QUAL È LA DISTANZA TRA ROMA E NEW YORK? UN PO' DI GEOMETRIA ANALITICA SULLA SFERA



Documenti analoghi
Qual è la distanza tra Roma e New York?

LA RETTA. Retta per l'origine, rette orizzontali e verticali

CORSO DI LAUREA IN INGEGNERIA.

Grandezze scalari e vettoriali

RETTE, PIANI, SFERE, CIRCONFERENZE

Rette e piani con le matrici e i determinanti

Le trasformazioni geometriche

Esempi di funzione. Scheda Tre

Polli e conigli. problemi Piano cartesiano. Numeri e algoritmi Sistemi e loro. geometrica. Relazioni e funzioni Linguaggio naturale e

15 febbraio Soluzione esame di geometria - 12 crediti Ingegneria gestionale - a.a COGNOME... NOME... N. MATRICOLA...

0. Piano cartesiano 1

Proiezioni Grafica 3d

4. Proiezioni del piano e dello spazio

LE FUNZIONI A DUE VARIABILI

1. PRIME PROPRIETÀ 2

Trasformazioni Geometriche 1 Roberto Petroni, 2011

13. Campi vettoriali

A.1 Definizione e rappresentazione di un numero complesso

Misure di base su una carta. Calcoli di distanze

Ma cosa si pensava della forma della terra prima delle fotografie?

MATEMATICA p = 4/6 = 2/3; q = 1-2/3 = 1/3. La risposta corretta è quindi la E).

DOMINIO E LIMITI. Esercizio 3 Studiare gli insiemi di livello della funzione f, nei seguenti casi: 1) f(x,y) = y2 x 2 + y 2.

FUNZIONE REALE DI UNA VARIABILE

Applicazioni lineari

Prof. Silvio Reato Valcavasia Ricerche. Il piano cartesiano

Universita degli Studi di Roma Tor Vergata Facolta di Ingegneria Elettronica

Per studio di funzione intendiamo un insieme di procedure che hanno lo scopo di analizzare le proprietà di una funzione f ( x) R R

LE TRASFORMAZIONI GEOMETRICHE NEL PIANO

ESAME DI STATO DI LICEO SCIENTIFICO CORSO SPERIMENTALE P.N.I. 2004

ELEMENTI DI GEOMETRIA ANALITICA: LA RETTA.

UNIVERSITÀ DEGLI STUDI DI TERAMO

Analisi Matematica di circuiti elettrici

SISTEMI DI RIFERIMENTO E PROIEZIONI

Inserimento di distanze e di angoli nella carta di Gauss

IL SISTEMA CARTOGRAFICO NAZIONALE

ASSIOMI DELLA GEOMETRIA RAZIONALE

Corrispondenze e funzioni

L influenza della corrente sulla barca si manifesta in due effetti principali: uno sul vento e uno sulla rotta percorsa.

LA RETTA. b) se l equazione si presente y=mx+q (dove q è un qualsiasi numero reale) si ha una retta generica del piano.

I NUMERI DECIMALI. che cosa sono, come si rappresentano

CURVE DI LIVELLO. Per avere informazioni sull andamento di una funzione f : D IR n IR può essere utile considerare i suoi insiemi di livello.

Ing. Alessandro Pochì

Numeri complessi. x 2 = 1.

Formule trigonometriche

Federico Lastaria. Analisi e Geometria 2. Matrici simmetriche. Il teorema spettrale. 1/24

LA GEOMETRIA ANALITICA DELLO SPAZIO. Liceo G. GALILEI - Verona Venerdì 10 Aprile 2015 CONVEGNO MATHESIS VERONA

Trasformazioni geometriche nel piano cartesiano

APPUNTI DI MATEMATICA ALGEBRA \ INSIEMISTICA \ TEORIA DEGLI INSIEMI (1)

CONI, CILINDRI, SUPERFICI DI ROTAZIONE

Coordinate 3D. Coordinate cartesiane. Coordinate 3D. Coordinate cartesiane. Coordinate cartesiane. Sinistrorsa. Destrorsa

Osservazioni sulla prima prova intermedia

LIVELLO STUDENT S1. S2. S3. S4. S5. S6.

LEZIONI N 24 E 25 UNIONI SALDATE

Elementi di topologia della retta

GEOMETRIA I Corso di Geometria I (seconda parte)

1 Definizione: lunghezza di una curva.

INTRODUZIONE ALLA GEOMETRIA ANALITICA LA RETTA E LA PARABOLA

Esercizi svolti sui numeri complessi

Andrea Pagano, Laura Tedeschini Lalli

Trigonometria: breve riepilogo.

B. Vogliamo determinare l equazione della retta

LE FUNZIONI MATEMATICHE

3 GRAFICI DI FUNZIONI

TOPOGRAFI A E ORIENTAMENTO IN MONTAGNA XXIV Corso di Alpinismo A1

I Numeri Complessi. Si verifica facilmente che, per l operazione di somma in definita dalla (1), valgono le seguenti

Liceo G.B. Vico Corsico

Massimi e minimi vincolati di funzioni in due variabili

DISEGNO TECNICO INDUSTRIALE

TRASFORMAZIONI GEOMETRICHE NEL PIANO. Parte 1

Appunti sul corso di Complementi di Matematica- modulo Analisi Prof. B.Bacchelli

Ancora sugli insiemi. Simbologia

Corso di Matematica per la Chimica

Equazione del calore e funzioni trigonometriche.

ELEMENTI DI ALGEBRA LINEARE E GEOMETRIA Corso di Laurea Ingegneria Edile-Architettura

Capitolo 2. Operazione di limite

Fondamenti e didattica di Matematica Finanziaria

Grandezze scalari e vettoriali

CONTINUITÀ E DERIVABILITÀ Esercizi proposti. 1. Determinare lim M(sinx) (M(t) denota la mantissa di t)

Coordinate Cartesiane nel Piano

Prova scritta di Geometria 2 Prof. M. Boratynski

LICEO ARTISTICO PROGRAMMAZIONE DIDATTICA RIFERITA ALLA

Basi di matematica per il corso di micro

SIMULAZIONE TEST. Matematica di base

Le funzioni continue. A. Pisani Liceo Classico Dante Alighieri A.S A. Pisani, appunti di Matematica 1

CONVESSITÀ NELLA GEOMETRIA DEL TAXI DI MINKOWSKI

FUNZIONI / ESERCIZI SVOLTI

I numeri complessi. Mario Spagnuolo Corso di Laurea in Fisica - Facoltà di Scienze - Università Federico II di Napoli

LEZIONE 31. B i : R n R. R m,n, x = (x 1,..., x n ). Allora sappiamo che è definita. j=1. a i,j x j.

IL CONCETTO DI FUNZIONE

GRANDEZZE ALTERNATE SINUSOIDALI

Sia data la rete di fig. 1 costituita da tre resistori,,, e da due generatori indipendenti ideali di corrente ed. Fig. 1

Il calcolo letterale per risolvere problemi e per dimostrare

4 Dispense di Matematica per il biennio dell Istituto I.S.I.S. Gaetano Filangieri di Frattamaggiore EQUAZIONI FRATTE E SISTEMI DI EQUAZIONI

La rappresentazione fornita dalle carte geografiche è:

Consideriamo due polinomi

STUDIO DI UNA FUNZIONE

1 Applicazioni Lineari tra Spazi Vettoriali

QUESITO 1 A FISICA. Il candidato illustri il primo principio della termodinamica. Consideri poi la seguente

LICEO SCIENTIFICO STATALE G.GALILEI CATANIA A.S. 2006/2007 SIMULAZIONE DI II PROVA - A

Controlli Automatici T. Trasformata di Laplace e Funzione di trasferimento. Parte 3 Aggiornamento: Settembre Prof. L.

Transcript:

QUAL È LA DISTANZA TRA ROMA E NEW YORK? UN PO' DI GEOMETRIA ANALITICA SULLA SFERA Michele Impedovo Bollettino dei Docenti di Matematica del Canton Ticino (CH) n 36, maggio 98. Il problema Il lavoro che segue è il risultato di un problema nato su sollecitazione degli studenti, durante una discussione sulle rotte di navigazione aerea È possibile individuare univocamente un punto sulla superficie terrestre mediante una coppia di numeri reali? In tal caso, dati due punti P(x, y ) e Q(x, y ), qual è la loro distanza? Quali analogie e quali differenze ci sono tra le geometrie analitiche del piano e della sfera? Lo strumento fondamentale utilizzato per la risoluzione del problema è il prodotto scalare tra vettori in R 3. L'interpretazione dello spazio tridimensionale come spazio vettoriale euclideo permette di risolvere in modo elegante e unitario il problema posto. Viceversa la risoluzione di questo problema permette di applicare in un contesto significativo alcuni concetti fondamentali di algebra lineare. I prerequisiti richiesti sono le operazioni tra vettori in R 3 : somma di due vettori, multiplo reale di un vettore, prodotto scalare, prodotto vettoriale. I calcoli (assai laboriosi) si prestano ad essere svolti con un programma di manipolazione simbolica; noi abbiamo usato Maple.. Il piano cartesiano e la sfera cartesiana Vogliamo stabilire sulla superficie di una sfera un sistema di riferimento. Sia data una sfera di centro C e raggio r, e sulla sua superficie due punti A, B. Come è noto, il percorso più breve (e quindi il segmento) che unisce A e B è l'arco (convesso) di cerchio massimo (quindi di centro C e raggio r)che passa per i due punti. Due cerchi massimi sono tra loro ortogonali se lo sono le loro tangenti nei punti di intersezione. Per stabilire un sistema di riferimento sulla sfera terrestre si adottano come assi due opportuni cerchi massimi tra loro ortogonali: l'equatore e il meridiano di Greenwich. Il loro punto di intersezione utilizzato come origine O del sistema di riferimento sferico è un punto al largo della costa occidentale dell'africa, nel Golfo di Guinea. L'altro punto di intersezione (sul meridiano del cambiamento di data) è in pieno Oceano Pacifico. Un punto sulla superficie sferica terrestre è solitamente individuato dalla sua longitudine (distanza angolare dal meridiano di Greenwich, qui considerata positiva a Est e negativa o Ovest) e dalla sua latitudine (distanza angolare dall'equatore, positiva a Nord e negativa a Sud). Ecco alcuni esempi nei vari quadranti: LONG LAT Roma + 7' +4 55' New York 70 5' +40 45' Buenos Aires 70 40' 33 30' Sydney +5 0' 33 55' Un punto sull'equatore ha latitudine nulla, un punto sul meridiano di Greenwich ha longitudine nulla. Utilizziamo come unità di misura delle distanze il raggio terrestre (circa 6378 km = RT).

Supponiamo così che la Terra sia una sfera liscia, senza rilievi (l'altezza di volo di un aereo di linea è circa 0 km, una distanza trascurabile rispetto al raggio terrestre). Con le convenzioni adottate possiamo ora stabilire un sistema di riferimento sulla superficie sferica. Sia P un punto sulla sfera; esso è univocamente individuato dalla coppia di numeri reali (α, β), dove α è la longitudine e β è la latitudine, con le seguenti limitazioni: 80 < α 80 90 β 90. Se escludiamo i due poli (che hanno latitudine rispettivamente +90 e 90 e longitudine qualsiasi) tale sistema di riferimento stabilisce una corrispondenza biunivoca con i punti della superficie sferica. A differenza di quanto accade nel piano, sulla sfera non esistono rette parallele: tutte le rette sferiche, cioè i cerchi massimi, si intersecano in due punti diametralmente opposti. Ne consegue una differenza sostanziale tra piano e sfera: sul piano le coordinate (x,y) di un punto P rappresentano le distanze di P rispettivamente dall'asse y e dall'asse x. Sulla sfera invece solo la seconda coordinata (la latitudine) rappresenta la distanza dall'equatore; la prima coordinata (la longitudine) non è uguale alla distanza dal meridiano di Greenwich, tranne nel caso in cui P stia sull'equatore; la distanza di P dal meridiano di Greenwich diminuisce con l'aumentare della latitudine, fino ad annullarsi per i poli. In altri termini: i meridiani (luoghi dei punti aventi data longitudine) sono cerchi massimi (quindi rette sferiche), i paralleli (luoghi dei punti aventi data latitudine) non sono cerchi massimi. A differenza di quanto accade nel piano, la distanza tra due punti non è invariante per traslazioni, cioè per trasformazioni del tipo (α,β) (α+γ,β+γ); tali trasformazioni non sono, sulla sfera cartesiana, delle isometrie. La strategia risolutiva consiste nell'immergere la sfera in un sistema di riferimento ortogonale xyz con l'origine nel centro C della sfera, in modo che l'origine O(0,0) del sistema di riferimento sferico abbia coordinate (,0,0) e l'asse z passi per i due poli. In tal modo è possibile associare ad ogni punto P(α,β) della sfera il vettore CP=[x,y,z] di R³, e utilizzare senza scrupoli il prodotto scalare di vettori in R³.

Sia dato un punto P(α,β) sulla superficie sferica. Come si vede dalla figura, le componenti in R³ del vettore CP sono le seguenti: CP = [cosβ cosα, cosβ sinα, sinβ] È semplice verificare che in ogni caso risulta CP =: CP = (cosβ)²(cosα)²+(cosβ)²(sinα)²+(sinβ)² = (cosβ)²((cosα)²+(sinα)²)+(sinβ)² = (cosβ)²+(sinβ)² = Ricordiamo che dati due vettori a=[x,y,z ], b=[x,y,z ], il prodotto scalare a b è il numero reale così definito: a b = x x +y y +z z. Inoltre se indichiamo con (a,b) l'angolo convesso compreso tra i due vettori, risulta a b = a b cos(a,b), dove a = a a. In uno spazio vettoriale dotato di prodotto scalare è possibile quindi definire l'angolo di due vettori: ab (a,b) = arccos a b Ora abbiamo tutti gli strumenti per determinare la distanza tra due punti. Siano P(α,β ) e Q(α,β ) due punti della superficie sferica. La loro distanza è la lunghezza dell'arco di cerchio massimo PQ, e coincide con la misura (in radianti) dell'angolo PCQ. Con il prodotto scalare è tutto facile; poiché 3

CP = [cosβ cosα, cosβ sinα, sinβ ] CQ = [cosβ cosα, cosβ sinα, sinβ ] risulta CP CQ cos(cp,cq ) = CP CQ = CP CQ = [cosβ cosα, cosβ sinα, sinβ ] [cosβ cosα, cosβ sinα, sinβ ] = cos(α -α )cosβ cosβ +sinβ sinβ da cui d(p,q) = arccos(cos(α -α )cosβ cosβ +sinβ sinβ ) La misura in radianti di d(p,q) rappresenta, in raggi terrestri, la distanza tra i due punti. Possiamo quindi dare risposta al problema iniziale: d(roma, New York) =.04 RT La distanza di.04 radianti corrisponde a circa 6640 km. La distanza tra Roma e Sidney è.55 RT 600 km. In Italia il capoluogo di provincia di massima latitudine è Bolzano ( ',46 30') e quello di minima latitudine è Ragusa (4 45',36 56'); la loro distanza è 0.73 radianti, pari a circa 00 km: questo numero rappresenta la lunghezza in linea d'aria, o se si vuole la lunghezza della rotta aerea più breve. 3. L'equazione di una retta Il problema appena risolto ne apre subito molti altri. Ne proponiamo solo uno, a titolo di esempio: qual è l'equazione di una retta sulla superficie sferica? Nel piano una retta è caratterizzata da un'equazione lineare in x, y. Vediamo che cosa accade sulla sfera. Ricordiamo che nello spazio tridimensionale un punto A e un vettore v individuano unicamente un piano: il piano passante per A e ortogonale a v è il luogo dei punti P tali che AP v = 0. Ricordiamo inoltre che dati due vettori a,b R³, il prodotto vettoriale a b definisce un vettore c ortogonale ad a e a b (quindi ortogonale al piano generato da a e b), il cui modulo è dato da c = a b sin(a,b). Siano dati i punti P(α,β ) e Q(α,β ). La retta (sferica) PQ coincide con il cerchio massimo passante per P e Q. Un punto generico S(α,β) della superficie sferica appartiene a tale retta se e solo se giace sul piano CPQ. Se v è un vettore normale del piano CPQ, allora un punto S giace sul piano CPQ se e solo se CS è ortogonale a v. 4

Utilizzando il prodotto vettoriale possiamo porre v = CP CQ. In definitiva l'equazione della retta PQ è la seguente: (CP CQ ) CS = 0 Ricordiamo che il prodotto misto (a b) c di tre vettori è un numero reale, ed è uguale al determinante della matrice dei tre vettori; l'equazione della retta PQ è dunque cosβ cosα cosβ cosα cosβcosα cosβ sin α cosβ sin α cosβsin α sin β sinβ sin β cioè del tipo h cos(β)cos(α)+h cos(β)sin(α)+h 3 sin(β) = 0 dove h, h, h 3 sono delle costanti, funzioni di α, β, α, β. Per esempio l'equazione della retta Roma-New York è 0.48 cos(β)cos(α) 0.46 cos(β)sin(α) 0.355 sin(β) = 0. Dato un punto (α,β) è possibile sapere se esso è allineato con Roma e New York: è sufficiente stabilire se le sue coordinate sferiche soddisfano l'equazione data. 4. Conclusioni I calcoli che abbiamo svolto corrispondono in sostanza a strumenti di trigonometria sferica, e in particolare al Teorema di Menelao. Si tratta di calcoli assai laboriosi, che acquistano rilevanza soltanto se svolti mediante un programma di manipolazione simbolica. Con tale strumento è possibile porsi problemi che risultavano prima troppo complessi; in un certo senso la trigonometria sferica può essere soppiantata. Una volta stabilito l'algoritmo che risolve un problema (i nostri esempi: distanza tra due punti, equazione di una retta), è il calcolatore che svolge i calcoli. Dal punto di vista didattico siamo di fronte ad una svolta: mutano i paradigmi dei contenuti e degli strumenti da trasmettere. Lo studente è chiamato non solo (non tanto) a calcolare, a semplificare, a risolvere, bensì a modellizzare, a progettare. 5