LE PARTICELLE ELEMENTARI: loro scoperta

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "LE PARTICELLE ELEMENTARI: loro scoperta"

Transcript

1

2 LE PARTICELLE ELEMENTARI: loro scoperta Atomo: composto da particelle elementari più piccole (protoni, neutroni, elettroni) Atomi di elementi diversi contengono le STESSE particelle, ma in numero diverso Natura e comportamento degli elettroni: dimostrata con studi sulla scarica di gas

3 STRUTTURA DELL'ATOMO Vari esperimenti condotti all'inizio del 1900 dimostrarono che gli atomi non sono indivisibili ma costituiti da particelle più piccole (elementari). Elettrone Se a due elettrodi posti alle estremità di un tubo in cui è fatto il vuoto viene applicato un alto voltaggio, dall'elettrodo negativo (catodo) si dipartono dei raggi detti raggi catodici. Thomson dimostrò che tali raggi sono costituiti da un flusso di particelle cariche negativamente che chiamò elettroni.

4 Tubo a raggi catodici La deviazione di un raggio catodico da parte di un campo elettrico e di un campo magnetico

5 ESPERIMENTO DI THOMSON Misura del rapporto carica/massa dell'elettrone: un fascio di raggi catodici attraversa un campo elettrico e un campo magnetico. L'esperimento è predisposto in modo che il campo elettrico devii il fascio in una direzione mentre il campo magnetico lo devia nella direzione opposta. Bilanciando gli effetti è possibile determinare il rapporto carica/massa dell'elettrone. e/m=1, C/Kg

6 Quantizzazione della carica elettrica: esperimento di Millikan Gocce di olio cariche elettricamente vengono fatte cadere in presenza di un campo elettrico. Dalla massa nota delle goccioline e dal voltaggio applicato per mantenere ferme le gocce cariche si potè calcolare la carica presente sulle gocce. Fu trovato che tutte le cariche elettriche sono multiple di una carica elementare minima e assunta come carica dell'elettrone. e=1, C (coulomb)

7 Thomson aveva calcolato: e/m= 1, C/Kg da cui si dedusse: m= 9, Kg Un valore circa 1800 volte più piccolo della massa dell'idrogeno.

8 PRIMO MODELLO ATOMICO: THOMSON Sfera uniforme di cariche positive in cui sono distribuiti gli e - in maniera casuale e uniforme

9 Esperimento di Rutherford: invalidazione del modello di Thomson Particelle nuclei di He, molto pesanti, privi dei 2 e - (2 cariche +) bombardanti una sottile lamina di oro Schermo rivelatore Osservazione: Alcune passavano indisturbate (A) Alcune leggermente deflesse (B) Alcune rimbalzate indietro (C) Conclusione: Atomo costituito da un nucleo (+) in cui è concentrata la massa e da e - (-) all esterno del nucleo 1. Particella (più pesante dell e -!) collidente con gli e - : NO deviazione traiettoria 2. Particella passante vicino al nucleo: deviazione traiettoria di angoli variabili 3. Particella collidendo con il nucleo: repulsione

10 Fu il fatto più incredibile che mi fosse capitato Era così incredibile come se sparando un proiettile di 15 pollici su un foglio di carta esso tornasse indietro e vi colpisse

11 IL MODELLO ATOMICO DI RUTHERFORD (1911) La carica positiva e quasi tutta la massa sono racchiuse nel nucleo centrale Gli elettroni ruotano intorno al nucleo come i pianeti intorno al Sole Il nucleo è piccolissimo (10-15 m) in confronto al resto dell atomo (10-10 m) L atomo è praticamente vuoto +

12 I PROBLEMI DEL MODELLO PLANETARIO F Secondo Rutherford l elettrone si muoverebbe sulla sua orbita in equilibrio tra la forza elettrica di attrazione del nucleo e la forza centrifuga derivante dalla sua velocità v Una particella elettrica in movimento perde energia sotto forma di radiazioni elettromagnetiche L elettrone che perde energia si avvicina sempre di più al nucleo fino a caderci sopra Nella realtà ciò non avviene Il modello di Rutherford non giustifica quindi la stabilità dell atomo

13 LE ONDE Lunghezza d onda λ Ampiezza A λ λ λ

14 periodo T: intervallo di tempo in cui l onda compie un oscillazione completa frequenza : numero di oscillazioni complete che l onda compie in una secondo. L unità di misura della frequenza è lo Hertz (Hz) 1Hz = 1 ciclo al secondo Frequenza e periodo sono l uno l inverso dell altra, quindi: =1/T T=1/ velocità = spazio tempo per un onda velocità (v) = λ T quindi v = λ

15 ONDE MECCANICHE: hanno bisogno di un mezzo per propagarsi Le particelle del mezzo vibrano, oscillando intorno alla posizione di equilibrio Suono Onde del mare Terremoto

16 ONDE ELETTROMAGNETICHE: non hanno bisogno di un mezzo per propagarsi (si propagano anche nel vuoto) Un campo elettrico ed uno magnetico oscillano (variano) nello spazio in modo perpendicolare tra loro Hanno tutte la stessa velocità c = m/s (velocità della luce) Da ciò deriva che, essendo c = λ, per tutte le onde elettromagnetiche frequenza e lunghezza d onda sono tra loro inversamente proporzionali.

17 Interazioni radiazione elettromagnetica-materia: fondamentali per conoscere la struttura degli atomi e delle molecole Radiazione elettromagnetica: ONDA che si propaga alla velocità della luce Caratteristiche di un onda: (lunghezza d onda): distanza fra due massimi o minimi (frequenza): n di onde che passano in un punto in 1 secondo A(ampiezza): Altezza del max, indicativa dell intensità = f ( ; v) v: velocità di propagazione dell onda se v = c : LUCE = v /

18 L insieme delle radiazioni elettromagnetiche a diverse costituisce lo spettro elettromagnetico (Raggi cosmici-onde elettriche) Luce visibile: parte dello spettro percepibile con l occhio umano

19 SPETTROSCOPIA Intorno alla metà dell 800 Kirchoff inizia l analisi spettroscopica Gas e vapori riscaldati producono spettri di emissione a righe Gustav Kirchoff ( ) Gas e vapori freddi producono spettri di assorbimento a righe Gli spettri di emissione e di assorbimento sono complementari Le righe hanno una posizione (e quindi una lunghezza d onda) caratteristica della sostanza

20 L emissione di luce è prodotta dal movimento eccitatorio degli elettroni provocato dal calore La fisica dell 800 non è capace di spiegare gli spettri a righe LA TEORIA QUANTISTICA Nel 1900 Max Planck propone la quantizzazione dell energia Max Planck ( ) L energia non si trasferisce in modo continuo, ma per quantità discrete, dette quanti Per le onde elettromagnetiche l energia dei vari quanti dipende dalla lunghezza d onda della radiazione associata Legge di Planck E = h

21 MAX PLANCK (1900) : Teoria sulla quantizzazione dell Energia L Energia, come la materia, non puo essere suddivisa all infinito, ma fino a una certa quantità minima: il QUANTO QUANTO: La più piccola porzione che puo essere ottenuta dal processo di suddivisione dell Energia. In tutti i processi fisici l Energia puo essere emessa o assorbita solo in QUANTI o multipli di essi E = h h = costante di Planck 0.66 x J/s

22 Planck era tuttavia un fisico teorico e non approfondì quindi le possibili applicazioni della sua rivoluzionaria teoria Nel 1905 Einstein utilizza la teoria quantistica per spiegare l effetto fotoelettrico A qualsiasi onda luminosa è associabile un quanto, la cui energia dipende dalla frequenza, secondo la legge di Planck E = h Albert Einstein ( ) Un quanto di sufficiente energia, che colpisce un elettrone del metallo, lo mette in movimento come avviene in un urto tra le palle di un biliardo

23 Un onda elettromagnetica può essere in certi casi pensata come una particella, cui viene dato il nome di fotone La luce ha quindi una doppia natura: ondulatoria e corpuscolare DUALISMO ONDA-PARTICELLA E = mc 2 Equazione di Einstein E = h Legge di Planck mc 2 = h h Massa del m fotone 2 c Frequenza dell onda elettromagnetica

24 IL MODELLO ATOMICO DI BOHR (1913) Nils Bohr ( ) L elettrone non può stare a distanza qualsiasi dal nucleo, perché ruota intorno ad esso solo su orbite circolari determinate Il raggio delle orbite può assumere solo valori fissati, definiti da n (numero quantico principale, che assume solo valori interi) Maggiore è n, tanto più lontani dal nucleo ruotano gli elettroni e tanto più alta è la loro energia Quando l elettrone percorre una di queste orbite, dette orbite stazionarie, non emette, né assorbe energia: ecco perché non può cadere sul nucleo, come conseguiva invece dal modello di Rutherford

25 L elettrone assorbe o emette energia solo quando salta da un orbita all altra (salto quantico) Gli elettroni di ogni elemento scambiano solo l energia esattamente necessaria per passare da una all altra delle proprie orbite Salto quantico (caratteristico di ogni elemento) Energia (solo quella necessaria) Frequenza E = h Colori degli spettri Gli spettri di emissione e di assorbimento sono complementari L energia dell elettrone è quantizzata

26 Bohr dimostrò che non era possibile ricostruire la struttura dell atomo utilizzando solo la fisica classica, ma che era necessario ricorrere alla teoria quantistica Tuttavia il suo modello atomico valeva solo per il più semplice degli atomi (quello di idrogeno), mentre non era più capace di spiegare gli spettri degli appena più complessi L ELETTRONE: PARTICELLA O ONDA? Nel 1924 il fisico francese de Broglie, ribaltando la tesi di Einstein, sostiene che, se un onda luminosa corrisponde ad una particella (fotone), allora anche una particella (elettrone) corrisponde ad un onda elettromagnetica L. de Broglie ( ) Lunghezza dell onda λ h cm Massa dell elettrone

27 L onda è stazionaria, ovvero oscilla in modo costante, coprendo le orbite circolari di Bohr con un numero intero di lunghezze d onda Ciò tuttavia non risolve i limiti del modello di Bohr ed anzi introduce nuovi problemi: come stabilire la posizione dell elettrone-onda? Bohr aveva fatto un primo passo in avanti, sostenendo la quantizzazione dell energia dell elettrone; tuttavia continuava a immaginare il suo moto regolare e prevedibile, come quello dei pianeti intorno al Sole. La realtà dell atomo richiedeva invece passi ulteriori verso una nuova fisica. Nel mondo macroscopico, ad esempio, non abbiamo problemi nel calcolare contemporaneamente sia la velocità (e quindi l energia), che la posizione di un qualsiasi corpo.

28 IL PRINCIPIO DI INDETERMINAZIONE (1927) Non è possibile conoscere, in modo esatto, sia la posizione che l energia posseduta da un elettrone Se si misura con molta precisione una delle due grandezze, allora si commette un grosso errore nella misurazione dell altra W. Heisemberg ( ) x p h 4p x: errore sulla posizione p (p=mv): errore sulla velocità Ciò accade perché misurando si interferisce con la grandezza del sistema che vogliamo misurare Questo porta al definitivo superamento della concezione meccanicista dell atomo, ove l elettrone percorre traiettorie fisse con moto regolare.

29 E. Schrödinger ( ) L ORBITALE (1926) Il fisico austriaco Erwin Schrödinger, basandosi sugli studi di de Broglie, elabora una funzione matematica ( ) con cui si può calcolare la probabilità di trovare un elettrone di energia nota in una certa regione di spazio intorno al nucleo Dal modello deterministico, ove si riteneva possibile conoscere con dettaglio il moto dell elettrone in ogni momento, in base alla conoscenza delle forze fisiche che lo determinano, ad un modello probabilistico, basato sulla probabilità di trovare l elettrone in un dato volume di spazio intorno al nucleo I lavori di Schrödinger ed Heisemberg, segnano il definitivo superamento della meccanica classica riguarda la descrizione del mondo atomico. La nuova fisica che prenderà il suo posto, verrà chiamata meccanica quantistica.

30 Il moto dell elettrone è incessante e casuale e disegna intorno al nucleo una nube di densità elettronica, ove l intensità del colore segna la probabilità di incontrare l elettrone Orbitale: regione di spazio nella quale un certo elettrone trascorre il 90% del proprio tempo Le caratteristiche degli orbitali sono definite da tre numeri, chiamati numeri quantici Numero quantico principale n Può assumere tutti i valori interi compresi tra 1 e 7 1 livello 2 livello Da indicazioni sulle dimensioni e l energia degli orbitali Gli orbitali sono raccolti in livelli energetici nucleo 3 livello

31 Numero quantico secondario l Varia al variare di n, assumendo tutti i valori interi compresi tra 0 e n -1 Da indicazioni sulla forma degli orbitali l = 0 orbitali sferici (s) l = 1 orbitali a farfalla (p) Orbitale s l = 2 orbitali di forma complessa (d) Orbitale p l = 3 orbitali di forma complessa (f)

32 Numero quantico magnetico m Varia al variare di l, assumendo tutti i valori interi compresi tra l 0 e +l Da indicazioni sull orientamento ed il numero degli orbitali di una data forma (per ogni orientamento deve esserci un orbitale) Numero quantico di spin m s Assume solo due valori: + ½ e ½ E riferito all elettrone, non agli orbitali, ed indica il suo senso di rotazione su se stesso. Principio di esclusione di Pauli In ogni orbitale possono stare al massimo due elettroni che debbono avere spin opposto W. Pauli

33 Quadro riassuntivo sui numeri quantici Nome Simbolo Valori Significato Principale n 1..7 Dimensioni ed energia dell orbitale Angolare l 0.n-1 Forma dell orbitale Magnetico m - l 0 +l Orientamento e numero degli orbitali Spin m s + ½; ½ Senso di rotazione dell elettrone 1 livello energetico n = 1 n = 1 l = 0 m = 0 Un orbitale sferico Livello energetico 1S 2 Numero di elettroni presenti nell orbitale Tipo di orbitale

34 FUNZIONE DISTRIBUZIONE DI PROBABILITA Per l orbitale 1s la probabilità di trovare l e - è massima sul nucleo e decresce asintoticamente man mano che ci si allontana da esso

35 2 livello energetico n = 2 n = 2 l = 0 m = 0 Un orbitale sferico m = -1 l = 1 m = 0 m = 1 Tre orbitali a farfalla 2S 12 2p 6 Regola di Hund Avendo a disposizione orbitali con la stessa energia, di cui qualcuno semiriempito e qualcuno vuoto, un elettrone va ad occupare uno di quelli vuoti, disponendosi con spin parallelo a quello dell elettrone o degli elettroni già presenti

36 3 livello energetico n = 3 n = 3 l = 0 m = 0 Un orbitale sferico m = -1 l = 1 m = 0 m = 1 m = -2 Tre orbitali a farfalla 3S 2 3p 6 m = -1 l = 2 m = 0 m = 1 m = 2 cinque orbitali d 3d 10

37 4 livello energetico n = 4 n = 4 l = 0 m = 0 Un orbitale sferico m = -1 Tre l = 1 m = 0 orbitali a m = 1 farfalla m = -2 m = -1 cinque orbitali d l = 2 m = 0 m = 1 m = 2 4S 2 4p 6 4d 10 m = -3 m = -2 m = -1 l = 3 m = 0 m = 1 m = 2 m = 3 sette orbitali f 4f 14

38 l=1; m=-1; 0; +1 3 possibili orientazioni Orbitali p (p x, p y, p z )

39 l = 3 m = -2; -1; 0; +1; +2 5 orbilati di tipo d

40 Quadro riassuntivo sui livelli energetici e sugli orbitali Livello energetico n l m Tipo N nome Primo S 1 1S Secondo S 1 2S 1-1,0,+1 p 3 2p 0 0 S 1 3S Terzo 3 1-2,-1,0,+1,2 p 3 3p 2-1,0,+1 d 5 3d 0 0 S 1 4S Quarto 4 1-1,0,+1 p 3 4p 2-2,-1,0,+1,2 d 5 4d 3-3,-2,-1,0,+1,2,3 f 7 4f

41 IL RIEMPIMENTO DEGLI ORBITALI Inizia dagli orbitali più vicini al nucleo, che sono anche quelli con minore energia Deve rispettare il principio di Pauli e la regola di Hund Entro uno stesso livello energetico si riempiono prima gli orbitali con l minore Tuttavia da un certo punto in poi le cose si complicano 1s, 2s, 2p, 3s, 3p, 4s, 3d; 4p, 5s, 4d, 5p, 6s, 4f, 5d, 6p, 7s, 5f, 6d

42

43 LA CONFIGURAZIONE ELETTRONICA ovvero il modo in cui gli elettroni si dispongono negli orbitali Ogni atomo si caratterizza per il proprio numero atomico Z (numero dei protoni e degli elettroni) La configurazione elettronica di un atomo si ottiene facendone il riempimento col numero di elettroni che gli competono in base al numero atomico Configurazione elettronica esterna: configurazione dell ultimo livello energetico (il più esterno) Configurazione elettronica interna: configurazione dei livelli energetici che stanno sotto all ultimo livello (più all interno di questo) La configurazione elettronica esterna è molto più importante di quella interna, perché gli atomi interagiscono tra di loro solo attraverso gli elettroni più esterni Dalla configurazione elettronica esterna di un atomo dipende il suo comportamento chimico: con chi reagisce, come reagisce, quali composti forma

44 CONFIGURAZIONE ELETTRONICA Costruzione degli atomi e loro struttura elettronica: AUFBAU Regole da tener presente: 1. Gli elettroni tendono sempre a occupare orbitali disponibili in ordine di energia crescente 2. Un orbitale non puo essere occupato da più di 2 elettroni 3. Due elettroni nello stesso orbitale devono avere spin opposto (Principio di esclusione di Pauli) 4. Gli elettroni tendono ad occupare il n massimo di orbitali disponibili con uguale energia

45 Nome Simbolo Z Configurazione elettronica 1 livello energetico Idrogeno H 1 1S 1 Elio He 2 1S 2 2 livello energetico Litio Li 3 1S 2 2S 1 Berillio Be 4 1S 2 2S 2 Boro B 5 1S 2 2S 2 2p 1 Carbonio C 6 1S 2 2S 2 2p 2 Azoto N 7 1S 2 2S 2 2p 3 Ossigeno O 8 1S 2 2S 2 2p 4 Fluoro F 9 1S 2 2S 2 2p 5 Neon Ne 10 1S 2 2S 2 2p 6

IL MODELLO ATOMICO DI BOHR

IL MODELLO ATOMICO DI BOHR IL MODELLO ATOMICO DI BOHR LA LUCE Un valido contributo alla comprensione della struttura dell atomo venne dato dallo studio delle radiazioni luminose emesse dagli atomi opportunamente sollecitati. Lo

Dettagli

Tabella periodica degli elementi

Tabella periodica degli elementi Tabella periodica degli elementi Perchè ha questa forma? Ovvero, esiste una regola per l ordinamento dei singoli atomi? Le proprietà dei materiali hanno una relazione con la tabella? L applicazione dei

Dettagli

MODELLI ATOMICI. Modello Atomico di Dalton

MODELLI ATOMICI. Modello Atomico di Dalton MODELLI ATOMICI Gli atomi sono i piccoli mattoni che compongono la materia. Circa 2500 anni fa, il filosofo DEMOCRITO credeva che tutta la materia fosse costituita da piccole particelle che chiamò atomi.

Dettagli

Da Newton a Planck. La struttura dell atomo. Da Newton a Planck. Da Newton a Planck. Meccanica classica (Newton): insieme

Da Newton a Planck. La struttura dell atomo. Da Newton a Planck. Da Newton a Planck. Meccanica classica (Newton): insieme Da Newton a Planck Meccanica classica (Newton): insieme La struttura dell atomo di leggi che spiegano il mondo fisico fino alla fine del XIX secolo Prof.ssa Silvia Recchia Quantomeccanica (Planck): insieme

Dettagli

I modelli atomici da Dalton a Bohr

I modelli atomici da Dalton a Bohr 1 Espansione 2.1 I modelli atomici da Dalton a Bohr Modello atomico di Dalton: l atomo è una particella indivisibile. Modello atomico di Dalton Nel 1808 John Dalton (Eaglesfield, 1766 Manchester, 1844)

Dettagli

May 5, 2013. Fisica Quantistica. Monica Sambo. Sommario

May 5, 2013. Fisica Quantistica. Monica Sambo. Sommario May 5, 2013 Bohr, Born,, Dirac e Pauli accettano in modo incondizionato la nuova fisica Einstein, De, e pur fornendo importanti contributi alla nuova teoria cercano di ottenere una descrizione CAUSALE

Dettagli

Struttura Elettronica degli Atomi

Struttura Elettronica degli Atomi Prof. A. Martinelli Struttura Elettronica degli Atomi Dipartimento di Farmacia 1 La Natura ondulatoria della luce - La luce visibile è una piccola parte dello spettro delle onde elettromagnetiche. 1 La

Dettagli

1. La natura elettrica della materia 2. La scoperta delle proprietà elettriche 3. Le particelle fondamentali dell atomo 4. La scoperta dell elettrone

1. La natura elettrica della materia 2. La scoperta delle proprietà elettriche 3. Le particelle fondamentali dell atomo 4. La scoperta dell elettrone Unità n 7 Le particelle dell atomo 1. La natura elettrica della materia 2. La scoperta delle proprietà elettriche 3. Le particelle fondamentali dell atomo 4. La scoperta dell elettrone 5. L esperimento

Dettagli

Gli orbitali: modello atomico probabilistico

Gli orbitali: modello atomico probabilistico 1 Approfondimento 2.1 Gli orbitali: modello atomico probabilistico Modello atomico planetario (o a gusci): gli elettroni ruotano intorno al nucleo percorrendo orbite prefissate. Il modello atomico planetario

Dettagli

Capitolo 7 Le particelle dell atomo

Capitolo 7 Le particelle dell atomo Capitolo 7 Le particelle dell atomo 1. La natura elettrica della materia 2. La scoperta delle proprietà elettriche 3. Le particelle fondamentali dell atomo 4. La scoperta dell elettrone 5. L esperimento

Dettagli

PARTICELLE SUBATOMICHE

PARTICELLE SUBATOMICHE MODELLI ATOMICI Il cammino per arrivare alla moderna teoria atomica è stato lungo e complesso: ogni nuova scoperta faceva venire alla luce anche nuovi problemi, che dovevano essere affrontati e risolti;

Dettagli

LE ONDE E I FONDAMENTI DELLA TEORIA QUANTISTICA

LE ONDE E I FONDAMENTI DELLA TEORIA QUANTISTICA LE ONDE E I FONDAMENTI DELLA TEORIA QUANTISTICA I PROBLEMI DEL MODELLO PLANETARIO F Secondo Rutherford l elettrone si muoverebbe sulla sua orbita in equilibrio tra la forza elettrica di attrazione del

Dettagli

Il metodo scientifico

Il metodo scientifico Il metodo scientifico Osservazioni Legge Teoria Teoria controllata con altri esperimenti Teoria modificata in base alle verifiche Gli stadi fondamentali del metodo scientifico 1 Leggi ponderali Legge della

Dettagli

EMISSIONE E ASSORBIMENTO DI LUCE DA PARTE DELLA MATERIA

EMISSIONE E ASSORBIMENTO DI LUCE DA PARTE DELLA MATERIA EMISSIONE E ASSORBIMENTO DI LUCE DA PARTE DELLA MATERIA Poiché la luce è energia trasportata da oscillazioni del campo elettrico (fotoni) e la materia è fatta di particelle elettricamente cariche (atomi

Dettagli

Spettrofotometria. Le onde luminose consistono in campi magnetici e campi elettrici oscillanti, fra loro perpendicolari.

Spettrofotometria. Le onde luminose consistono in campi magnetici e campi elettrici oscillanti, fra loro perpendicolari. Spettrofotometria. Con questo termine si intende l utilizzo della luce nella misura delle concentrazioni chimiche. Per affrontare questo argomento dovremo conoscere: Natura e proprietà della luce. Cosa

Dettagli

LA STRUTTURA DELL ATOMO 4.A PRE-REQUISITI 4.B PRE-TEST 4.6 ENERGIE DI IONIZZAZIONE E DISTRIBUZIONE DEGLI ELETTRONI 4.C OBIETTIVI

LA STRUTTURA DELL ATOMO 4.A PRE-REQUISITI 4.B PRE-TEST 4.6 ENERGIE DI IONIZZAZIONE E DISTRIBUZIONE DEGLI ELETTRONI 4.C OBIETTIVI LA STRUTTURA DELL ATOMO 4.A PRE-REQUISITI 4.B PRE-TEST 4.C OBIETTIVI 4.1 UNO SGUARDO ALLA STORIA 4.2 L ATOMO DI BOHR (1913) 4.5.2 PRINCIPIO DELLA MASSIMA MOLTEPLICITA (REGOLA DI HUND) 4.5.3 ESERCIZI SVOLTI

Dettagli

STRUTTURA DELL'ATOMO

STRUTTURA DELL'ATOMO STRUTTURA DELL'ATOMO Vari esperimenti condotti fra la fine del 1800 e l inizio del 1900 dimostrarono che gli atomi non sono indivisibili, ma costituiti da particelle più piccole (elementari). PARTICELLE

Dettagli

MODELLI ATOMICI. Dai primi modelli alla teoria moderna

MODELLI ATOMICI. Dai primi modelli alla teoria moderna MODELLI ATOMICI Dai primi modelli alla teoria moderna Se numerose evidenze sperimentali avevano permesso di trovare l'esistenza delle particelle subatomiche, le loro dimensioni, così infinitamente piccole,

Dettagli

Dai primi modelli atomici alla teoria moderna

Dai primi modelli atomici alla teoria moderna Dai primi modelli atomici alla teoria moderna 1 Se numerose evidenze sperimentali avevano permesso di trovare l'esistenza delle particelle subatomiche, le loro dimensioni, così infinitamente piccole, non

Dettagli

Natura della luce. Qualsiasi tipo di onda è caratterizzato da:

Natura della luce. Qualsiasi tipo di onda è caratterizzato da: Natura della luce James C. Maxwell (1831-79) dimostrò che tutte le proprietà note della luce erano spiegabili attraverso un insieme di equazioni basate sull ipotesi che la luce fosse un onda elettromagnetica

Dettagli

1 Giochi d ombra [Punti 10] 2 Riscaldatore elettrico [Punti 10] AIF Olimpiadi di Fisica 2015 Gara di 2 Livello 13 Febbraio 2015

1 Giochi d ombra [Punti 10] 2 Riscaldatore elettrico [Punti 10] AIF Olimpiadi di Fisica 2015 Gara di 2 Livello 13 Febbraio 2015 1 Giochi d ombra [Punti 10] Una sorgente di luce rettangolare, di lati b e c con b > c, è fissata al soffitto di una stanza di altezza L = 3.00 m. Uno schermo opaco quadrato di lato a = 10cm, disposto

Dettagli

LA MATERIA MATERIA. COMPOSIZIONE (struttura) Atomi che la compongono

LA MATERIA MATERIA. COMPOSIZIONE (struttura) Atomi che la compongono LA MATERIA 1 MATERIA PROPRIETÀ (caratteristiche) COMPOSIZIONE (struttura) FENOMENI (trasformazioni) Stati di aggregazione Solido Liquido Aeriforme Atomi che la compongono CHIMICI Dopo la trasformazione

Dettagli

Liceo Scientifico Statale A. Volta, Torino Anno scolastico 2015 / 2016

Liceo Scientifico Statale A. Volta, Torino Anno scolastico 2015 / 2016 Liceo Scientifico Statale A. Volta, Torino Anno scolastico 2015 / 2016 FISICA ELETTROMAGNETISMO FISICA MODERNA classe 5 B MAG. 2016 Esercitazione di Fisica in preparazione all Esame di Stato A.S. 2015-2016

Dettagli

LA NATURA DELLA LUCE E IL MODELLO ATOMICO DI BOHR

LA NATURA DELLA LUCE E IL MODELLO ATOMICO DI BOHR LA NATURA DELLA LUCE E IL MODELLO ATOMICO DI BOHR LIMITI DEL MODELLO ATOMICO DI RUTHERFORD Il modello atomico planetario di Ernest Rutherford, seppure rappresentava un grande passo avanti rispetto al modello

Dettagli

L ATOMO. Risponde (o almeno ci prova)

L ATOMO. Risponde (o almeno ci prova) L ATOMO Di cosa sono fatte le cose? Come si è arrivati a capire gli atomi? Com è fatto un atomo? Quanto è grande un atomo? Che atomi esistono in natura? Perché esistono gli atomi? Risponde (o almeno ci

Dettagli

FISICA E LABORATORIO

FISICA E LABORATORIO Programma di FISICA E LABORATORIO Anno Scolastico 2014-2015 Classe V P indirizzo OTTICO Docente Giuseppe CORSINO Programma di FISICA E LABORATORIO Anno Scolastico 2013-2014 Classe V P indirizzo OTTICO

Dettagli

1-LA FISICA DEI CAMPI ELETTRICI E MAGNETICI.

1-LA FISICA DEI CAMPI ELETTRICI E MAGNETICI. 1-LA FISICA DEI CAMPI ELETTRICI E MAGNETICI. Tutti i fenomeni elettrici e magnetici hanno origine da cariche elettriche. Per comprendere a fondo la definizione di carica elettrica occorre risalire alla

Dettagli

ENERGIA SOLARE: Centrali fotovoltaiche e termosolari. Istituto Paritario Scuole Pie Napoletane - Anno Scolastico 2012-13 -

ENERGIA SOLARE: Centrali fotovoltaiche e termosolari. Istituto Paritario Scuole Pie Napoletane - Anno Scolastico 2012-13 - ENERGIA SOLARE: Centrali fotovoltaiche e termosolari L A V E R A N A T U R A D E L L A L U C E La luce, sia naturale sia artificiale, è una forma di energia fondamentale per la nostra esistenza e per quella

Dettagli

Tutte le tecniche spettroscopiche si basano sulla interazione tra radiazione elettromagnetica e materia.

Tutte le tecniche spettroscopiche si basano sulla interazione tra radiazione elettromagnetica e materia. G. Digilio - principi_v10 versione 6.0 LA SPETTROSCOPIA Tutte le tecniche spettroscopiche si basano sulla interazione tra radiazione elettromagnetica e materia. La Spettroscopia di risonanza magnetica

Dettagli

Riepilogo programma di Chimica Ginnasio Anno scolastico 2011/2012

Riepilogo programma di Chimica Ginnasio Anno scolastico 2011/2012 Riepilogo programma di Chimica Ginnasio Anno scolastico 2011/2012 Misure e grandezze Grandezze fondamentali Grandezza fisica Simbolo della grandezza Unità di misura Simbolo dell unità di misura lunghezza

Dettagli

Introduzione alla Meccanica Quantistica. Fausto Borgonovi

Introduzione alla Meccanica Quantistica. Fausto Borgonovi Introduzione alla Meccanica Quantistica Fausto Borgonovi Dipartimento di Matematica e Fisica e i.l.a.m.p. Universitá Cattolica, via Musei 41, BRESCIA Istituto Nazionale di Fisica Nucleare, PAVIA fausto.borgonovi@unicatt.it

Dettagli

Esempio Esame di Fisica Generale I C.d.L. ed.u. Informatica

Esempio Esame di Fisica Generale I C.d.L. ed.u. Informatica Esempio Esame di Fisica Generale I C.d.L. ed.u. Informatica Nome: N.M.: 1. 1d (giorno) contiene all incirca (a) 8640 s; (b) 9 10 4 s; (c) 86 10 2 s; (d) 1.44 10 3 s; (e) nessuno di questi valori. 2. Sono

Dettagli

ESAME DI STATO DI LICEO SCIENTIFICO - SCIENTIFICO TECNOLOGICO 2010 Corso Sperimentale Progetto Brocca Tema di Fisica

ESAME DI STATO DI LICEO SCIENTIFICO - SCIENTIFICO TECNOLOGICO 2010 Corso Sperimentale Progetto Brocca Tema di Fisica ESAME DI STATO DI LICEO SCIENTIFICO - SCIENTIFICO TECNOLOGICO 2010 Corso Sperimentale Progetto Brocca Tema di Fisica La prova Il candidato svolga una relazione su uno solo dei seguenti due temi, a sua

Dettagli

LE ONDE. Le onde Fisica Medica Lauree triennali nelle Professioni Sanitarie. P.Montagna gen-08. pag.1

LE ONDE. Le onde Fisica Medica Lauree triennali nelle Professioni Sanitarie. P.Montagna gen-08. pag.1 LE ONDE Fenomeni ondulatori Periodo e frequenza Lunghezza d onda e velocità Legge di propagazione Energia trasportata Onde meccaniche: il suono Onde elettromagnetiche Velocità della luce Spettro elettromagnetico

Dettagli

Fisica II - CdL Chimica. La natura della luce Ottica geometrica Velocità della luce Dispersione Fibre ottiche

Fisica II - CdL Chimica. La natura della luce Ottica geometrica Velocità della luce Dispersione Fibre ottiche La natura della luce Ottica geometrica Velocità della luce Dispersione Fibre ottiche La natura della luce Teoria corpuscolare (Newton) Teoria ondulatoria: proposta già al tempo di Newton, ma scartata perchè

Dettagli

Legge di Faraday. x x x x x x x x x x E B. x x x x x x x x x x R x x x x x x x x x x. x x x x x x x x x x. x x x x x x x x x x E B 1

Legge di Faraday. x x x x x x x x x x E B. x x x x x x x x x x R x x x x x x x x x x. x x x x x x x x x x. x x x x x x x x x x E B 1 B ds Legge di Faraday E x x x x x x x x x x E B x x x x x x x x x x R x x x x x x x x x x B 1 x x x x x x x x x x E x x x x x x x x x x E Schema Generale Elettrostatica moto di una carica q in un campo

Dettagli

La corrente elettrica

La corrente elettrica PROGRAMMA OPERATIVO NAZIONALE Fondo Sociale Europeo "Competenze per lo Sviluppo" Obiettivo C-Azione C1: Dall esperienza alla legge: la Fisica in Laboratorio La corrente elettrica Sommario 1) Corrente elettrica

Dettagli

Com è fatto l atomo ATOMO. UNA VOLTA si pensava che l atomo fosse indivisibile. OGGI si pensa che l atomo è costituito da tre particelle

Com è fatto l atomo ATOMO. UNA VOLTA si pensava che l atomo fosse indivisibile. OGGI si pensa che l atomo è costituito da tre particelle STRUTTURA ATOMO Com è fatto l atomo ATOMO UNA VOLTA si pensava che l atomo fosse indivisibile OGGI si pensa che l atomo è costituito da tre particelle PROTONI particelle con carica elettrica positiva e

Dettagli

Matematica e teoria musicale 1

Matematica e teoria musicale 1 Matematica e teoria musicale 1 Stefano Isola Università di Camerino stefano.isola@unicam.it Il suono Il fine della musica è dilettare e muovere in noi diversi sentimenti, il mezzo per raggiungere tale

Dettagli

Capitolo 4 Le spettroscopie. 1. Lo spettro elettromagnetico

Capitolo 4 Le spettroscopie. 1. Lo spettro elettromagnetico Capitolo 4 Le spettroscopie 1. Lo spettro elettromagnetico 2) Tipi di spettroscopia Emissione: transizione da livello superiore a livello inferiore Assorbimento: contrario 2.1 Spettroscopie rotazionali,

Dettagli

Per dare una risposta al quesito che abbiamo posto, consideriamo il sistema schematizzato in figura.

Per dare una risposta al quesito che abbiamo posto, consideriamo il sistema schematizzato in figura. Verifica dei postulati di Einstein sulla velocità della luce, osservazioni sull esperimento di Michelson e Morley Abbiamo visto che la necessità di introdurre un mezzo come l etere nasceva dalle evidenze

Dettagli

Effetto fotoelettrico

Effetto fotoelettrico Effetto fotoelettrico Introduzione. Verso la seconda metà del XIX secolo c era la convinzione che la meccanica "classica" (Newton e sviluppi successivi), l elettromagnetismo (sostanzialmente riassunto

Dettagli

Indice PREFAZIONE. Capitolo 5 LE LEGGI DEL MOTO DI NEWTON 58 5.1 La terza legge di Newton 58

Indice PREFAZIONE. Capitolo 5 LE LEGGI DEL MOTO DI NEWTON 58 5.1 La terza legge di Newton 58 Indice PREFAZIONE XV Capitolo 1 RICHIAMI DI MATEMATICA 1 1.1 Simboli, notazione scientifica e cifre significative 1 1.2 Algebra 3 1.3 Geometria e trigonometria 5 1.4 Vettori 7 1.5 Sviluppi in serie e approssimazioni

Dettagli

Carlo Cosmelli. La visione del mondo della Relatività e della Meccanica Quantistica. Settimana 5. Lezione 5.1 La funzione d onda I parte

Carlo Cosmelli. La visione del mondo della Relatività e della Meccanica Quantistica. Settimana 5. Lezione 5.1 La funzione d onda I parte La visione del mondo della Relatività e della Meccanica Quantistica Settimana 5 Lezione 5.1 La funzione d onda I parte Carlo Cosmelli 1 Riassunto al 1924 Quindi: 1900 - Planck: lo scambio di Energia [onda

Dettagli

I fotoni sono le particelle di luce che possiedono un energia E che dipende dalla frequenza ν in base alla relazione di Plank: E = hν

I fotoni sono le particelle di luce che possiedono un energia E che dipende dalla frequenza ν in base alla relazione di Plank: E = hν 3. Natura quantistica di fotoni e particelle materiali Le particelle utilizzate per studiare i mezzi materiali obbediscono alle regole della meccanica quantistica. La loro natura perciò è duale, nel senso

Dettagli

Termologia. Introduzione Scale Termometriche Espansione termica Capacità termica e calori specifici Cambiamenti di fase e calori latenti

Termologia. Introduzione Scale Termometriche Espansione termica Capacità termica e calori specifici Cambiamenti di fase e calori latenti Termologia Introduzione Scale Termometriche Espansione termica Capacità termica e calori specifici Cambiamenti di fase e calori latenti Trasmissione del calore Legge di Wien Legge di Stefan-Boltzmann Gas

Dettagli

Che cosa è la fisica? Per arrivare ad una legge fisica si fa un insieme di cose pratiche (procedura) che si chiama metodo scientifico.

Che cosa è la fisica? Per arrivare ad una legge fisica si fa un insieme di cose pratiche (procedura) che si chiama metodo scientifico. 01 Che cosa è la fisica? In questa lezione iniziamo a studiare questa materia chiamata fisica. Spesso ti sarai fatto delle domande su come funziona il mondo e le cose che stanno attorno a te. Il compito

Dettagli

LE ONDE CLASSE DELLE LAUREE TRIENNALI DELLE PROFESSIONI SANITARIE DELLA RIABILITAZIONE. A. A. 2015-2016 Fabrizio Le Boffelli onde. P.

LE ONDE CLASSE DELLE LAUREE TRIENNALI DELLE PROFESSIONI SANITARIE DELLA RIABILITAZIONE. A. A. 2015-2016 Fabrizio Le Boffelli onde. P. CLASSE DELLE LAUREE TRIENNALI DELLE PROFESSIONI SANITARIE DELLA RIABILITAZIONE LE ONDE A. A. 2015-2016 Fabrizio Le Boffelli onde pag.1 LE ONDE Fenomeni ondulatori Periodo e frequenza Lunghezza d onda e

Dettagli

Unità Didattica 1. La radiazione di Corpo Nero

Unità Didattica 1. La radiazione di Corpo Nero Diapositiva 1 Unità Didattica 1 La radiazione di Corpo Nero Questa unità contiene informazioni sulle proprietà del corpo nero, fondamentali per la comprensione dei meccanismi di emissione delle sorgenti

Dettagli

Si arrivò a dimostrare l esistenza di una forma elementare della materia (atomo) solo nel 1803 (John Dalton)

Si arrivò a dimostrare l esistenza di una forma elementare della materia (atomo) solo nel 1803 (John Dalton) Atomi 16 Si arrivò a dimostrare l esistenza di una forma elementare della materia (atomo) solo nel 1803 (John Dalton) 17 Teoria atomica di Dalton Si basa sui seguenti postulati: 1. La materia è formata

Dettagli

TERZA LEZIONE (4 ore): INTERAZIONE MAGNETICA

TERZA LEZIONE (4 ore): INTERAZIONE MAGNETICA TERZA LEZIONE (4 ore): INTERAZIONE MAGNETICA Evidenza dell interazione magnetica; sorgenti delle azioni magnetiche; forze tra poli magnetici, il campo magnetico Forza magnetica su una carica in moto; particella

Dettagli

INDICE CARICA ELETTRICA E LEGGE DI COULOMB 591 ENERGIA POTENZIALE E POTENZIALI ELETTRICI 663 CAMPO ELETTRICO 613 PROPRIETÀ ELETTRICHE DELLA MATERIA 93

INDICE CARICA ELETTRICA E LEGGE DI COULOMB 591 ENERGIA POTENZIALE E POTENZIALI ELETTRICI 663 CAMPO ELETTRICO 613 PROPRIETÀ ELETTRICHE DELLA MATERIA 93 INDICE CAPITOLO 25 CARICA ELETTRICA E LEGGE DI COULOMB 591 25.1 Elettromagnetismo: presentazione 591 25.2 Carica elettrica 592 25.3 Conduttori e isolanti 595 25.4 Legge di Coulomb 597 25.5 Distribuzioni

Dettagli

RIASSUNTO DI FISICA 3 a LICEO

RIASSUNTO DI FISICA 3 a LICEO RIASSUNTO DI FISICA 3 a LICEO ELETTROLOGIA 1) CONCETTI FONDAMENTALI Cariche elettriche: cariche elettriche dello stesso segno si respingono e cariche elettriche di segno opposto si attraggono. Conduttore:

Dettagli

PROGRAMMA SVOLTO. a.s. 2012/2013

PROGRAMMA SVOLTO. a.s. 2012/2013 Liceo Scientifico Statale LEONARDO DA VINCI Via Cavour, 6 Casalecchio di Reno (BO) - Tel. 051/591868 051/574124 - Fax 051/6130834 C. F. 92022940370 E-mail: LSLVINCI@IPERBOLE.BOLOGNA.IT PROGRAMMA SVOLTO

Dettagli

19 Il campo elettrico - 3. Le linee del campo elettrico

19 Il campo elettrico - 3. Le linee del campo elettrico Moto di una carica in un campo elettrico uniforme Il moto di una particella carica in un campo elettrico è in generale molto complesso; il problema risulta più semplice se il campo elettrico è uniforme,

Dettagli

Induzione magnetica. Corrente indotta. Corrente indotta. Esempio. Definizione di flusso magnetico INDUZIONE MAGNETICA E ONDE ELETTROMAGNETICHE

Induzione magnetica. Corrente indotta. Corrente indotta. Esempio. Definizione di flusso magnetico INDUZIONE MAGNETICA E ONDE ELETTROMAGNETICHE Induzione magnetica INDUZIONE MAGNETICA E ONDE ELETTROMAGNETICHE Che cos è l induzione magnetica? Si parla di induzione magnetica quando si misura una intensità di corrente diversa da zero che attraversa

Dettagli

Le Caratteristiche della Luce

Le Caratteristiche della Luce 7. L Atomo Le Caratteristiche della Luce Quanti e Fotoni Spettri Atomici e Livelli Energetici L Atomo di Bohr I Modelli dell Atomo - Orbitali atomici - I numeri quantici e gli orbitali atomici - Lo spin

Dettagli

Lezione 14: L energia

Lezione 14: L energia Lezione 4 - pag. Lezione 4: L energia 4.. L apologo di Feynman In questa lezione cominceremo a descrivere la grandezza energia. Per iniziare questo lungo percorso vogliamo citare, quasi parola per parola,

Dettagli

Lunedì 20 dicembre 2010. Docente del corso: prof. V. Maiorino

Lunedì 20 dicembre 2010. Docente del corso: prof. V. Maiorino Lunedì 20 dicembre 2010 Docente del corso: prof. V. Maiorino Se la Terra si spostasse all improvviso su un orbita dieci volte più lontana dal Sole rispetto all attuale, di quanto dovrebbe variare la massa

Dettagli

Radiazione elettromagnetica

Radiazione elettromagnetica Radiazione elettromagnetica Un onda e.m. e un onda trasversa cioe si propaga in direzione ortogonale alle perturbazioni ( campo elettrico e magnetico) che l hanno generata. Nel vuoto la velocita di propagazione

Dettagli

Corso di fisica generale con elementi di fisica tecnica

Corso di fisica generale con elementi di fisica tecnica Corso di fisica generale con elementi di fisica tecnica Aniello (Daniele) Mennella Dipartimento di Fisica Secondo modulo Parte prima (fondamenti di elettromagnetismo) Lezione 3 Campi magnetici e forza

Dettagli

Esercizi su elettrostatica, magnetismo, circuiti elettrici, interferenza e diffrazione

Esercizi su elettrostatica, magnetismo, circuiti elettrici, interferenza e diffrazione Esercizi su elettrostatica, magnetismo, circuiti elettrici, interferenza e diffrazione 1. L elettrone ha una massa di 9.1 10-31 kg ed una carica elettrica di -1.6 10-19 C. Ricordando che la forza gravitazionale

Dettagli

IL FOTOVOLTAICO E L ARCHITETTURA

IL FOTOVOLTAICO E L ARCHITETTURA IL FOTOVOLTAICO E L ARCHITETTURA Prof. Paolo ZAZZINI Ing. Nicola SIMIONATO COME FUNZIONA UNA CELLA FOTOVOLTAICA EFFETTO FOTOVOLTAICO: Un flusso luminoso che incide su un materiale semiconduttore opportunamente

Dettagli

APPUNTI DI RISONANZA MAGNETICA NUCLEARE Dr. Claudio Santi. CAPITOLO 1 NMR Risonanza Magnetica Nucleare

APPUNTI DI RISONANZA MAGNETICA NUCLEARE Dr. Claudio Santi. CAPITOLO 1 NMR Risonanza Magnetica Nucleare APPUNTI DI RISONANZA MAGNETICA NUCLEARE Dr. Claudio Santi CAPITOLO 1 NMR Risonanza Magnetica Nucleare INTRODUZIONE Nel 1946 due ricercatori, F. Block ed E.M.Purcell, hanno indipendentemente osservato per

Dettagli

Q 1 = +3 10-5 C carica numero 1 Q 2 = +4 10-5 C carica numero 2 forza esercitata tra le cariche distanza tra le cariche, incognita

Q 1 = +3 10-5 C carica numero 1 Q 2 = +4 10-5 C carica numero 2 forza esercitata tra le cariche distanza tra le cariche, incognita Problema n 1 A quale distanza, una dall'altra bisogna porre nel vuoto due cariche (Q 1 =3 10-5 C e Q 2 =4 10-5 C) perché esse esercitino una sull'altra la forza di 200 N? Q 1 = +3 10-5 C carica numero

Dettagli

4 La Polarizzazione della Luce

4 La Polarizzazione della Luce 4 La Polarizzazione della Luce Per comprendere il fenomeno della polarizzazione è necessario tenere conto del fatto che il campo elettromagnetico, la cui variazione nel tempo e nello spazio provoca le

Dettagli

Relatività INTRODUZIONE

Relatività INTRODUZIONE Relatività INTRODUZIONE Un po di ordine Einstein, nel 1905, dopo aver inviato alcuni articoli alla rivista scientifica «Annalen der physik» diventa subito famoso, uno dei quali riguardava la relatività

Dettagli

Esploriamo la chimica

Esploriamo la chimica 1 Valitutti, Tifi, Gentile Esploriamo la chimica Seconda edizione di Chimica: molecole in movimento Capitolo 8 La struttura dell atomo 1. La doppia natura della luce 2. L atomo di Bohr 3. Il modello atomico

Dettagli

Introduzione alle tecniche spettroscopiche e all interazione radiazione/materia. Francesco Nobili

Introduzione alle tecniche spettroscopiche e all interazione radiazione/materia. Francesco Nobili Introduzione alle tecniche spettroscopiche e all interazione radiazione/materia Francesco Nobili TECNICHE SPETTROSCOPICHE Le tecniche spettroscopiche sono tecniche analitiche basate sull interazione tra

Dettagli

IL LASER. Principio di funzionamento.

IL LASER. Principio di funzionamento. IL LASER Acronimo di Light Amplification by Stimulated Emission of Radiation (amplificazione di luce per mezzo di emissione stimolata di radiazione), è un amplificatore coerente di fotoni, cioè un dispositivo

Dettagli

Queste note non vogliono essere esaustive, ma solo servire come linee guida per le lezioni

Queste note non vogliono essere esaustive, ma solo servire come linee guida per le lezioni Alessandro Farini: note per le lezioni di ottica del sistema visivo Queste note non vogliono essere esaustive, ma solo servire come linee guida per le lezioni 1 Lo spettro elettromagnetico La radiazione

Dettagli

LA LEGGE DI GRAVITAZIONE UNIVERSALE

LA LEGGE DI GRAVITAZIONE UNIVERSALE GRAVIMETRIA LA LEGGE DI GRAVITAZIONE UNIVERSALE r La legge di gravitazione universale, formulata da Isaac Newton nel 1666 e pubblicata nel 1684, afferma che l'attrazione gravitazionale tra due corpi è

Dettagli

Corso di fisica generale con elementi di fisica tecnica

Corso di fisica generale con elementi di fisica tecnica Corso di fisica generale con elementi di fisica tecnica Aniello (Daniele) Mennella Dipartimento di Fisica Secondo modulo Parte prima (fondamenti di elettromagnetismo) Lezione 1 Carica elettrica, legge

Dettagli

La teoria atomica moderna: il modello planetario L ELETTRONE SI MUOVE LUNGO UN ORBITA INTORNO AL NUCLEO

La teoria atomica moderna: il modello planetario L ELETTRONE SI MUOVE LUNGO UN ORBITA INTORNO AL NUCLEO La teoria atomica moderna: il modello planetario L ELETTRONE SI MUOVE LUNGO UN ORBITA INTORNO AL NUCLEO La luce La LUCE è una forma di energia detta radiazione elettromagnetica che si propaga nello spazio

Dettagli

LICEO SCIENTIFICO VITO VOLTERRA

LICEO SCIENTIFICO VITO VOLTERRA LICEO SCIENTIFICO VITO VOLTERRA DIPARTIMENTO DI FISICA ORIETTA DI BIAGIO Penso si possa tranquillamente affermare che nessuno capisce la meccanica quantistica Richard P. Feynman Premio Nobel nel 1963 Quelli

Dettagli

isolanti e conduttori

isolanti e conduttori 1. ELETTROMAGNETISMO 1.1. Carica elettrica 1.1.1. Storia: Franklin Thomson Rutherford Millikan 1.1.2. L atomo: struttura elettroni di valenza (legame metallico) isolanti e conduttori ATOMO legge di conservazione

Dettagli

L atomo. Il neutrone ha una massa 1839 volte superiore a quella dell elettrone. 3. Le particelle fondamentali dell atomo

L atomo. Il neutrone ha una massa 1839 volte superiore a quella dell elettrone. 3. Le particelle fondamentali dell atomo L atomo 3. Le particelle fondamentali dell atomo Gli atomi sono formati da tre particelle fondamentali: l elettrone con carica negativa; il protone con carica positiva; il neutrone privo di carica. Il

Dettagli

L esperienza di Hertz sulle onde elettromagnetiche

L esperienza di Hertz sulle onde elettromagnetiche L esperienza di Hertz sulle onde elettromagnetiche INTRODUZIONE Heinrich Hertz (1857-1894) nel 1886 riuscì per la prima volta a produrre e a rivelare le onde elettromagnetiche di cui Maxwell aveva previsto

Dettagli

LE RADIAZIONI. E = h. in cui è la frequenza ed h una costante, detta costante di Plank.

LE RADIAZIONI. E = h. in cui è la frequenza ed h una costante, detta costante di Plank. LE RADIAZIONI Nel campo specifico di nostro interesse la radiazione è un flusso di energia elettromagnetica o di particelle, generato da processi fisici che si producono nell atomo o nel nucleo atomico.

Dettagli

Induzione elettromagnetica

Induzione elettromagnetica Induzione elettromagnetica 1. Induzione elettromagnetica 2. Esperienze di Faraday 3. Legge di Faraday Neumann Lenz Induzione elettromagnetica (1) La rivoluzione determinata dall'utilizzo dell'energia elettrica

Dettagli

Insegnare relatività. nel XXI secolo

Insegnare relatività. nel XXI secolo Insegnare relatività nel XXI secolo L ' i n e r z i a d e l l ' e n e r g i a L'inerzia dell'energia Questa è la denominazione più corretta, al posto della consueta equivalenza massa energia. Einstein

Dettagli

I TEST DI CHIMICA - INGEGNERIA DELL INFORMAZIONE AA 04/05

I TEST DI CHIMICA - INGEGNERIA DELL INFORMAZIONE AA 04/05 I TEST DI CHIMICA - INGEGNERIA DELL INFORMAZIONE AA 04/05 COGNOME E NOME: 1. Br 1 si è trasformato in Br +3 in una reazione in cui lo ione bromuro: A) ha acquistato 3 elettroni B) ha ceduto 4 elettroni

Dettagli

Spettrometria. Introduzione.

Spettrometria. Introduzione. Spettrometria. Introduzione. Lo studio degli spettri di emissione e di assorbimento è stato sicuramente uno degli aspetti che hanno maggiormente contribuito alla crisi della meccanica classica a cavallo

Dettagli

Spettroscopia atomica

Spettroscopia atomica Spettroscopia atomica La spettroscopia atomica è una tecnica di indagine qualitativa e quantitativa, in cui una sostanza viene decomposta negli atomi che la costituiscono tramite una fiamma, un fornetto

Dettagli

Capitolo 8 La struttura dell atomo

Capitolo 8 La struttura dell atomo Capitolo 8 La struttura dell atomo 1. La doppia natura della luce 2. La «luce» degli atomi 3. L atomo di Bohr 4. La doppia natura dell elettrone 5. L elettrone e la meccanica quantistica 6. L equazione

Dettagli

Il fotone. Emanuele Pugliese, Lorenzo Santi URDF Udine

Il fotone. Emanuele Pugliese, Lorenzo Santi URDF Udine Il fotone Emanuele Pugliese, Lorenzo Santi URDF Udine Interpretazione di Einstein dell effetto fotoelettrico Esistono «particelle»* di luce: i fotoni! La luce è composta da quantità indivisibili di energia

Dettagli

Corrente elettrica. Esempio LA CORRENTE ELETTRICA CONTINUA. Cos è la corrente elettrica? Definizione di intensità di corrente elettrica

Corrente elettrica. Esempio LA CORRENTE ELETTRICA CONTINUA. Cos è la corrente elettrica? Definizione di intensità di corrente elettrica Corrente elettrica LA CORRENTE ELETTRICA CONTINUA Cos è la corrente elettrica? La corrente elettrica è un flusso di elettroni che si spostano dentro un conduttore dal polo negativo verso il polo positivo

Dettagli

Misureremo e analizzeremo la distribuzione di intensità luminosa di diverse figure di diffrazione in funzione della posizione acquisite on- line.

Misureremo e analizzeremo la distribuzione di intensità luminosa di diverse figure di diffrazione in funzione della posizione acquisite on- line. 4 IV Giornata Oggi termineremo questo percorso sulla luce misurando l intensità luminosa della distribuzione di massimi e minimi delle figure di diffrazione e di interferenza. In particolare confronteremo

Dettagli

Teoria Atomica di Dalton

Teoria Atomica di Dalton Teoria Atomica di Dalton Il concetto moderno della materia si origina nel 1806 con la teoria atomica di John Dalton: Ogni elementoè composto di atomi. Gli atomi di un dato elemento sono uguali. Gli atomi

Dettagli

Qualche semplice considerazione sulle onde di Daniele Gasparri

Qualche semplice considerazione sulle onde di Daniele Gasparri Qualche semplice considerazione sulle onde di Daniele Gasparri Le onde sono delle perturbazioni periodiche che si propagano nello spazio; quasi sempre (tranne nel caso della luce) si ha un mezzo che permette

Dettagli

Un altro importante parametro di questo processo è la risoluzione che rappresenta la distanza minima che la litografia può apprezzare.

Un altro importante parametro di questo processo è la risoluzione che rappresenta la distanza minima che la litografia può apprezzare. TECNICHE LITOGRAFICHE La litografia è un processo basilare nella realizzazione di circuiti integrati,esso consiste nel depositare un materiale detto resist sul wafer da processare che una volta esposto

Dettagli

CHIMICA: studio della composizione e della struttura della materia e delle sue trasformazioni

CHIMICA: studio della composizione e della struttura della materia e delle sue trasformazioni CHIMICA: studio della composizione e della struttura della materia e delle sue trasformazioni composto materia sostanza pura miscela omogenea elemento eterogenea Elementi, Composti e Miscele Miscela eterogenea

Dettagli

SPETTROSCOPIA ATOMICA

SPETTROSCOPIA ATOMICA SPETTROSCOPIA ATOMICA Corso di laurea in Tecnologie Alimentari La spettroscopia atomica studia l assorbimento, l emissione o la fluorescenza di atomi o di ioni metallici. Le regioni dello spettro interessate

Dettagli

LA DUPLICE NATURA DELLA LUCE

LA DUPLICE NATURA DELLA LUCE LA DUPLICE NATURA DELLA LUCE Ovvero: Così è, se vi pare La secolare disputa sulla natura della luce è caratterizzata da numerosi rovesciamenti di fronte. Newton sosteneva essere costituita da un flusso

Dettagli

Correnti e circuiti a corrente continua. La corrente elettrica

Correnti e circuiti a corrente continua. La corrente elettrica Correnti e circuiti a corrente continua La corrente elettrica Corrente elettrica: carica che fluisce attraverso la sezione di un conduttore in una unità di tempo Q t Q lim t 0 t ntensità di corrente media

Dettagli

Corso di CHIMICA LEZIONE 2

Corso di CHIMICA LEZIONE 2 Corso di CHIMICA LEZIONE 2 MODELLO ATOMICO DI THOMSON 1904 L atomo è formato da una sfera carica positivamente in cui gli elettroni con carica negativa, distribuiti uniformemente all interno, neutralizzano

Dettagli

Prova scritta intercorso 2 31/5/2002

Prova scritta intercorso 2 31/5/2002 Prova scritta intercorso 3/5/ Diploma in Scienza e Ingegneria dei Materiali anno accademico - Istituzioni di Fisica della Materia - Prof. Lorenzo Marrucci Tempo a disposizione ora e 45 minuti ) Un elettrone

Dettagli

OTTICA TORNA ALL'INDICE

OTTICA TORNA ALL'INDICE OTTICA TORNA ALL'INDICE La luce è energia che si propaga in linea retta da un corpo, sorgente, in tutto lo spazio ad esso circostante. Le direzioni di propagazione sono dei raggi che partono dal corpo

Dettagli

Istituto Superiore Vincenzo Cardarelli Istituto Tecnico per Geometri Liceo Artistico A.S. 2014 2015

Istituto Superiore Vincenzo Cardarelli Istituto Tecnico per Geometri Liceo Artistico A.S. 2014 2015 Istituto Superiore Vincenzo Cardarelli Istituto Tecnico per Geometri Liceo Artistico A.S. 2014 2015 Piano di lavoro annuale Materia : Fisica Classi Quinte Blocchi tematici Competenze Traguardi formativi

Dettagli