Acidi e basi sono sostanze note da molto tempo e diverse classificazioni sono state fatte nel corso del tempo in base alle loro proprietà.

Documenti analoghi
Teoria di Lewis. Un acido di Lewis è una specie chimica che può formare un legame covalente accettando una coppia di elettroni da un altra specie.

EQUILIBRI IN SOLUZIONE: SOSTANZE ACIDE E BASICHE

Arrhenius. HCl H + + Cl - NaOH Na + + OH -

Forza relativa di acidi e basi

ESERCIZI ESERCIZI. 3) Una soluzione acquosa è sicuramente acida se: O + ] > 10-7 M O + ] > [OH - ] O + ] < [OH - ] d. [OH - ] < 10-7 M Soluzione

Ionizzazione spontanea dell acqua: autoprotolisi o autoionizzazione dell acqua. [ H ] 2

Acidi e Basi. Capitolo 15

TEORIE ACIDO-BASE. 1) Teoria di Arrhenius

L EQUILIBRIO CHIMICO: EQUILIBRI IN FASE GASSOSA

HCl è un acido NaOH è una base. HCl H + + Clˉ NaOH Na + + OHˉ. Una reazione acido-base di Arrhenius forma acqua e un sale. HCl + NaOH H 2 O + NaCl

Esploriamo la chimica

Equilibri ionici in soluzione acquosa

Valitutti, Falasca, Tifi, Gentile. Chimica. concetti e modelli.blu

Molti sali contengono un anione o un catione che possono reagire con acqua rendendo le loro soluzioni ACIDE o BASICHE

-DEFINIZIONE DI ACIDI E BASI-

Equilibri ionici in soluzione. M. Pasquali

FORZA DI ACIDI E BASI HA + :B HB + + A

ACIDI e BASI: evoluzione del concetto

CALCOLO DEL ph. ph = - log [1,0x10-3 ] = 3,00

HX X + H + MOH M + + OH -

1. Le teorie sugli acidi e sulle basi 2. La ionizzazione dell acqua 3. Il ph 4. La forza degli acidi e delle basi 5. Come calcolare il ph di

Il Monossido di Di-Idrogeno

LEGGE di AZIONE di MASSA


ACIDI E BASI LA TEORIA DI ARRHENIUS

Reazioni in soluzione acquosa

GLI ACIDI E LE BASI nel quotidiano L acido acetico: è presente nell aceto; L acido formico: a questo composto si deve il bruciore che si avverte dopo

Equilibri Acido Base e ph

Soluzioni Acido Base Definizione di Brønsted

Ionizzazione dell acqua, ph, poh

Olimpiadi di Chimica

Acidi e basi ph, costanti di acidità e basicità Idrolisi, soluzioni tampone

L idrolisi salina. Vi sono sali che sciolti in acqua, impartiscono alla soluzione una reazione acida o basica.

Legame covalente polare

Idrolisi salina. HCl + NaOH NaCl + H 2 O. In acqua i sali si dissociano nei loro ioni i quali si circondano di molecole

Acidi e basi deboli, tamponi e titolazioni

Introduzione alla Chimica Organica V Ed.

Corso di Laboratorio Integrato di Chimica Generale BIOTEC-2011 Esercizi Svolti su Equilibri acido-base

Acidi e Basi. Qual è la definizione di acido e di base dal punto di vista della chimica?

Determinare il ph di una soluzione costituita da 100 ml di HCl 0.01 M.

Soluzioni tampone. Se ad un litro di acqua pura (ph=7) vengono aggiunte 0,01 moli di HCl il ph varia da 7 a 2 (ph=-log(0,01) =2,0), ovvero di 5 unità.

NH 3 + H 2 O NH. Gli OH - sono solo quelli provenienti dalla base, perché quelli dell acqua sono molto pochi.

Reazione tra due acidi

SOLUZIONI TAMPONE SOLUZIONI TAMPONE

FOCUS SU EQUILIBRI ACIDO-BASE

Acidi Poliprotici. Si definiscono acidi poliprotici, le sostanze in grado di donare più di un protone all acqua:

Legame chimico: covalente polare Legame covalente polare

Antilogaritmo (logaritmo inverso) Log N = N =antilogaritmo =

ph e indicatori acido-base

Chimica generale. Corsi di laurea in - Tecnologie alimentari per la ristorazione - Viticoltura ed enologia - Tecnologie agroalimentari.

Misure di ph e titolazione acidobase con metodo potenziometrico

Corso di Chimica e Propedeutica Biochimica La chimica degli acidi e delle basi

Acidi Basi e Sali. ChimicaGenerale_lezione19 1

Le sostanze che dissociandosi i d i in acqua danno

PRINCIPALI CLASSI DI COMPOSTI INORGANICI

EQUILIBRI ACIDO-BASE: ESERCIZI RISOLTI. Dott. Francesco Musiani

PRINCIPALI CLASSI DI COMPOSTI INORGANICI


EQUILIBRI IONICI IN SOLUZIONE

CH 3 COOH (aq) + OH - (aq) CH 3 COO - (aq) + H 2 O (l)

Base. Acido. Acido. Base

EQUILIBRIO CHIMICO REAZIONI A TERMINE REAZIONI DI EQUILIBRIO 04/11/2015. Reazione: A B

Brady Senese Pignocchino Chimica.blu Zanichelli 2014 Soluzione degli esercizi Capitolo 22

1.2.5 Titolazioni acido-base

In acqua pura o in soluzione acquosa, si ha sempre il seguente equilibrio: + +

MPT Il ph. Il ph. Obiettivo

EQUILIBRI ACIDO-BASE

Acidi e Basi. Saverio Santi -Scienze Chimiche- Università di Padova

C.I. CHIMICA-TECNOLOGIA DEI MATERIALI Modulo di Chimica. Lezione del 23 Maggio 2016

Acidi e Basi 1. Chimica Generale ed Inorganica. Chimica Inorganica 1. prof. Dario Duca

La Vita è una Reazione Chimica

CORSO DI CHIMICA PER L AMBIENTE. Lezione del 5 Maggio 2016

Corso di Chimica e Propedeutica Biochimica Reazioni in soluzione acquosa

Piero BAGLIONI Ivo CASAGRANDA Paolo CENCIN Piero DAVIO Achille GUARIGLIA Fabio MALALAN Giorgio RECORDATI Rodolfo SBROJAVACCA

Teorie Acido-Base. valutazione degli acidi

EQUILIBRI ACIDO-BASE

Corso di Chimica Generale Inorganica Soluzione degli Esercizi del Compito del 28 luglio 2010

La chimica degli acidi e delle basi

Teoria di Arrhenius. Vengono definiti acidi quei composti che, in soluzione acquosa, sono in grado di dissociarsi liberando ioni H +

La chimica degli acidi e delle basi 2

Acidi e basi di Brønsted: richiami

mentre l'acetato di sodio si dissocia completamente:

EQUILIBRI DI SOLUBILITA

PROPRIETÀ TIPICHE DEI LIQUIDI

Reazioni in Soluzioni Acquose. Capitolo 4

1. Controllo dell equilibrio acido-base. Carlo Capelli Fisiologia Facoltà di Scienze Motorie- Università di Verona

Anteprima Estratta dall' Appunto di

Legame covalente Puro Polare Legame dativo o di coordinazione Legame ionico Legame metallico

Esercizi capitolo 18 Acidi e basi

Sistemi acido-base in soluzione acquosa

SOLUZIONI TAMPONE 17/01/2014 1

Coefficienti stechiometrici: sono di norma i numeri interi più piccoli possibili Indicare lo stato di aggregazione delle sostanze

AUTOIONIZZAZIONE DELL ACQUA

PON C4 "LE SCIENZE IN GARA!"

SOLUZIONI derivate da: Acido debole/ sale (CH 3 COOH/CH 3 COONa) Base debole/ suo sale (NH 4 OH/NH 4 Cl)

6d. EQUILIBRI IONICI IN SOLUZIONE II: EQUILIBRI ACIDO-BASE parte seconda

Acidi Poliprotici: Anidride carbonica

PH, acidi e basi cosa è il ph? Cosa sono gli acidi e le basi? Come si calcola il ph? Perchè è importante il ph?

Elettrolita forte = specie chimica che in soluzione si dissocia completamente (l equilibrio di dissociazione è completamente spostato verso destra)

Transcript:

TEORIE ACIDO-BASE

Acidi e basi sono sostanze note da molto tempo e diverse classificazioni sono state fatte nel corso del tempo in base alle loro proprietà. Teoria di Arrhenius Arrhenius fu il primo a proporre una teoria acido-base a partire dal comportamento di queste sostanze in acqua. Un acido è una sostanza che, sciolta in acqua, provoca un aumento della concentrazione degli ioni H +. H HCl(aq) 2 O H + (aq) + Cl - (aq)

Una base è una sostanza che, sciolta in acqua, provoca un aumento della concentrazione degli ioni OH -. H NaOH(aq) 2 O Na + (aq) + OH - (aq) La neutralizzazione di HCl e NaOH si rappresenta con l equazione ionica: Na + (aq) + OH - (aq) + H + (aq) +Cl - (aq) Na + (aq) + Cl - (aq)+ H 2 O(l) o con l equazione ionica netta: OH - (aq) + H + (aq) H 2 O(l) Una reazione di neutralizzazione implica quindi la combinazione di ioni H + e OH - per formare acqua.

Gli acidi e le basi possono essere classificati in funzione della loro forza. Un acido forte è una sostanza che in acqua si ionizza completamente per dare ioni H + (es. HCl): H HCl(aq) 2 O H + (aq) + Cl - (aq) Una base forte è una sostanza che in acqua si ionizza completamente per dare ioni OH - (es. NaOH): H NaOH(aq) 2 O Na + (aq) + OH - (aq) Acidi e basi deboli non sono completamente ionizzati in soluzione, ma danno luogo ad un equilibrio CH 3 COOH(aq) Acido acetico H 2 O H + (aq) + CH 3 COO - (aq)

Lo ione H + è un protone semplice e non può esistere in acqua come tale, ma solo legato ad una molecola di acqua sottoforma di ione H 3 O + in cui lo ione H + è legato covalentemente ad un doppietto dell ossigeno dell acqua. HCl(aq) + H 2 O(l) H 3 O + (aq) + Cl - (aq) CH 3 COOH(aq) + H 2 O(l) H 3 O + (aq) + CH 3 COO - (aq) La teoria di Arrhenius è limitata a soluzioni acquose e non considera acide o basiche sostanze che non contengano rispettivamente ioni H + o OH -

BASE NH 3 + H 2 O NH 4 + + OH - ACIDO CO 2 + 2H 2 O HCO 3 - + H 3 O +

Teoria di Brønsted e Lowry Le reazioni acido-base sono considerate come reazioni di trasferimento protonico. Un acido è una specie che dona un protone Una base è una specie che accetta un protone Secondo questa teoria la ionizzazione di HCl in acqua è vista come il trasferimento di un protone da HCl ad H 2 O: HCl(aq) + H 2 O(l) H 3 O + (aq) + Cl - (aq) acido1 base2 acido2 base1

Analogamente una base posta in acqua accetta un protone dall acqua liberando ioni OH -. NH 3 (aq) + H 2 O(l) base acido NH 4+ (aq) + OH - (aq) acido base NH 3 accetta un protone dall acqua ed è quindi una base mentre H 2 O cede il protone ed è un acido. Nella reazione inversa NH + 4 cede il protone ad OH - ed è quindi un acido mentre OH - è una base perché accetta il protone. Specie che differiscono solo per un protone, quali NH 3 /NH + 4 o H 2 O/H 3 O +, costituiscono una coppia coniugata acido-base. Ad esempio NH 3 è una base, ma una volta accettato il protone diventa NH 4+, una specie che è capace di cedere il protone ed è quindi un acido. NH + 4 è l acido coniugato della base NH 3 e NH 3 è la base coniugata dell acido NH 4+ : insieme costituiscono la coppia coniugata acidobase NH 3 /NH 4+. Lo stesso vale per la coppia H 2 O/H 3 O +.

Una reazione acido-base è quindi caratterizzata da due coppie coniugate acido-base: NH 3 (aq) + H 2 O(l) NH 4+ (aq) + OH - (aq) base acido acido base 1 a coppia 2 a coppia

Una specie può comportarsi da acido o da base a seconda della specie con cui viene fatta reagire. Ad esempio H 2 O si comporta da base con HCl (accetta un protone formando H 3 O + ), ma si comporta da acido con NH 3 (cede il protone formando OH - ). Specie di questo tipo, che possono agire sia come acido che come base in dipendenza dell altro reagente, vengono dette anfiprotiche (o anfotere). La teoria di Brønsted e Lowry è più generale della teoria di Arrhenius. In particolare: - Una base è una sostanza che accetta protoni (lo ione OH -, che secondo Arrhenius una sostanza deve necessariamente possedere per essere una base, è solo un esempio di base) - Acidi e basi possono essere sia sostanze molecolari sia ioni - Il solvente non deve essere necessariamente acqua - Alcune sostanze possono agire da acido o da base a seconda della specie con cui reagiscono

Forza relativa di acidi e basi La forza relativa di un acido (o di una base) può essere considerata in funzione della loro tendenza a perdere (o accettare) un protone. Gli acidi più forti sono quelli che perdono più facilmente i loro protoni. Analogamente le basi più forti sono quelle che accettano un protone più facilmente. Un acido forte è una sostanza che in acqua è completamente ionizzatato: HCl(aq) + H 2 O(l) H 3 O + (aq) + Cl - (aq) acido base acido base La reazione è spostata completamente verso destra, per cui l acido cloridrico è un acido forte. Se si considera la reazione inversa, questa praticamente non avviene. In essa lo ione Cl - che accetta un protone dall acido H 3 O +, è infatti una base estremamente debole.

HCl(aq) + H 2 O(l) H 3 O + (aq) + Cl - (aq) acido base acido base più forte più debole Questa reazione si può considerare anche in funzione della forza relativa tra HCl e H 3 O +. HCl perde il protone più facilmente di H 3 O + ed è quindi un acido più forte e la reazione è spostata verso destra.

Se consideriamo la ionizzazione dell acido acetico: CH 3 COOH(aq) + H 2 O(l) acido più debole H 3 O + (aq) + CH 3 COO - (aq) acido più forte Sperimentalmente si vede che solo l 1% delle molecole di CH 3 COOH sono ionizzate. Questo vuol dire che H 3 O + è un acido più forte di CH 3 COOH. L equilibrio è spostato verso sinistra. CH 3 COO - è la base coniugata di CH 3 COOH. Poichè l equilibrio è spostato verso sinistra questo vuol dire CH 3 COO - è sì una base debole ma sicuramente più forte di H 2 O.

In generale in una reazione acido-base la reazione è spostata nella direzione dal più forte al più debole membro della coppia coniugata acido-base. Se consideriamo la ionizzazione dell acido fluoridrico: HF(aq) + H 2 O(l) acido più debole H 3 O + (aq) + F - (aq) acido più forte Qui solo il 3% delle molecole di HF sono ionizzate. Questo vuol dire che HF è un acido più debole di H 3 O +, ma è più forte di CH 3 COOH. F -, la base coniugata di HF, è una base più forte di H 2 O, ma più debole di CH 3 COO -. Gli acidi più forti hanno le basi coniugate più deboli, e le basi più forti hanno gli acidi coniugati più deboli. In base ai dati precedenti possiamo stabilire la seguente scala di acidità: HCl > H 3 O + > HF > CH 3 COOH

In realtà i composti HNO 3,H 2 SO 4,HCl, HBr, HI e HClO 4 sono tutti acidi forti (completamente dissociati in acqua) ed è quindi evidente che per stabilire la forza relativa di questi acidi occorre procedere diversamente da quanto fatto in precedenza.

Gli acidi precedenti, sciolti in acqua, sono tutti ionizzati al 100%, ma se usiamo un solvente meno basico dell acqua (come, ad esempio, un acido debole, come l acido acetico) si può notare una differenza. Per esempio né HCl, né HI sono completamente ionizzati, ma si trova che HI è ionizzato in percentuale maggiore rispetto ad HCl ed è quindi un acido più forte. Poiché per gli acidi forti sopracitati la forza in acqua sembra essere la stessa si parla di effetto livellante dell acqua sugli acidi forti.

Forza degli acidi e struttura molecolare Abbiamo finora valutato la forza degli acidi in maniera empirica. Possiamo però in alcuni casi correlare la forza relativa di una serie di acidi alla loro struttura molecolare. La forza di un acido dipende dalla facilità con cui il legame X H si rompe in maniera da generare lo ione H +. I fattori che determinano le forze relative degli acidi sono principalmente due: - La polarità del legame X H: - X H + Più il legame è polarizzato (con la carica positiva sull idrogeno) tanto maggiore è l acidità del composto. - La forza del legame X H con cui il protone è legato ad X che, a sua volta, dipende dalle dimensioni dell atomo X: più grande è l atomo X, più debole è il legame X-H e quindi maggiore è l acidità.

Consideriamo ora la forza relativa di un acido poliprotico (che può perdere più di un protone) e dei suoi anioni acidi corrispondenti. Ad esempio H 2 SO 4 si ionizza per dare un protone e HSO 4-, che a sua volta può ulteriormente dissociarsi per dare un altro protone e SO 4 2-. HSO 4 - è un acido perché può donare un protone, tuttavia, a causa della carica negativa dello ione che tende ad attrarre il protone, la sua acidità è minore di H 2 SO 4 : HSO 4 - < H 2 SO 4 La forza di un acido poliprotico e dei suoi anioni diminuisce con l aumentare della carica negativa dell anione

FORZA DEGLI ACIDI E DELLE BASI

Teoria di Lewis Spiega perché alcune sostanze possono essere considerate acidi o basi pur non avendo atomi di idrogeno. Nella teoria di Lewis le reazioni acido-base hanno come protagonista la messa in condivisione di una coppia di elettroni solitaria. Un acido di Lewis è una specie che può formare un legame covalente accettando una coppia di elettroni da un altra specie. Una base di Lewis è una specie che può formare un legame covalente donando una coppia di elettroni ad un altra specie.

: : Esempio: Accettore di una coppia di elettroni H H H + + :N:H H-N-H H H Donatore di una coppia di elettroni - - + Acido di Lewis Base di Lewis

Anche reazioni senza trasferimento protonico possono essere classificate come reazioni acido-base secondo Lewis

Tipici acidi di Lewis sono ioni metallici con almeno un orbitale vuoto a bassa energia, come Ag +, Al 3+, ecc. Tipiche basi di Lewis sono specie con un doppietto elettronico disponibile come NH 3, H 2 O, O 2-, ecc.

EQUILIBRI IN SOLUZIONE ACQUOSA

Costante di equilibrio Si consideri la seguente reazione di equilibrio: aa + bb cc + dd La costante di equilibrio della reazione ad una data temperatura è definita come il rapporto tra il prodotto delle concentrazioni dei prodotti della reazione e il prodotto delle concentrazioni dei reagenti della reazione, ognuna elevata al proprio coefficiente stechiometrico K eq = [C] c [D] d / [A] a [B] b La costante di equilibrio è costante a temperatura costante

Principio dell equilibrio mobile Gli equilibri chimici sono regolati dal principio di Le Châtelier. Il principio di Le Châtelier (anche detto principio di Le Châtelier-Braun o principio dell'equilibrio mobile) è un principio di termodinamica chimica, secondo il quale ogni sistema tende a reagire ad una modifica impostagli dall'esterno minimizzandone gli effetti. Tale principio vale solo per i sistemi in equilibrio. Dato che la costante di equilibrio è costante a temperatura costante, il sistema reagisce alla modifica impostagli, ristabilendo nuove condizioni di equilibrio, lasciando inalterata la K eq. Quest ultima varia solo se viene variata la temperatura.

ph di soluzioni acquose H 2 O H + + OH - K eq = [H + ] [OH - ] / [H 2 O] K w = [H + ] [OH - ] = (1.0 x 10-7 ) x (1.0 x 10-7 ) = 1.0 x 10-14 ph = - log [H + ] poh = - log [OH - ] ph + poh = pk w = - log K w = 14

in H 2 O : [OH - ] = [H 3 O + ] = 10-7 M [OH - ] = [H 3 O + ] = 10-7 M [H 3 O + ] > 10-7 M > [OH - ] [H 3 O + ] < 10-7 M < [OH - ] Soluzione neutra Soluzione acida Soluzione basica Acidi forti Es: HNO 3 10-2 M [H 3 O + ] = 10-2 M ph = -log [H 3 O + ] = -log 10-2 = 2 Altri acidi forti: HClO 4, HCl,

Se aggiungiamo HCl HCl + H 2 O H 3 O + + Cl - 0.1 M HCl [H 3 O + ] = 0.1 M [OH - ] = Kw/ [H 3 O + ] = 10-13 M 0.1 M NaOH [OH - ] = 0.1 M Se aggiungiamo NaOH [H 3 O + ] = Kw/ [OH - ] = 10-13 M ph = -log [H 3 O + ] ph (H 2 O ) = -log [10-7 ] = 7 ph (HCl ) = -log [10-1 ] = 1 ph(naoh) = -log [10-13 ] = 13

poh = -log [OH - ] poh (H 2 O) = -log [10-7 ] = 7 poh (HCl) = -log [10-13 ] = 13 poh(naoh) = -log [10-1 ] = 1 ph + poh = pk w A 25 C per qualsiasi soluzione acquosa: ph + poh = 14

Acidi forti ACIDI E BASI DEBOLI H 2 O + HA H 3 O + + A - La concentrazione degli ioni idrogeno è pari alla concentrazione iniziale dell acido Acidi deboli K a = Basi deboli K b = H 2 O + HA H 3 O + + A - [H 3 O + ] [A - ] [HA] B + H 2 O BH + + OH - [BH + ] [OH - ] [B] Conoscendo il valore della costante di dissociazione e la concentrazione iniziale dell acido (o della base) è possibile calcolare il ph di soluzioni acquose di acidi e basi deboli

Acidi deboli CH 3 COOH + H 2 O H 3 O + + CH 3 COO - [CH 3 COOH] = 1.0 x 10-2 M K a = [CH 3 COO - ] [H 3 O + ] = 1,8.10-5 [CH 3 COOH] [CH 3 COO - ] = [H 3 O + ] = x [CH 3 COOH] = 10-2 M - x trascurabile x 2 = 1.8 x 10-5 x 10-2 M = 1.8 x 10-7 x = 4.2 x 10-4 M ph = -log 4.2 x 10-4 = 3,38 4.2 x 10-4 = [H + ]/[HA] = = 4.2 x 10-2 1.0 x 10-2 grado di dissociazione

Il grado di dissociazione di un acido debole, o di una base debole, aumenta al diminuire della concentrazione della sua soluzione Esempio: [CH 3 COOH] = 1.0 x 10-2 M = 4.2 x 10-2 [CH 3 COOH] = 1.0 x 10-4 M [CH 3 COO - ] = [H 3 O + ] = 10-4 [CH 3 COOH] = 10-4 (1 - ) Ka = 1.8.10-5 = = 0,34 (10-4 ) 2 10-4 (1- ) [CH 3 COOH] = 1.0 x 10-4 M = 0,34

ACIDI E BASI DEBOLI K a <10-4 K b <10-4 C a >10-2 M C b >10-2 M METODO APPROSSIMATO 1>K a >10-3 1>K b >10-3 METODO NON APPROSSIMATO 10-4 <K a <10-3 10-4 <K b <10-3 METODO APPROSSIMATO E VERIFICA DELL APPROSSIMAZIONE

ACIDI POLIPROTICI Sono acidi che possono perdere più di un protone per molecola di acido. Le ionizzazioni avvengono a stadi Es. H 3 PO 4, H 2 SO 4, H 2 S