Chimica Inorganica Biologica Il diossigeno O 2

Documenti analoghi
Chimica Inorganica Biologica Stabilità e ph

I Mitocondri Centrale elettrica cellulare

: : H-Cl + H-N: H-N-H + : Cl : H

L OSSIGENO COME SUBSTRATO DI ALTRE REAZIONI METABOLICHE

Equilibrio Redox PARADOSSO DELL OSSIGENO: indispensabile per vita aerobia genera specie reattive dell ossigeno (ROS)

CATENA RESPIRATORIA (CR) FOSFORILAZIONE OSSIDATIVA (FO)

C6H12O6 + 6O2 6CO2 + 6H2O + 36/38 molecole di ATP

Emoglobina e mioglobina

Università degli Studi di Napoli Federico II

Fosforilazione ossidativa

Il laboratorio di Biochimica si svolgerà nei seguenti giorni;


Chimica Inorganica Biologica Emeritrina

La degradazione ossidativa di zuccheri, ac. grassi, e amminoacidi. livello del substrato) Equivalenti riducenti di NADH e FADH 2

ENZIMI. Durante la reazione l enzima può essere temporaneamente modificato ma alla fine del processo ritorna nel suo stato originario, un enzima viene

CATALISI COVALENTE. H 2 O Enz-R-OH + P. Enz-R-O S Enz-R-O-S

Programma del Corso di Chimica Generale II (6CFU) Corso di Laurea Specialistica in Farmacia

Struttura degli amminoacidi

Gli enzimi. Gli enzimi sono le proteine 1 che catalizzano 2 le reazioni chimiche che avvengono nei sistemi biologici

ADP + HPO 3, NAD +, NADP +, FAD ATP, NADH, NADPH, FADH 2 ENERGIA CHIMICA

Energia e metabolismi energetici

Equilibrio Redox PARADOSSO DELL OSSIGENO: indispensabile per vita aerobia genera specie reattive dell ossigeno (ROS)

SOLUZIONI DEGLI ESERCIZI

Mioglobina Emoglobina

Composti organici. I composti organici. Atomi e molecole di carbonio. Atomi e molecole di carbonio. Gruppi funzionali. Isomeri

AMINOACIDI Struttura. Funzione. Classificazione. Proprietà

Amminoacidi (1) Acido 2-ammino propanoico (acido α-ammino propionico) α * NH 2 CH 3 COOH. ) ed un gruppo carbossilico ( COOH) nella stessa molecola

CH 3 + CH 3 CH 3 - CH 3. 2 Radicali METILE ETANO

Cr Mn Fe Co Ni Cu Zn. Chimica Inorganica Biologica Vita ed Energia

IL GRUPPO EME. PROTOPORFIRINA IX: struttura organica ad anello costituita da 4 anelli pirrolici uniti da ponti metinici.

Malattie a carattere. Familiare (causa genetica, più casi nella stessa famiglia)

Catena di trasporto degli elettroni (catena respiratoria) e Fosforilazione ossidativa

I RADICALI NEI SISTEMI BIOLOGICI

Complessi con gruppi M-O 2

FOSFORILAZIONE OSSIDATIVA

CO 2 + H 2 O H 2 CO 3 HCO 3 + H +

La chimica della vita: i composti organici. CARBOIDRATI LIPIDI PROTEINE ACIDI NUCLEICI (DNA, RNA)

Verso l esame: allenarsi con le prove esperte La chimica della carta

ENZIMI. Un enzima è un catalizzatore (acceleratore) di reazioni biologiche.

Tipi di trasportatori di elettroni nella catena respiratoria

Metabolismo batterico

Coenzimi. Ioni essenziali. Molti coenzimi hanno come precursori le vitamine.

FADH ADP + Pi ATP...29 AG ' = -30,5 kj/mol...29 Resa di ATP per l ossidazione completa del glucosio...31

Reazione di Maillard

FOSFORILAZIONE OSSIDATIVA

Biologia. La cellula al lavoro

Helena Curtis N. Sue Barnes

BIOMOLECOLE (PROTEINE)

L energia negli esseri viventi: fotosintesi e respirazione viste dal punto di vista chimico

Membri dell universo microbico

I MITOCONDRI: LE CENTRALI ENERGETICHE DELLA CELLULA

trasferimento degli elettroni dal donatore di elettroni di una

Nicotinamide adenin dinucleotide (NAD + ) H - NMN R AMP. Nel NADP + questo gruppo ossidrilico è esterificato con un gruppo fosforico

NADH FADH 2 (trasportatori ridotti di elettroni) Catena respiratoria (trasferimento degli

Metabolismo fermentativo

Amminoacidi (1) Acido 2-ammino propanoico (acido α-ammino propionico) α * NH 2 CH 3 COOH

COMPOSTI AZOTATI. derivanti dall ammoniaca AMMINE. desinenza -INA AMMIDE

L ossidazione è un processo estremamente importante per il metabolismo dell animale.

IL METABOLISMO Somma delle reazioni che convertono sostanze nutrienti in fonti di ENERGIA o PRODOTTI COMPLESSI.

Come le cellule traggono energia dal cibo: produzione di ATP

Capitolo 6 La respirazione cellulare

METABOLISMO CELLULARE

CHIMICA BIOLOGICA. Seconda Università degli Studi di Napoli. DiSTABiF. Corso di Laurea in Scienze Biologiche. Insegnamento di. Anno Accademico

LA CHIMICA DEL CARBONIO

Formula generale di un amminoacido

Principi di Biochimica

ossidanti, come le specie reattive dell ossigeno (ROS), o più comunemente radicali liberi, e

Aerobiosi C A T A B O L I S M O. Lez 4A. Schema generale del metabolismo dei glucidi

Xenobiotico. Lipofilo. BIOTRASFORMAZIONI DI FASE I: Ossidazione Riduzione Idrolisi Polare BIOTRASFORMAZIONI DI FASE II: Coniugazioni

Amminoacidi (1) Acido 2-ammino propanoico (acido α-ammino propionico) α * NH 2 CH 3 COOH

2) La presenza di gruppi funzionali specifici che partecipano alla catalisi (quelli delle catene laterali dei suoi residui amminoacidici e/o quelli

Amminoacidi. Struttura base di un a-amminoacido

DESTINI METABOLICI DEL PIRUVATO

Le reazioni di ossido-riduzione o reazioni redox rivestono grande importanza, non solo in chimica, ma anche nei fenomeni biologici.

Metabolismo degli xenobiotici

Esercitazione Esempi di domande del test intermedio

CHEMISTRY DAY Istituto Superiore E.FERMI 12 Dicembre 2011

AMMINOACIDI E PROTEINE

LA VIA DEI PENTOSO FOSFATI

Liceo Classico Pitagora Programma Biologia e Chimica 2016/2017 II F

Lezione 1: Atomi e molecole:

Appunti di Stechiometria per Chimica Numero d ossidazione

INTRODUZIONE AL METABOLISMO. dal gr. metabolè = trasformazione

RESPIRAZIONE CELLULARE (METABOLISMO DEL GLUCOSIO)

Argomenti di tesi disponibili presso il Gruppo di Chimica Bioinorganica e Bioelettrochimica

Introduzione alla biologia della cellula. Lezione 2 Le biomolecole

LE PROTEINE. SONO Polimeri formati dall unione di AMMINOACIDI (AA) Rende diversi i 20 AA l uno dall altro UN ATOMO DI C AL CENTRO

Gerard Tortora, Brian Derrickson. Conosciamo

La struttura di una proteina e ruolo biologico da essa svolto sono strettamente connessi. Alcune funzioni biologiche delle proteine:

Aminoacidi. Struttura generale Sono 20 e formano le

ANTIOSSIDANTI Grassi IV LEZIONE

1. L importanza delle reazioni di ossido-riduzione 2. Il numero di ossidazione 3. Ossidazione e riduzione: cosa sono e come si riconoscono 4.


I ribosomi liberi nel citoplasma sintetizzano le proteine destinate alla via citoplasmatica, cioè quelle destinate a:

Respirazione cellullare

Fotosintesi: processo di traduzione dell energia luminosa in energia chimica. Pianta + Luce

- natura riduttiva - richiede energia

I materiali della vita

Transcript:

Il diossigeno O 2 Tossicità di O 2 La comparsa di O 2 sulla terra ha rappresentato una catastrofe ecologica in quanto organismi anaerobici dovettero trasformarsi in aerobici. Fe II (solubile) Fe III (insolubile); Cu I (insolubile) Cu II (solubile); S II (insolubile) SO 4 2 (solubile); Se II (insolubile) SeO 3 2 (solubile); MoS x (insolubile) MoO 4 2 (solubile); CH 4 CO 2 ; H 2 H 2 O; NH 3 NO 3, NO 2, NO.

Il diossigeno O 2 Tossicità di O 2 Per sopravvivere alla reattività dell'ossigeno e dei suoi derivati gli organismi dovettero sviluppare una moltitudine di antiossidanti biologici ed un processo opposto alla fotosintesi, la respirazione. I batteri anaerobici attuali derivano dai primitivi organismi anaerobici mentre gli attuali organismi aerobici si sono sviluppati adattando il loro metabolismo al potere ossidante del diossigeno. Il diossigeno è essenziale per la vita degli organismi aerobici, le cellule umane usano O 2 come accettore finale di elettroni nella respirazione: O 2 + 4H + + 4e 2H 2 O

Cenni storici Chimica Inorganica Biologica Il diossigeno O 2 o La tossicità del diossigeno fu riconosciuta da Rebecca Gerschman (1954). o Irwin Fridowich imputò invece la tossicità allo ione superossido (1968) o Attualmente il candidato principale è il radicale idrossile. L azione lesiva di queste specie reattive riguarda i lipidi, il DNA e le proteine. Il DNA presente all'interno della cellula è vulnerabile all'attacco ossidativo alla base e allo zucchero; L'ossidazione del DNA può portare a mutazioni. Le proteine possono subire un danno ossidativo alle catene laterali amminoacidiche in particolar modo i residui cisteinici e metioninici. Nella cellula sono comunque presenti le difese opportune.

Perossidazione lipidica Chimica Inorganica Biologica I lipidi sono componenti essenziali delle membrane ed il danno ossidativo osservato è dovuto ad autossidazione radicalica. Variazioni irreversibili della catena fosfolipidica o Lipidi o Proteine o DNA

Il diossigeno O 2 L'adattamento della vita alla presenza del diossigeno ha potuto realizzarsi, in assenza di catalizzatori, grazie alla lentezza della velocità di reazione del diossigeno. L utilizzazione del diossigeno comporta la possibilità di formazione di specie reattive quali: diossigeno singoletto, superosso, perosso ed ossidrile. Quest ultimo, uno dei più potenti radicali conosciuti, è prodotto dalla riduzione monoelettronica dell acqua ossigenata da Fe 3+ e Cu 2+

Sistemi di difesa dell organismo contro i danni ossidativi Le reazioni ossidative avvengono in compartimenti cellulari chiusi: mitocondri e cloroplasti Esistenza di specie molecolari capaci di catturare i derivati tossici dell ossigeno Sistemi che sequestrano ioni metallici con attività redox Tocoferolo (E) membrane cellulari Fe 2+ + H 2 O 2 Fe 3+ + OH - + OH. citosol acido ascorbico (C) Enzimi detossificanti glutatione

Cellula Chimica Inorganica Biologica Il diossigeno O 2

Enzimi detossificanti Citocromo P-450 Catalasi Perossidasi Superossidismutasi

Citocromo P-450 Sono emoproteine il cui sito attivo è molto simile a quello della emoglobina/mioglobina. Appartengono alla famiglia degli enzimi mono-ossigenasi perché catalizzano l inserzione di un atomo di ossigeno in una grande varietà di substrati C C OH Idrossilazione di composti alifatici H OH Idrossilazione di composti aromatici O Epossidazione di alcheni N N +_ O - Ossidazione di ammine a N-ossidi S S O Ossidazione di solfuri a solfossidi

Citocromo P-450

Citocromo P-450

Citocromo P-450 Gli enzimi citocromo P450 costituiscono una superfamiglia (CYP) che conta più di 7700 macromolecole. Il nome deriva dalla lunghezza d onda del picco di assorbimento Fegato Corteccia Surrenale Catalizza reazioni di ossidazione con scarsa selettività dei substrati Metabolismo di sostanze endogene (acidi grassi, steroidi) attraverso reazioni stereospecifiche Sono stati difficili da caratterizzare perché sono legati alle membrane del mitocondrio e del reticolo endoplasmatico e sono poco solubili in acqua. Si è isolato quello presente nel batterio Pseudomonas putida P-450 cam

Citocromo P-450 Questi enzimi consistono di una singola catena polipeptidica (400-530 aa). Il gruppo eme b (Fe-protoporfirina IX) è privo di legami covalenti fra l anello porfirinico e la proteina. L atomo è un Fe III BS legato solo ad un atomo di S di una cisteina (RS - ). L altra posizione assiale è probabilmente occupata da una molecola di H 2 O in prossimità di una cavità Il potenziale redox, a ph 7 è 330 mv.

Citocromo P-450 Meccanismo Interesse biologico/fisiologico Interesse chimico/sintetico Si è ipotizzato che il meccanismo avvenga attraverso la reazione controllata di O 2 e substrato nella sfera di coordinazione dello ione metallico (reazione templata) Orientazione spaziale (stereospecificità) Attivazione elettronica

Citocromo P-450 Fe Fe Cys Met Cys: donatore σ donatore π Met: donatore σ accettore π Campo Debole Alto Spin Campo Forte Basso Spin

Interazione con il substrato genera Fe(III) pentacoordinato ad alto spin. La variazione di spin cambia il potenziale redox a +170 mv L aumento di potenziale favorisce la riduzione (via FADH 2 ): si ottiene Fe(II) pentacoordinato ad alto spin, del tutto simile alla specie che coordina O 2 in emoglobina Fe(III) esacoordinato a basso spin: potenziale redox a -330 mv Rimane nel ciclo catalitico la specie estremamente reattiva [Fe IV PO] + che ossida il substrato RH: [Fe IV PO] + +RH Fe III (P) + + ROH La cattura di un H + forma un Fe(III) idroperossido, il quale per rottura eterolitica del legame O-O si trasforma in OH - che viene eliminato come H 2 O per acquisto di un protone. XOH XOOH Se all enzima si aggiunge un peracido XOOH (che funge da donatore di O) il ciclo è cortocircuitato (effetto shunt); ne consegue che l atomo di ossigeno proviene dal perossido -O-OH. La seconda riduzione forma il complesso perossidico O 2 si coordina per dare addotto Fe(II)O 2 o Fe(III)-superossido

Perossidasi Classe di emoproteine che catalizza l ossidazione di molecole organiche da parte di H 2 O 2 che viene ridotta ad acqua H 2 O 2 + AH 2 2H 2 O + A Il centro metallico è un Fe(III) alto spin coordinato ad un imidazolo di una istidina. Nella sesta posizione coordina l H 2 O 2 : gli aa presenti da questo lato guidano la coordinazione e promuovono la reazione Mn-perossidasi V-perossidasi Mfree-perossidasi Questi enzimi consentono l eliminazione di H 2 O 2 La riduzione completa avviene solo per 80% di O 2

Perossidasi Acidi grassi Ammine Fenoli Xenobiotici Tossine Perossidasi R-CH 2 -COOH + 2H 2 O 2 3 H 2 O + R-CHO + CO 2 ossidazione R-COOH α-ossidazione controllata degli acidi grassi durante la crescita vegetale con formazione di anidride carbonica e di un omologo inferiore Tireoperossidasi Citocromo c perossidasi (CCP) Mieloperossidasi Lignina perossidasi

Perossidasi Chimica Inorganica Biologica L enzima più studiato nel gruppo delle perossidasi è HRP (Horseradish Peroxidase)

Perossidasi Chimica Inorganica Biologica H 2 O 2 coordina sul Fe(III) e istidina distale media il trasferimento di un H + in modo che entrambi gli idrogeni siano legati sull ossigeno non coordinato al ferro Arg polarizza il legame perossidico favorendo la rottura eterolitica di detto legame Si libera una molecola di acqua e si forma un intermedio Fe(IV)=O con il metallo in uno stato di ossidazione elevato. L anello porfirinco è un radicale catione Composto I è ridotto al Fe(III) di partenza a seguito di due trasferimenti elettronici. Gli elettroni provengono dal substrato che si ossida

Catalasi H 2 O 2 + H 2 O 2 2H 2 O + O 2 È stata determinata la struttura della catalasi presente nel fegato di vitello. È una perossidasi speciale perché il suo substrato è una seconda molecola di H 2 O 2. Catalizza la reazione di disproprozione di H 2 O 2 Il Ferro (III) alto spin è coordinato assialmente dal gruppo fenolato dell aminoacido tirosina e da una molecola di acqua che viene spostata dall H 2 O 2.

Fe(III)porf + H 2 O 2 Fe(III)porf(OOH) + H + Fe(III)porf(OOH) Fe(IV)porf +. =O + OH - Fe(IV)porf +. =O + H 2 O 2 O 2 + Fe(III)porf + H 2 O Stesso meccanismo visto per le perossidasi e si forma Composto I con ferro ad alta valenza Usando H 2 O 2 marcata si è stabilito che rottura legame O-O non avviene. Si tratta di una riduzione bielettronica del composto I da parte di H 2 O 2, con l ossigeno coordinato al ferro che viene rilasciato in una molecola di acqua

Perossidasi e citocromo P-450 R-H O Fe(IV)-Por +. S-Cys His + Arg O Fe(IV)-Por +. His Compound I Come è possibile che la stessa specie ipervalente dia due reazioni molto diverse: trasferimento di atomo di ossigeno nel cyt P-450 trasferimento elettronico in perossidasi e catalasi Le cavità in cui si dispone il substrato sono diverse: nel cytp450 RH è molto vicino al ferrile. Nella perossidasi alcuni aminoacidi bloccano di fatto l avvicinamento del substrato al ferrile, rendendo possibile solo il trasferimento dell elettrone. Come si effettua la rottura eterolitica del legame perossidico nei due sistemi enzimatici? Nella perossidasi la polarizzazione del legame è raggiunta grazie all azione degli aminoacidi. Nel citocromo P-450 tali aminoacidi non ci sono perché il complesso si trova in una tasca idrofobica. Probabilmente il legante assiale cisteina, per la sua natura basica, favorisce la rottura eterolitica.

SUPEROSSIDO DISMUTASI (SOD) Famiglia di metallo proteine che catalizza la disproporzione dello ione superossido attraverso un meccanismo che consiste di due passaggi consecutivi: 1) M n+ + O 2 - M (n-1)+ + O 2 2H + 2) M (n-1)+ + O 2 - M n+ (O 2 2- ) M n+ + H 2 O 2 Nello step 1) lo ione superossido riduce lo ione metallico ossidandosi ad ossigeno molecolare Nello step 2) lo ione superossido riossida lo ione metallico riducendosi a perossido La reazione complessiva è: 2O - 2 + 2H + SOD O 2 + H 2 O 2

Cu-Zn (SOD) Chimica Inorganica Biologica Si trova nei mitocondri delle cellule eucariote consiste di due subunità identiche tenute insieme da interazioni idrofobiche il rame e lo zinco si trovano sul fondo di uno stretto canale fatto ad imbuto. Le dimensioni di questo canale consentono il passaggio solo a molecole molto piccole (H 2 O) e a piccoli ioni all imboccatura del canale sulla superficie esterna della proteina ci sono due aa lisina, che essendo carichi positivamente, attraggono lo ione superossido. lungo le pareti del canale vi è un aa arginina anch esso positivo che ha la funzione di convogliare l anione superossido verso il sito catalitico una modifica chimica delle lisine e della arginina comporta una forte diminuzione dell attività della SOD Struttura della forma ossidata della CuZn-SOD da eritrociti bovini

Cu-Zn (SOD) Chimica Inorganica Biologica Cu 2+ è coordinato a 4 imidazoli istidinici e a una molecola di H 2 O. La geometria è piramidale a base quadrata con acqua nella posizione apicale His118 H 2 O Cu His 46 His44 His 61 Zn His 69 His 78 Asp 81 Zn 2+ è coordinato a 3 imidazoli istidinici e al carbossilato di un aspartato A ponte tra i due centri metallici

Cu-Zn (SOD) Chimica Inorganica Biologica His118 H 2 O Cu His44 His 69 Zn Cu 2+ è il sito di interazione dello ione superossido. Quindi il Cu 2+ è il sito su cui avviene la disproporzione: His 46 Cu 2+ + O 2 - Cu + + O 2 His 61 His 78 Asp 81 Rimozione dello Zn 2+ non altera l attività della SOD ma rende più instabile la proteina che si denatura a temperatura più bassa della SOD nativa Cu + + O 2 - Cu 2+ (O 2 2- ) Cu 2+ + H 2 O 2 Attività della SOD è inibita in presenza di specie anioniche piccole come CN -, F -, N 3 - che competono con lo ione superossido nel sito catalitico. Zn 2+ ha ruolo strutturale