Connettività cerebrale funzionale ed effettiva

Documenti analoghi
Stimolazione Magnetica Transcranica

Che cosa è l imagery. imagery?

Risultati: Comportamento Statico e Dinamico Del Sistema Muscolo

Incertezza di Misura: Concetti di Base

AMOS Abilità e motivazione allo studio

Elettroencefalogramma

AXO - Architettura dei Calcolatori e Sistema Operativo. organizzazione strutturata dei calcolatori

Corso di formazione ambientale Introduzione all utilizzo dei modelli previsionali per la valutazione dei livelli di campo elettromagnetico

Il Metodo Cinematico lineare, comunemente anche detto Metodo della Corrivazione, si basa su alcune considerazioni:

Disegni di studio nella ricerca epidemiologica

Importanza delle incertezze nelle misure fisiche

Acquisizione Dati. Introduzione

Che cos è la Psicologia sociale? Dott.ssa Daniela Cipollone

Tecniche di imaging di diffusione molecolare con risonanza magnetica (diffusion MRI)

CORSO DI TECNICA ED ECONOMIA DEI TRASPORTI A.A DIAGRAMMI DEL MOTO SEMPLIFICATI

La Chimica nella Scuola. a cura della

Statistica Applicata all edilizia Lezione 3: i numeri indice

I Bistabili. Maurizio Palesi. Maurizio Palesi 1

VISIONE LATERALE DEL CERVELLO

STATISTICHE DESCRITTIVE Parte II

LA LEGGE DI COULOMB PER I MAGNETI

Il Sistema Nervoso. Immagini Invito alla Natura - Paravia SCIENZE NATURALI SCUOLA SECONDARIA DI 1 GRADO DOCENTE - ALICE DE SIMONE

UNITA DI MISURA LOGARITMICHE

Percorsi di lettura dei dati, individuazione delle priorità

L'ATMOSFERA un involucro eccezionale

Intelligenza. Germano Rossi ISSR 2011/12

Prova di Esame - Rete Internet (ing. Giovanni Neglia) Lunedì 24 Gennaio 2005, ore 15.00

CURRICOLO DI GEOGRAFIA

Capacità: Analizzare un problema semplice. Valutare la congruenza dei risultati con i dati e le informazioni iniziali.

CURRICOLO VERTICALE MATEMATICA RELAZIONI/ DATI E PREVISIONI/ MISURA

La preparazione fisica per gli atleti con disabilità nel sitting volley. Carlo Varalda

Metodologie informatiche per la chimica

PARTE SECONDA: LA MACROECONOMIA MD 06 I DATI MACROECONOMICI

Risoluzione di problemi ingegneristici con Excel

ESERCIZIO SOLUZIONE. 13 Aprile 2011

Rapporti tra malnutrizione e salute

PON GOVERNANCE E AZIONI DI SISTEMA ASSE E

LETTI PER VOI: L uso delle tecniche di matching nella valutazione di efficacia di un farmaco. Cinzia Di Novi. Università Ca Foscari di Venezia,

Il confronto fra medie

FluNews Rapporto Epidemiologico Settimanale

SCUOLA PRIMARIA CURRICOLO SCIENZE DELIBERATO ANNO SCOL. 2015/2016

PERCORSO DIDATTICO SPECIFICO PER ALUNNI CON DSA

RELAZIONE RESTITUZIONE DATI INVALSI 2014/2015- PROVA NAZIONALE

La separazione elettrolitica di un metallo. Scheda di Laboratorio

Il Metodo Scientifico

Corso di Laurea in Scienza dei Materiali Laboratorio di Fisica II ESPERIENZA DC1. Circuiti in corrente continua

Tecniche di imaging di diffusione molecolare con risonanza magnetica (diffusion MRI)

La corrente alternata

Microsoft Excel. Nozioni Avanzate

Analisi di parametri cinematici e situazioni di traffico in ambito urbano finalizzate al calcolo delle emissioni

CAPITOLO 4. L ambiente esterno

AGENDA DELLA PROGRAMMAZIONE DIDATTICA DI SOSTEGNO

Come si progetta un circuito Perché simulare un circuito Cosa vuol dire simulare un circuito Il Simulatore Pspice Pacchetti che contiene Pspice

BIOMECCANICA A A P r o f. s s a M a r i a G u e r r i s i D o t t. P i e t r o P i c e r n o

Punto d intersezione delle altezze nel triangolo

CAMPIONAMENTO - ALCUNI TERMINI CHIAVE

Corso di laurea in Scienze Motorie Corso di Statistica Docente: Dott.ssa Immacolata Scancarello Lezione 15: Metodi non parametrici

STATISTICA DESCRITTIVA. Elementi di statistica medica GLI INDICI INDICI DI DISPERSIONE STATISTICA DESCRITTIVA

Risonanza magnetica: Codifica spaziale del segnale.

Competenze di ambito Prerequisiti Abilità / Capacità Conoscenze Livelli di competenza

quadrilatero generico parallelogramma rombo rettangolo quadrato

UFFICIO SCOLASTICO PER LA LOMBARDIA. Uff. VIII^ - Formazione e Aggiornamento del Personale della Scuola

Scuola di specializzazione in

MODELLO PER LA CERTIFICAZIONE DELLE COMPETENZE al termine della scuola primaria e secondaria di 1^ grado. anno scolastico 20 /20

Analisi Univariata e Multivariata dei Dati Economici Bruno Ricca (Dipartimento di studi su risorse, impresa, ambiente e metodologie quantitative)

Disegni sperimentali

Ultima verifica pentamestre. 1)definizione di miscuglio, soluzione, composto, elemento, molecola ( definizione importantissima!!!!!!!!

I S T I T U T O T E C N I C O I N D U S T R I A L E S T A T A L E V E R O N A

LA PARTECIPAZIONE DEGLI ALUNNI CON BISOGNI EDUCATIVI SPECIALI E/O DISABILITÀ ALL ISTRUZIONE E FORMAZIONE PROFESSIONALE SINTESI DELLA POLITICA

Gli indicatori del RAV: fonti e tipologia di informazioni

Sistema DANTE. Scheda prodotto SISTEMA DANTE

Correlazione. Daniela Valenti, Treccani Scuola 1

ISTITUTO COMPRENSIVO MEZZOLOMBARDO PIANI DI STUDIO D ISTITUTO SCIENZE MOTORIE E SPORTIVE

OBIETTIVI MINIMI CLASSI PRIME

Progetto DSA: Guida al metodo di studio

Controllo Digitale - A. Bemporad - A.a. 2007/08

COSTRUZIONE DI UN VOLTMETRO A DIVERSE PORTATE; MISURA DELLA RESISTENZA INTERNA E VARIAZIONE DELLA PORTATA DI UN VOLTMETRO

Programmazione annuale A.S

Controlli Automatici e Teoria dei Sistemi Esempi di sistemi dinamici

Modello matematico di un sistema fisico

PERCORSO DIDATTICO SPECIFICO PER ALUNNI CON DSA 1 Anno Scolastico 2012/2013

Liceo Scientifico Rosetti San Benedetto del Tronto DATI INVALSI 2015

3.Visione_03 Le vie visive e la visione cromatica

CONCETTI E ARCHITETTURA DI UN SISTEMA DI BASI DI DATI

ANALISI A PRIORI DI UNA SITUAZIONE - PROBLEMA

Distribuzioni campionarie. Antonello Maruotti

INDICE capitolo 1 Anatomia funzionale del sistema nervoso capitolo 2 Neuroni e cellule associate capitolo 3 Potenziali di riposo e d'azione

Torino 20 marzo 2013 Corso di Metrologia applicata alla Meteorologia

CURRICOLO DI GEOGRAFIA

ISTITUTO TECNICO INDUSTRIALE G. M. ANGIOY Via Principessa Mafalda Sassari - e.mail

Architetture di rete. 4. Le applicazioni di rete

Pericolosità sismica Svizzera. Quando, dove e con quale frequenza si verificano determinate scosse in Svizzera?

la struttura di una teoria

L AUTOVALUTAZIONE CHE CONVIENE: A TUTTI

UDA. Argomento: IL SISTEMA NERVOSO. Classe: II ITIS. con indicazioni per i BES

ITCS Erasmo da Rotterdam. Anno Scolastico 2014/2015. CLASSE 4^ M Costruzioni, ambiente e territorio

METODOLOGIA SPERIMENTALE - domande stimolo, - formulazione di ipotesi con discussione collettiva, - verifica sperimentale, - conclusioni.

Classe III specializzazione elettronica. Sistemi automatici

RESTITUZIONE DATI INVALSI SCUOLA PRIMARIA

ANALISI DEI RISULTATI INVALSI 2014 ISTITUTO COMPRENSIVO D. SPADA, SOVERE (BG)

Transcript:

Connettività cerebrale funzionale ed effettiva Alcuni metodi per lo studio in vivo nell uomo Ing. Lorenzo Sani E-mail: lorenzo.sani@bioclinica.unipi.it Laboratorio di Biochimica Clinica e Biologia Molecolare Clinica Facoltà di Medicina, Università di Pisa Materiale didattico: www.bioclinica.unipi.it/lezioni/bioingegneria segreteria@bioclinica.unipi.it www.ing.unipi.it Prenotazione Esami

Introduzione I neuroni e le popolazioni di neuroni non funzionano come entità isolate ma interagiscono tra loro attraverso connessioni afferenti ed efferenti, in modo che i diversi compiti sensoriali, motori e cognitivi possano essere realizzati. Gli studi di connettività cerebrale hanno lo scopo di descrivere la forza funzionale di tali interazioni (Barry Horwitz, 2003) Metodi utilizzati per misurare la connettività cerebrale tra le diverse regioni cerebrali metodi basati su misure microscopiche (single or multi unit microelectrode recordings) metodi basati su misure macroscopiche (metodi di esplorazione funzionale in vivo del cervello) metodi elettrici-magnetici (EEG, ERP, MEG) metodi emodinamici-metabolici (PET, fmri)

Introduzione Negli studi PET/fMRI, per trovare quali regioni del cervello sono coinvolte in determinate funzioni cognitive o senso-motorie, esistono due diverse strategie di analisi dei dati funzionali Paradigma di sottrazione: si basa sulla nozione di segregazione (o specializzazione) funzionale. Si confrontano tra loro i dati funzionali ottenuti in due diverse condizioni sperimentali: svolgimento del compito e controllo. Le aree dove la differenza tra i valori del segnale è grande nelle due condizioni rappresentano le regioni cerebrali nelle quali lo svolgimento del compito ha prodotto variazioni significative nell attività neurale Lo studio dell attività cerebrale con il paradigma di sottrazione fornisce indicazioni su dove le informazioni sono elaborate nel cervello umano, ma non dice niente su come le diverse regioni cerebrali comunicano ed interagiscono tra loro. Per comprendere meglio come il cervello elabora le informazioni è necessario conoscere le interazioni tra le aree cerebrali attivate

Introduzione Paradigma di covarianza: si basa sulla nozione di integrazione funzionale. Si ipotizza che allo svolgimento di un determinato compito corrispondano variazioni dell attività neurale in un insieme di regioni cerebrali che interagiscono tra loro. L insieme di tali regioni le cui attività sono tra loro correlate costituisce un circuito neurale funzionale che permette lo svolgimento del compito considerato. A compiti diversi corrispondono circuiti neurali diversi. Studiando la covarianza dell attività neurale tra diverse aree cerebrali si trovano quali aree costituiscono i nodi del circuito neurale relativo al compito svolto e come le attività di questi nodi sono tra loro correlate Dato che i metodi di esplorazione funzionale del cervello permettono di ottenere dati contemporaneamente da più regioni cerebrali, sono ideali per l utilizzo del paradigma di covarianza, cioè per l analisi dei circuiti neurali

Definizioni di Connettività Cerebrale Connettività Anatomica numero di assoni che da una regione A vanno ad una regione B per unità di area di B; si riferisce ai collegamenti anatomici tra le diverse popolazioni di neuroni Connettività Funzionale correlazione temporale tra eventi neurofisiologici distanti spazialmente (Karl J. Friston, 1993) Connettività Effettiva l influenza che un sistema neurale, in maniera sia diretta che indiretta, esercita su un altro sistema neurale (Karl J. Friston, 1994)

Strategie di analisi dei dati funzionali Segregazione (specializzazione) funzionale Integrazione funzionale Connettività funzionale Connettività effettiva

Connettività Anatomica La conoscenza della connettività anatomica è importante perché fornisce vincoli biologici plausibili per i modelli neurali che si utilizzano nello studio della connettività effettiva Il cervello contiene circa 100 109 cellule nervose; la corteccia contiene circa 30 109 neuroni e 1 000 000 109 connessioni; il numero di possibili circuiti neurali è circa 10^(109) Differenza delle connessioni: eccitatorie e inibitorie Plasticità delle connessioni: le reti neurali si riarrangiano di continuo (Donad O. Hebb) La connettività cerebrale, sia anatomica che funzionale, è altamente plastica: si adatta continuamente ai cambiamenti, per esempio, durante lo sviluppo e l apprendimento oppure in risposta alle malattie

Connettività Funzionale ed Effettiva Connettività Funzionale Connettività Effettiva Descrizione della distribuzione dell attività neurale Spiegazione delle origini dell attività neurale Stima della correlazione temporale tra l attività delle diverse aree cerebrali Stima dell influenza che un area cerebrale esercita su un altra area cerebrale Approccio model free Approccio model based (richiede un modello neurale causale, basato su relazioni di causa-effetto) Descrizione di cosa fa il cervello Teoria di come il cervello funziona

Connettività Funzionale Analisi di serie temporali estratte da dati fmri: viene calcolato il coefficiente di correlazione tra le serie temporali relative a voxel estratti da diverse regioni cerebrali (fcmri: functional connectivity MRI) Si considera la serie temporale estratta da un voxel di riferimento oppure la serie temporale media estratta da un insieme di voxel di riferimento (regione seed) e si calcola il coefficiente di correlazione tra questa e le serie temporali estratte da tutti gli altri voxel del cervello Seed = Left MT Seed = Right MT Z score +26.0 +8.5-8.5 x=-43 z=5 z=2 x=41-26.0 p < 10-12

Connettività Funzionale Biswal nel 1995 ha osservato che il coefficiente di correlazione tra gli andamenti temporali del segnale BOLD è significativo (>0.35) tra le aree motorie primarie (M1) e l area motoria supplementare (SMA) (compito motorio di finger tapping bilaterale) Nelle serie temporali estratte dai voxel delle aree funzionalmente connesse sono presenti fluttuazioni a bassa frequenza (<0.1 Hz) del segnale BOLD con un alto grado di correlazione (coerenza, sincronismo) temporale Nel lavoro di Cordes del 2001 si cerca il contributo al coefficiente di correlazione delle varie frequenze: viene effettuata un analisi spettrale delle serie temporali estratte dai voxel del cervello per trovare quali frequenze contribuiscono alla connettività funzionale tra aree cerebrali diverse (fluttuazioni a bassa frequenza) e quali frequenze contribuiscono al rumore fisiologico (respiratorio e cardiaco) Banda delle basse frequenze: 0 0.1 Hz connettività funzionale Banda delle frequenze respiratorie: 0.1 0.5 Hz rumore fisiologico Banda delle frequenze cardiache: rumore fisiologico 0.6 1.2 Hz

Connettività Funzionale fmri: svolgimento del compito uditivo e immagini di attivazione cerebrale fcmri: condizioni di riposo e immagini di connettività funzionale fmri: svolgimento del compito motorio e immagini di attivazione cerebrale fcmri: condizioni di riposo e immagini di connettività funzionale

Connettività Funzionale Contributo delle varie frequenze al coefficiente di correlazione: Corteccia uditiva Corteccia motoria Arteria carotidea Le acquisizioni fcmri richiedono un TR basso (TR = 250 400 msec), cioè un alta frequenza di campionamento per evitare l aliasing delle armoniche cardiache e respiratorie nella banda delle basse frequenze relativa alla connettività funzionale Nel preprocessing dei dati viene effettuato un filtraggio passa-basso delle serie temporali con frequenza di taglio ~ 0.1 Hz per eliminare i contributi del rumore fisiologico (respiratorio e cardiaco) Sequenze EPI con un TR così basso consentono di acquisire un numero limitato di fette del cervello e/o richiedono l uso di un Flip Angle basso (FA = 35 50 )

Connettività Funzionale ed Effettiva Connettività funzionale r = correlazione temporale r A B r Connettività effettiva influenza diretta A B

Limiti della connettività funzionale La correlazione temporale (connettività funzionale) tra due diverse aree cerebrali può essere dovuta a molte cause e perciò può non riflettere una influenza diretta (connettività effettiva) significativa tra tali aree Le due regioni corticali A e B ricevono segnali d ingresso comuni provenienti da una terza regione C A r B C La correlazione temporale tra A e B è causata da un ingresso comune C, perciò non deriva da una influenza diretta tra tali due aree

Limiti della connettività funzionale Le due regioni corticali A e B sono indirettamente connesse tra loro C A r B La correlazione temporale tra A e B è causata da una connessione indiretta, perciò non deriva da una influenza diretta tra tali due aree Con la connettività funzionale non si può sapere se tra le due aree cerebrali di interesse è presente o meno una influenza diretta: per stabilire questo bisogna studiare la connettività effettiva tra A e B

Connettività effettiva i Rappresenta l effetto (influenza) che l attività di una regione cerebrale esercita sull attività di un altra regione cerebrale Ci dice quali aree cerebrali sono tra loro connesse e come sono connesse j aij aij = parametro che rappresenta l interazione (accoppiamento, connessione) tra l attività nella regione i e l attività nella regione j Il suo valore rappresenta la forza funzionale (cioè la connettività effettiva) della connessione anatomica tra le due regioni i, j La determinazione della connettività effettiva richiede l uso di un modello neurale causale, nel quale vengono specificate le regioni cerebrali e le connessioni che interessano, spesso vincolate da dati neuroanatomici L insieme dei valori delle connettività effettive calcolate definisce il circuito neurale funzionale che corrisponde al compito considerato

Definizione del modello del sistema (Cervello) Ad ognuna delle n regioni cerebrali considerate è associata una diversa variabile di stato: zi(t) Il valore di zi(t) rappresenta l attività sinaptica neuronale della regione i all istante t Le varie regioni cerebrali interagiscono tra loro Lo stato globale del modello è descritto dalle n variabili di stato: z1 (t ) z (t ) = z n (t ) La dinamica del modello è descritta dalle variazioni nel tempo delle variabili di stato: z 1 dz = z = dt z n

Definizione del modello del sistema (Cervello) Equazioni di stato del modello: z 1 f1 ( z1...z n, u, θ 1 ) = z n f n ( z1...z n, u, θ n ) z = F ( z, u, θ ) u = ingressi del modello (corrispondono agli stimoli relativi alle condizioni sperimentali); θi = parametri del modello (specificano il tipo delle interazioni tra le varie regioni cerebrali)

Connettività effettiva: quale modello matematico? Esempio di modello dinamico lineare: Equazione di stato della regione 1: Input u1 z 1 = a11z1 + a12 z 2 + c11u1 Input u2 c11 In forma matriciale: c22 a12 a11 regione 1 z1(t) a21 regione 2 z2(t) A = connettività intrinseche C = influenza degli ingressi esterni (connettività estrinseche) a22 z = Az + Cu Parametri del modello: θ = {A, C} z 1 a11 a12 z1 z = a a z 2 21 22 2 c11 0 + 0 c 22 Comportamento lineare: gli ingressi non possono influenzare direttamente il valore (forza) delle connessioni intrinseche u1 u 2

Connettività effettiva: quale modello matematico? Esempio di modello dinamico non lineare: Equazione di stato della regione 1: Input u1 Input u2 b212 c11 z 1 = a11z1 + a12 z 2 + u 2 b122 z 2 + c11u1 In forma matriciale: z = Az + ubz + Cu c22 a12 a11 regione 1 z1(t) a21 regione 2 z2(t) a22 0 b122 z1 z 1 a11 a12 z = a a + u 2 2 21 22 0 0 z 2 Parametri del modello: θ = {A, B, C} c11 0 + 0 c 22 u1 u 2

Connettività effettiva: quale modello matematico? Esempio di modello dinamico non lineare: Equazione di stato della regione 1: Input u1 Input u2 b212 c11 z 1 = a11z1 + a12 z 2 + u 2 b122 z 2 + c11u1 In forma matriciale: z = Az + ubz + Cu c22 a12 a11 regione 1 z1(t) a21 regione 2 z2(t) a22 Parametri del modello: θ = {A, B, C} A = connettività intrinseche B = connettività indotte C = influenza degli ingressi esterni (connettività estrinseche) Comportamento non lineare: gli ingressi possono influenzare direttamente il valore (forza) delle connessioni intrinseche

Dynamical Causal Modeling (DCM) E un modello dinamico, causale e non lineare per l analisi della connettività effettiva cerebrale: permette di indagare come le varie aree cerebrali interagiscono tra loro Comprende un modello neurale per l interazione tra le diverse aree cerebrali ed un modello emodinamico che tiene conto di come l attività sinaptica neuronale (z) viene trasformata nel segnale BOLD (y) Le attività sinaptiche neuronali z del modello neurale non sono direttamente misurabili con l fmri Input u c1 b23 a12 activity z1(t) g activity z2(t) g y y bold signal activity z3(t) g y neuronal model hemodynamic model

Dynamical Causal Modeling (DCM) E un modello: ingressi, stati interni, uscite che descrive il cervello come un sistema a più ingressi e più uscite (MIMO) Gli ingressi (u) corrispondono agli stimoli relativi alle condizioni sperimentali Le variabili di stato comprendono sia le variabili neurali (z) che quelle emodinamiche Le uscite (y) sono le grandezze emodinamiche (segnale BOLD calcolato dal modello) nelle regioni cerebrali considerate Ci sono due classi di ingressi (perturbazioni): Stimoli esterni: esercitano una influenza diretta sull attività dei nodi (regioni cerebrali) Ingressi contestuali: modificano il valore (forza) delle interazioni (connessioni) tra i nodi (es. tempo, attenzione)

Dynamical Causal Modeling (DCM) Il modello emodinamico yi = g (z i, v i, q i ) i = regione cerebrale considerata z = attività neurale della regione cerebrale considerata calcolata dal modello v = volume del sangue venoso q = concentrazione di deossiemoglobina Y = intensità del segnale BOLD calcolato dal modello DCM è utilizzato per rilevare i cambiamenti nella connettività effettiva imposti dal compito (cioè dagli ingressi, dalle perturbazioni): le equazioni del modello schematizzano l influenza che gli ingressi e l attività in una regione sorgente hanno sull attività in una regione bersaglio

Dynamical Causal Modeling (DCM) L obiettivo del DCM è di stimare i parametri neurali del modello (A, B, C) in modo che i segnali BOLD calcolati dal modello (y) siano più simili possibile ai segnali BOLD reali misurati Esempio relativo a due regioni cerebrali blu: segnali BOLD reali misurati rosso: segnali BOLD calcolati dal modello (modellizzazione DCM)

Dynamical Causal Modeling (DCM) Comporta l utilizzo di un grande numero di parametri: sebbene sia un modello realistico implica difficoltà di soluzione È necessario stimare i parametri utilizzando dei vincoli (o meglio delle conoscenze a priori sui parametri stessi) sfruttando le conoscenze neuroanatomiche del cervello I parametri neurali di questo modello si dividono in tre classi: aij = parametri che rappresentano l interazione (accoppiamento, connessione) tra gli stati interni (connettività intrinseche) bij = parametri (bilineari) che rappresentano l influenza degli ingressi contestuali (uj) sulle interazioni tra gli stati interni (connettività indotte) cij = parametri che rappresentano l influenza diretta degli ingressi (stimoli) esterni (ui) sull attività (zi) degli stati interni (nodi, regioni cerebrali) (connettività estrinseche)

DCM: il modello neurale Ingresso contestuale a45 ż4 = a44z4 + (a42 + u2b242)z2 + a45z5 a54 ż5 = a55z5 + a53z3 + a54z4 a35 2 b23 a42 Set u2 2 b42 ż2 = a22z2 + a21z1 + (a23 + b223u2)z3 a53 Stimolo u1 c11 a 21 ż1 = a11z1 + c11u1 a 23 ż3 = a33z3 + a35z5 Connettività intrinseche: aij Connettività indotte: bij Connettività estrinseche: cij z = Az + ubz + Cu Stimolo esterno

z3 DCM: esempio di modello dinamico lineare z4 z = Az + Cu θ = { A, C} z2 z1 c12 c21 u2 u1 dinamica del sistema connettività intrinseche connettività estrinseche stato del sistema 2 ingressi esterni z 1 a11 a12 a13 0 z1 0 c12 z c z a a u 0 a 0 1 24 2 21 2 = 21 22 + z 3 a 31 0 a 33 a 34 z 3 0 0 u 2 z 4 0 a 42 a 43 a 44 z 4 0 0

DCM: esempio di modello dinamico non lineare z4 z3 z = (A + b334 j= 1 z1 z2 c12 u2 m b312 u3 u jb )z + Cu m θ = {A, B, C} c21 u1 connettività indotte 0 b123 z 1 a11 a12 a13 0 z a a 0 a 0 0 24 2 = 21 22 + u3 0 0 z 3 a 31 0 a 33 a 34 0 0 z 4 0 a 42 a 43 a 44 0 0 z1 0 0 z2 3 0 b 34 z 3 0 0 z 4 0 c12 c 0 21 + 0 0 0 0 2 ingressi esterni + 1 ingresso contestuale 0 0 0 0 u1 u 2 u 3

DCM: le equazioni di stato del modello neurale connettività estrinseche dinamica connettività del sistema intrinseche z 1 a11 a 1n = + z n a n1 a nn z = ( A + m j= 1 connettività stato del indotte sistema b11m b1mn m j= 1 u j b mn1 b mnn u j B m ) z + Cu z1 z n m ingressi esterni + contestuali c11 c1m + c n1 c nm θ = { A, B m, C} z = F ( z, u, θ ) u1 u m

DCM: esempio (u2) Stimolo visivo: punti in movimento radiale (u1) (u1) (u3) Si chiede ai soggetti di prestare attenzione (u2) alle variazioni di velocità (u3) in alcuni istanti u1 = stimolo esterno u2, u3 = ingressi contestuali L effetto delle variazioni di velocità (u3) modula il grado di connettività tra la regione V1 (visiva primaria) e la regione V5 (sensibile al movimento) L effetto del livello di attenzione al movimento (u2) modula sia il grado di connettività tra la corteccia parietale superiore (SPC) e la regione V5 che il grado di connettività tra il giro frontale inferiore (IFG) e la SPC

Risultati di studi di esplorazione funzionale in vivo del cervello dell uomo Connettività cerebrale funzionale ed effettiva durante compiti visivi, tattili e uditivi di riconoscimento di movimento

Organizzazione sopramodale di hmt+ Abbiamo in precedenza misurato l attività neurale in soggetti vedenti e ciechi congeniti durante la percezione passiva di flusso visivo e tattile

Organizzazione sopramodale di hmt+ hmt+ si attiva durante la percezione sia di flusso visivo che di flusso tattile nei soggetti vedenti e durante la percezione di flusso tattile nei soggetti ciechi congeniti

Scopo dello Studio Vedere se questa organizzazione sopramodale di hmt+ durante la percezione del movimento può essere estesa anche alla modalità uditiva Determinare le regioni cerebrali funzionalmente connesse con hmt+ destro e sinistro durante i diversi compiti sensoriali di riconoscimento del movimento

Paradigma Sperimentale COMPITO CONTROLLO Flusso Visivo Traslatorio Flusso Tattile Flusso Uditivo Rotatorio Stazionario

Risultati di Gruppo Mappe di attivazione Vedenti Flusso Tattile (n=4) Flusso Tattile x=-46 Flusso Uditivo (n=3) z=-6 z=3 z=-6 z=11 Flusso Uditivo Flusso Visivo x=48 p < 0.025 x=-46 Ciechi z=-6 z=-12 Z score -11.0-2.2 +2.2 +11.0

Risultati di Gruppo Mappe di attivazione Vedenti Ciechi (N=4) (N=3) Flusso Tattile Flusso Tattile Flusso Uditivo Flusso Uditivo Flusso Visivo Flusso Uditivo Flusso Tattile Flusso Visivo

Risultati di Gruppo Mappe di Connettività Funzionale Flusso Tattile Vedenti (n=4) Z score +26.0 +8.5 Flusso Uditivo -8.5-26.0 x=-52 z=-2 z=0 x=53 Flusso Visivo p < 10-12 x=-54 z=-7 z=-5 x=48

Risultati di Gruppo Mappe di Connettività Funzionale Ciechi (n=3) Flusso Tattile Z score +26.0 +8.5 x=-43 z=5 z=2 x=41-8.5 Flusso Uditivo -26.0 p < 10-12 x=-52 z=-2 z=0 x=53

Conclusioni Il complesso hmt+ è normalmente reclutato in compiti visivi, tattili e uditivi di percezione di movimento sia in soggetti vedenti che ciechi congeniti, a sostegno dell ipotesi che questa regione cerebrale funzioni come un area sopramodale per il riconoscimento del movimento

Conclusioni Un insieme di regioni funzionalmente connesse forma una rete neurale comune per l elaborazione del movimento, indipendente dalla modalità sensoriale attraverso la quale le informazioni sono acquisite SM1 IPS Thal V1 hmt+ LOC IFG PCG A1

Sviluppi Futuri Connettività effettiva: per individuare una possibile rete neurale tra i numerosi circuiti coinvolti nell elaborazione sopramodale del movimento SM1 IPS Thal V1 hmt+ LOC IFG PCG A1