classica) E c = ½ m e v 2 da cui si ricava la velocità v = (2 E c /m e ) ½. Per un elettrone di energia E c di 1 ev si ha v = (2. 1.602. 10-19 J / 9.11. 10 31 kg) ½ 6. 10 5 m/s. Per elettroni di E c = 10 kev si ha v 6. 10 7 m/s, che è circa il 20% della velocità della luce c 3. 10 8 m/s. Al di sopra di energie dell ordine della decina di kev non si può più usare la formula classica per calcolare la v dell elettrone. Si deve apportare la correzione relativistica alla massa dell elettrone che diventa m e = m e / (1 v 2 /c 2 ) ½. In diagnostica le E c vanno usualmente da 20 kev a 200 kev. In radioterapia si può superare il MeV, un energia tipica dei raggi γ. Risulta opportuno ricordare che la distinzione tra raggi X e raggi γ non è tanto basata sull energia quanto sull origine fisica del fotone: un fotone è X se ha origine da fenomeni fisici esterni al nucleo mentre è γ se ha origine da processi fisici che hanno luogo all interno del nucleo dell atomo. Tubo radiogeno Per produrre raggi X si invia un fascio accelerato di elettroni contro un anodo di tungsteno (W, Z=74) o di altro elemento con numero atomico Z alto (... o abbastanza alto). Nella diagnostica tradizionale si utilizza il tungsteno mentre, laddove si richieda l attraversamento di modesti spessori di tessuti e la loro differenziazione (mammografia), si utilizzano anodi con molibdeno (Mo, Z=42) o rodio (Rh, Z=45). 10

Gli elettroni vengono emessi per effetto termoionico dal filamento catodico riscaldato da un opportuna corrente e vengono accelerati dall elevata d.d.p. esistente tra catodo e anodo. Essi colpiscono l anodo e solo quelli (1%) che interagiscono con la zona ad elevata intensità di campo elettrico dei nuclei di W vengono decelerati bruscamente (vedi figura seguente) e la loro energia cinetica si trasforma in energia elettromagnetica nella regione dei raggi X (parte di Bremsstrahlung dello spettro di emissione). Le interazioni degli elettroni incidenti con gli elettroni degli orbitali esterni generano radiazioni di bassa energia che vengono rapidamente convertite in calore. Questo succede nel 99% dei casi. L efficienza energetica del tubo radiogeno è molto bassa. Una parte degli elettroni incidenti, se sufficientemente energetici, ionizza gli atomi di W rimuovendo elettroni dall orbitale K. Le lacune ivi create vengono subito riempite da elettroni situati in orbitali più esterni (L e M). Nel caso del W le transizioni sull orbitale K avvengono con emissione di fotoni X a 58.5 kev ed a 69.5 kev. Le strette righe presenti nello spettro di emissione sono dovute ad emissioni di questa natura e la loro collocazione energetica è funzione della composizione chimica dell anodo (si spostano passando dal W ad un altro elemento). Solo l 1% circa degli elettroni incidenti finisce per produrre raggi X. 11

La figura successiva mostra lo spettro dei raggi X (parte continua di Bremsstrahlung + righe di emissione caratteristiche del W) dopo filtraggio alle basse energie mediante uno spessore di 2.5 mm di Al (beam hardening). 12