IL MOTORE A QUATTRO TEMPI

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "IL MOTORE A QUATTRO TEMPI"

Transcript

1 IL MOTORE A QUATTRO TEMPI LE QUATTRO FASI Con il nome di ciclo motore si indica il complesso delle trasformazioni subìte dalla msicela di aria e benzina all'interno del cilindro e che si ripetono periodicamente o ciclicamente. Riprendendo quanto genericamente già detto, vediamo, più da vicino, come vengono suddivise e come si susseguono le fasi in un motore a scoppio a 4 tempi. Esse portano alla aspirazione della miscela, alla sua compressione, alla accensione ed espansione ed infine allo scarico dei gas combusti che, a ciclo di lavoro compiuto vengono allontanati dal motore per dar modo di rinnovare nell'interno del cilindro il ciclo stesso sopra descritto. Riassumendo: le fasi che compongono il ciclo motore sono quattro e precisamente, nell'ordine di successione: Aspirazione Compressione Accensione ed espansione Scarico 1 a FASE - ASPIRAZIONE Consideriamo (fig. 5) il pistone al PMS ( punto morto superiore ); all'inizio dell'aspirazione il pistone si muove verso il PMI ( punto morto inferiore ), mentre la valvola di aspirazione inizia l'alzata o apertura, mettendo così in comunicazione l'interno del cilindro col carburatore al quale è collegato il collettore di immissione. La valvola di scarico in questa fase rimane chiusa. Nella corsa discendente verso il PMI il pistone, che corre a perfetta tenuta nrl cilindro, provoca un vuoto ( depressione ) tale da richiamare attraverso l'unica apertura che mette in comunicaione il cilindro con l'ambiente esterno, una forte corrente d'aria che, passando attraverso il carburatore si miscela con la benzina che si trova nel carburatore stesso. Il passaggio di miscela dal carburatore al cilindro si effettua per tutta la durata dell'aspirazione ( cioè per tutto il tempo che impiega il pistone a muoversi dal PMS al PMI ) dimodochè al termine della fase il cilindro si trova pieno di miscela. Quando il pistone si trova al PMI, la valvola di aspirazione si chiude. 2 a FASE - COMPRESSIONE Il pistone alla fine della fase di aspirazione ( fig. 6 ) risale dal PMI al PMS ed inizia la fase di compressione. In questa fase entrambe le valvole sono chiuse. Per effetto della corsa ascendente del pistone, la miscela che al termine della fase di aspirazione occupava tutto il cilindro, viene progressivamente spinta verso l'alto in guisa che, quando il pistone giunge al PMS tutta la miscela viene a trovarsi compressa tra pistone e testata, in quello spazio che viene chiamato camera di scoppio. Affinché si abbia un'idea della pressione raggiunta dalla miscela compressa, si tenga conto che per motori normali, con rapporti di compressione variabili da 5 a 8, essa raggiunge le 8-10

2 atmosfere. Si ricorda che un'atmosfera è uguale alla pressione esercitata da circa 1 kg sulla superficie di 1 cm 2. Durante questa fase anche la temperatura della miscela aumenta per effetto della compressione raggiungendo, sempre per motori normali, i C. Al termine di questa fase la miscela viene a trovarsi nelle migliori condizioni perché una scintilla che scocchi nella candela possa rapidamente provocarne l'accensione,. Come conseguenza dello scoppio, si ha un repentino aumento della pressione e una spinta che fa compiere al pistone il lavoro richiesto. Le condizioni ottime di pressione e temperatura, variano col variare della benzina usata per cui, l'aumento del rapporto di compressione ( quindi della pressione e della temperatura raggiunte nella fase di compressione della miscela ottenuta con un dato tipo di benzina ) non può e non deve superare ben determinati limiti senza incorrere in un irregolare funzionamento del motore con una conseguente perdita di potenza. 3 a FASE - SCOPPIO ED ESPANSIONE Giunto il pistone al PMS, al termine della fase di compressione, si effettua, mediante una scintilla scoccante tra gli elettrodidella candela, l'accensione e la combustion repentina della miscela. L'innalzamento di temperatura che ne conseguen ( circa 2000 C ) è tale da creare, nella camera di scoppio, una forte pressione ( atmosfere ) e sul pistone, una forte spinta verso il PMI. I gas combusti, espandendosi, diminuiscono di pressione e di temperatura, talché, giunto il pistone al PMI, hanno trasmesso una parte della energia posseduta all'atto dell'accensione. Evidentemente durante la fase di espansione (fig. 7), dovendosi evitare ogni fuoriuscita di gas dal cilindro per sfruttare il lavoro di espansione, entrambe le valvole di aspirazione e di scarico restano chiuse. 4 a FASE - SCARICO Al termine dell'espansione (fig. 8) il cilindro resta pieno di gas combusti, ormai inerti, che devono essere espulsi dal cilindro stesso. Questa operazione avviene appunto nella fase di scarico, in cui il pistone risalendo dal PMI verso il

3 PMS spinge attraverso la luce di scarico, che contemporaneamente si apre, i gas combusti nell'atmosfera esterna. Quando il pistone ha raggiunto il PMS la valvola di scarico si chiude: ci ritroviamo così col pistone e le valvole nelle condizioni già individuate all'inizio della fase di aspirazione ed il motore è in grado di ripetere periodicamente una sequenza di fasi del tutto uguali a quelle sopra descritte. Poiché ad ogni passaggio del pistone dal PMS al PMI corrisponde un mezzo giro dell'albero a gomiti, l'intero ciclo avviene in due giri dell'albero motore. Da quanto sopra descritto appare subito evidente che, delle quattro fasi svolte nell'interno del cilindro, una sola è attiva (l'espansione) mentre le altre 3 fasi (aspirazione, compressione e scarico) non solo non producono lavoro utile, ma ne assorbono per: vincere l'attrito delle diverse parti in movimento; superare le resistenze che la miscela, aspirata attraverso il carburatore, incontra nel collettore e nel passaggio attraverso la luce di ammissione; effettuare la compressione della miscela; scaricare all'esterno i gas combuti. Queste tre fasi vengono pertando dette passive, e si cerca, con vari accorgimenti, di ridurne gli effetti passivi. 1 a FASE - ASPIRAZIONE Tempi. - Ogni corsa del pistone ovvero ogni passaggio di esso dal PMS al PMI, cui corrisponde mezzo giro dell'albero motore, si suole anche indicare con la parola tempo; da qui la denominazione di motore a quattro tempi in quanto il ciclo completo avviene appunto in quattro corse o tempi. La miscela entra nel cilindro chiamata dalla depressione che il pistone provoca nella corsa discendente. Durante la fase di aspirazione nell'interno del cilindro si deve verificare una pressione inferiore a quella atmosferica (depressione) e di tanto inferiore quanto maggiori sono la resistenza che la miscela stessa incontra nelle tubazioni e quanto maggiore è la velocità con cui la miscela è richiamata, cioè in prima approssimazione quanto più elevato è il regime di rotazione del motore. Come vedremo in seguito trattando la fase di scarico che nel succedersi dei cicli precede immediatamente la fase di aspirazione, una piccola quantità di gas di scarico rimane nel cilindro a fine scarico e ad una pressione leggermente superiore a quella atmosferica, per cui la prima parte di corsa discendente del pistone, in fase di aspirazione, non servirà ad altro che a riportare tali gas alla pressione atmosferica e non si avrà quindi alcun fenomeno di aspirazione attraverso il carburatore; solo dopo una piccola corsa del pistone s'inizierà la parte utile della fase. Giunto il pistone al PMI, finita cioè la fase di aspirazione, la miscela nell'interno del cilindro si troverà ad una pressione inferiore a quella atmosferica, cioè non si sarà verificato il riempimento completo del cilindro con miscela fresca e alla pressione atmosferica. Pertanto, quando il piscone, cominciato il moto di salita verso il PMS (fase di compressione), l'avrà riportata ad una pressione pari alla pressione atmosferica, la miscela occuperà un volume che è inferiore a quello del cilindro. Definiremo perciò "renidmento volumetrico" il rapporto tra la quantità di miscela che effettivamente entra nel cilindro durante la fasi di aspirazione e la quantità di miscela che dovrebbe entrare se venisse completamente riempito il cilindro a pressione atmosferica ossia se si potesse ottenere un "riempimento completo". Tale rendimento si ripercuote evidentemente sul rendimento totale del motore e di conseguenza sulla potenza del motore stesso. Il suo valore, a valvola a farfalla aperta, si aggira sull'80%. Gli accorgimenti principali per aumentare questo rendimento, per avere cioè il massimo di miscela

4 aspirata ad ogni ciclo, sono i seguenti quattro: 1) Anticipo all'apertura della valvola di aspirazione Con tale accorgimento si sfrutta la depressione che si ha sulla valvola di aspirazione durante la fine della fase di scarico, in cui i gas combusti, essendo stati, diremo così, incanalati verso la valvola di scarico, possiedono un'inerzia tale da non essere più spinti verso l'atmosferca esterna ma dal pistone che sta salendo verso il PMS, ma da essere richiamati dalla colonna di gas che si scarica attraverso le tubazioni di scarico e che raffreddandosi diminuisce il proprio volume e quindi la propria pressione. Evidentemente l'anticipo dell'apertura della valvola di aspirazione non può superare alcuni limiti che dipendono fondamentalmente dal regime di rotazione del motore, dalla forma della camera di scoppio e dalle tubazioni di scarico. Un anticipio troppo spinto, può produrre l'aumento del rendimento volumetrico del motore, ma può produrre anche degli inconvenienti come quello dei ritorni di fiamma. 2) Ritardo alla chiusura della valvola di aspirazione La valvola di aspirazione, come abbiamo visto nel ciclo teorico, dovrebbe chiudersi nell'istante in cui il pistone ha raggiunto il PMI; in realtà essa viene mantenuta invece aperta anche durante la prima parte della corsa ascensionale del pistone e ciò per sfruttare un fenomeno del tutto analogo a quello a cui abbiamo accennato per i gas di scarico nel paragrafo precendente. La colonna di miscela aspirata per effetto della depressione creata nel cilindro dalla discesa del pistone, acquista una certa velocità che provoca nella colonna stessa un'inerzia, per cui, anche mancando la causa che ha provocato l'aspirazione (fine dell'aspirazione da parte del moto del pistone), essa continua (per inerzia) ad entrare nel cilindro e a portare molto prossima alla pressione atmosferica la pressione della miscela nell'interno del medesimo. Con tale artificio si aumenta il rendimento volumetrico del motore. Anche in tale caso il ritardo alla chiusura non può superare certi limiti che dipendono da tipo a tipo di motore, altrimenti si verificherebbe non già un aumento, ma una diminuzione nel rendimento del motore stesso. Un ritardo eccessivo alla chiusura della valvola di ammissione provoca il così detto rifiuto sul carburatore, cioè si verifica che una parte di miscela viene respinta verso il carburatore dal pistone che, salendo verso il PMS, compie la fase di compressione. 3) Diminuzione delle resistenze nei condotti di aspirazione Come già abbiamo detto, la depressione che si deve creare nel cilindro per poter accelerare ed avviare la miscela nelle tubazioni di aspirazione è tanto maggiore quanto maggiori sono le resistenze (perdite di carico) che la miscela incontra nel suo tragitto che, iniziando dal depuratore d'aria, va agli ugelli del carburatore, al collettore di aspirazione, ai condotti di aspirazione nell'interno della testa e al passaggio sulla valvola (attraverso cioè quello spazio anulare che si viene creando, a valvola aperta, tra la sede della valvola e il fungo della testa). Tali resistenze, oltre a far perdere una parte della corsa utile del pistone in discesa verso il PMI, frenano pure la corrente di miscela che, come abbiamo visto nel punto 2), tende ad avanzare ancora verso il cilindro anche quando il pistone raggiunto il PMI non provoca più direttamente alcuna aspirazione. Le perdite di carico tendono cioè a ridurre in vantaggio che si otterrebbe dando alla valvola di aspirazione un forte ritardo alla chiusura. La diminuzione delle resistenze nei condotti di aspirazione è sempre vantaggiosa e si ottiene dando un'appropriata forma ai condotti stessi, evitando forti gomiti, variazioni repentine di sezione, curando la levigatura delle superfici interne (lucidatura dei condotti) ed aumentando, al massimo consentito dall'alesaggio e dalla forma della testa, il diametro delle valvole di aspirazione. 4) Diminuzione delle resistenze nei condotti di scarico. Il fenomeno indicato al punto 1) di inizio di aspirazione dovuto ai gas di scarico, è evidentemente tanto più sensibile quanto maggiore è la velocità e quindi l'interzia posseduta dai gas medesimi, velocità e inerzia che aumentano se lungo le tubazioni di scarico i gas non sono frenati da resistenze dovute a rugosità delle superfici, a gomiti bruschi, a variazioni repentine di sezione. 2 a FASE - COMPRESSIONE. Gli accorgimenti adottati nella fase di aspirazione permettono di introdurre un maggiore quantitativo di miscela e permettono altresì di realizzare una maggiore compressione finale nel ciclo pratico con conseguente avvicinamento della curva di compressione pratica a quella teorica, il che vuol dire miglioramento del rendimento termico. Il rendimento termico può essere ancora migliorato limitando allo stretto necessario il raffreddamento delle pareti del cilindro e della camera di scoppio. 3 a FASE - ACCENSIONE ED ESPANSIONE.

5 Teoricamente l'accensione della miscela dovrebbe avvenire quando il pistone è al PMS, al termine cioè della fase di compressione. Praticamente invece si è riscontrato che è vantaggioso produrre l'accensione con un certo anticipo, dato ceh l'accensione di tutta la miscela per quanto brevissima ha una durata che raggiunge 1/500-1/1000 di secondo e in tale tempo il pistone, per quanto poco, percorre una certa frazione della corsa. E' evidente infatti che la pressione massima (completa accensione della miscela) deve essere raggiunta quando il pistone è al PMS. Abbiamo giustificato l'anticipo all'accensione mettendo in relazione il tempo di combustione della miscela con il moto o meglio con la velocità di traslazione del pistone; è evidente quindi che quanto maggiore è la velocità con cui il pistone si muove nel cilindro tanto maggiore deve essere l'anticipo all'accensione, poiché la durata di accensione per la medesima miscela, a parità di forma di camera di scoppio e di posizione della candela, si può ritenere costante. Da qui risulta subito che, poiché un motore non gira ad un regime costante nel tempo, ma nell'utilizzazione pratica ha un campo anche piuttosto vaasto di regimi di rotazione, tale anticipo deve essere variabile e deve aumentare con l'aumentare del regime di rotazione del motore. Vedremo nellaparte dedicata agli organi dell'accensione come ciò sia ottenuto automaticamente. Anche nell'anticipo all'accensione vi sono dei limiti che non si possono superare. Infatti se l'anticipo fosse tale che la massima pressione di scoppio si verficasse prima che il pistone raggiungesse il PMs (cioè mentre il pistone è ancora in fase di compressione) su di esso si eserciterebbe una pressione che tenderebbe a fare girare indietro il motore. Tale fenomeno si verifica con secchi battiti sul pistone che sono facilmente ascoltabili (eccesso d'anticipo) All'accensione segue l'espansione che, come del resto la compressione, differisce un poco dalla corrispondente fase del ciclo teorico, perché in realtà fra gas e cilindro avvengono cessioni di calore: non approfondiremo però questo concetto che ha le sue radici nel vivo della termodinamica. Ci limiteremo qui a dire che sono un appropriato raffreddamento del motore, come già nella fase di compressione, può regolare tali scambi di calore in modo tale da fare avvicinare il più possibile le due curve teorica e pratica. 4a FASE - SCARICO Lo scarico dei gas combusti nell'atmosfera avviene attraverso tubazioni che oppongono una cerca resistenza. Il pistone quindi deve fare un lavoro che, ai fini dell'utilizzazione della potenza ricavabile dal motore è negativo. Tale lavoor sarà tanto maggiore quanto più grandi sono le resistenze offerte dai condotti di scarico, cioè quanto più lunghe sono le tubazioni, minori le sezioni di passaggio e repentini i cambiamenti di direzione e sezione. Per ottenere che il lavore negativo di scarico diminuisca al massimo, ossia perché la linea di trasformazione del diagramma pratico relativa allo scarico si avvicini il più possibile a quella del diagramma teorico occorre:1) abbassare rapidamente la pressione interna nel cilindro aprendo in anticipo la valvola di scarico (prima cioè che il pistone abbia raggiunto il PMI ultimando la fase di espansione ). Con tale accorgimento si mette in comunicazione il cilindro, nel cui interno la pressione è ancora sensibile (3-4 atmosfere), con l'ambiente esterno a pressione atmosferica. I gas combusti si trovano quindi spinti dalla propria pressione verso l'esterno e si riduce quindi il lavoro del pistone nella fase di scarico. A prima vista semprebrebbe però che il risparmio del lavoro di scarico andasse a dretrimento del lavoro attivo ottenuto nella fase di espansione in quanto si raccorcia la medesima; in realtà ciò è vero solo in parte; infatti si può osservare che l'area (cioè come abbiamo visto il lavoro) che viene in tal modo inutilizzata, è inferiore all'area negativa (lavoro negativo o passivo) che si risparmia nella successiva fase di scarico. Anche in questo caso l'anticipo allo scarico non può raggiungere valori elevati senza una diminuzione del rendimento totale del motore, perché infatti si verificherebbe che l'area non utlizzata corrispondente all'espansione sarebbe superiore alla'area risparmiata corrispondente allo scarico; si diminuirebbe così l'area utile del diagramma motore a cui corrisponde il lavoro otteniile dal motore stesso; 2) ridurre la contropressione di scarico, ossia le perdite di carico, il che si ottiene dimensioando opportunamente le tubazioni, dando al collettore di scarico una forma tale che gli scarichi dei vari cilindri non si disturbino a vicenda, ma possano essere avviati singolarmente per un sufficiente tratto e vengano riuniti solo quando la loro velocità è diminuita e la temperatura abbassata. Importante è pure il raffreddamento del tubo di scarico. Infatti, come è noto, i gas raffreddandosi diminuiscono di volume e quindi diminuisce la loro velocità nei condotti con la conseguente diminuzione delle perdite di carico (la perdita di carico è proporzionale alla velocità=. La lunghezza del tubo di scarico sarà quindi tale da assicurare un buon raffreddamento tenendo però presente che le perdite di carico aumentano per effetto della maggior lunghezza del tubo di scarico. Questi accorgimenti per aumentare il rendimento del motore, ossia per avvicinare al massimo il ciclo pratico a quello teorico e che qui sono stati illustrati a grandi linee, saranno ripresi particolarmente in seguito trattando i vari organi del motore e saranno dati i valori usati nelle macchine di normale costruzione. E' però evidente sin d'ora che non si potrà mai dare una legge assoluta che regoli tali valori, dato che essi sono influenzati da troppi fattori difficili da individuare e padroneggiare. Ma con l'esperienza, le continue prove al banco e su strada si potrà pervenire ai migliori risultati che con solo calcolo non permette di raggiungere. Created by Alex *crackman*

Motori 4 tempi a ciclo Otto

Motori 4 tempi a ciclo Otto Motori 4 tempi a ciclo Otto 1. Premessa I motori automobilistici più comuni sono del tipo a combustione interna quattro tempi e appartengono a due grandi famiglie, a seconda del tipo di combustibile impiegato

Dettagli

MOTORI ENDOTERMICI di Ezio Fornero

MOTORI ENDOTERMICI di Ezio Fornero MOTORI ENDOTERMICI di Ezio Fornero Nei motori endotermici (m.e.t.) l energia termica è prodotta mediante combustione di sostanze liquide o gassose, generalmente dette carburanti. Si tratta di motori a

Dettagli

I MOTORI ALTERNATIVI A COMBUSTIONE

I MOTORI ALTERNATIVI A COMBUSTIONE asdf I MOTORI ALTERNATIVI A COMBUSTIONE INTERNA : UN PRIMO SGUARDO 31 March 2012 Introduzione Il seguente articolo vuole essere una prima introduzione a quelli che sono i motori alternativi a combustione

Dettagli

Fondamenti di Trasporti. Meccanica della Locomozione Utilizzazione della potenza a bordo

Fondamenti di Trasporti. Meccanica della Locomozione Utilizzazione della potenza a bordo Università di Catania Facoltà di Ingegneria Corso di Laurea in Ingegneria Civile AA 1011 1 Fondamenti di Trasporti Meccanica della Locomozione Utilizzazione della potenza a bordo Giuseppe Inturri Dipartimento

Dettagli

COMPOSIZIONE E FUNZIONAMENTO DEL MOTORE QUATTRO TEMPI(4-Stroke)

COMPOSIZIONE E FUNZIONAMENTO DEL MOTORE QUATTRO TEMPI(4-Stroke) COMPOSIZIONE E FUNZIONAMENTO DEL MOTORE QUATTRO TEMPI(4-Stroke) Salve a tutti. In questa recensione spiegherò la composizione e il funzionamento del motore a scoppio Quattro Tempi, in inglese 4-stroke.

Dettagli

Corso di Meccanica, Macchine e Impianti Termici CAPITOLO 4 MOTORI A COMBUSTIONE INTERNA

Corso di Meccanica, Macchine e Impianti Termici CAPITOLO 4 MOTORI A COMBUSTIONE INTERNA Anno Scolastico 2009/2010 Corso di Meccanica, Macchine e Impianti Termici CAPITOLO 4 MOTORI A COMBUSTIONE INTERNA Prof. Matteo Intermite 1 4. FUNZIONAMENTO DEL MOTORE A 4 TEMPI 4.1 LE 4 FASI DEL CICLO

Dettagli

X Figura 1. Ciclo termodinamico. >0 il calore assorbito e con Q 1 (3)

X Figura 1. Ciclo termodinamico. >0 il calore assorbito e con Q 1 (3) CICLI TERMODINAMICI Un ciclo termodinamico è un insieme di trasformazioni tali che lo stato iniziale del sistema coincide con lo stato finale. Un ciclo termodinamico è indivaduato nel diagramma XY generico

Dettagli

Lezione IX - 19/03/2003 ora 8:30-10:30 - Ciclo di Carnot, Otto, Diesel - Originale di Spinosa Alessandro.

Lezione IX - 19/03/2003 ora 8:30-10:30 - Ciclo di Carnot, Otto, Diesel - Originale di Spinosa Alessandro. Lezione IX - 9/03/003 ora 8:30-0:30 - Ciclo di Carnot, Otto, Diesel - Originale di Spinosa Alessandro. Ciclo di Carnot Si consideri una macchina termica semplice che compie trasformazioni reversibili,

Dettagli

Applicazioni del secondo principio. ovvero. Macchine a vapore a combustione esterna: Macchine a vapore a combustione interna: Ciclo Otto, ciclo Diesel

Applicazioni del secondo principio. ovvero. Macchine a vapore a combustione esterna: Macchine a vapore a combustione interna: Ciclo Otto, ciclo Diesel Termodinamica Applicazioni del secondo principio ovvero Macchine a vapore a combustione esterna: macchina di Newcomen e macchina di Watt Macchine a vapore a combustione interna: Ciclo Otto, ciclo Diesel

Dettagli

Presentazione del progetto. I cicli termodinamici:

Presentazione del progetto. I cicli termodinamici: Presentazione del progetto I cicli termodinamici: OTTO DIESEL Obiettivi Presentare in modo sintetico ed efficace i concetti base relativi ai cicli termodinamici OTTO e DIESEL Organizzare e realizzare con

Dettagli

CAPITOLO 3 CICLO OTTO E CICLO DIESEL MOTORI A COMBUSTIONE INTERNA

CAPITOLO 3 CICLO OTTO E CICLO DIESEL MOTORI A COMBUSTIONE INTERNA CAPITOLO 3 CICLO OTTO E CICLO DIESEL MOTORI A COMBUSTIONE INTERNA 1 CICLO OTTO E CICLO DIESEL MOTORI A COMBUSTIONE INTERNA I MOTORI A COMBUSTIONE INTERNA SONO MACCHINE MOTRICI E POSSONO ESSERE BASATI SU

Dettagli

Motori endotermici I MOTORI ENDOTERMICI. Corso di Laurea Scienze e Tecnologie Agrarie

Motori endotermici I MOTORI ENDOTERMICI. Corso di Laurea Scienze e Tecnologie Agrarie Corso di Laurea Scienze e Tecnologie Agrarie Motori endotermici Dipartimento Ingegneria del Territorio - Università degli Studi di Sassari I MOTORI ENDOTERMICI Il motore converte l energia termica del

Dettagli

Le macchine termiche e il secondo principio della termodinamica

Le macchine termiche e il secondo principio della termodinamica Le macchine termiche e il secondo principio della termodinamica ) Definizione di macchina termica È sperimentalmente verificato che nel rispetto del primo principio della termodinamica (ovvero della conservazione

Dettagli

IL CARBURATORE: I SISTEMI SUPPLEMENTARI

IL CARBURATORE: I SISTEMI SUPPLEMENTARI IL CARBURATORE: I SISTEMI SUPPLEMENTARI Dalla pompa d accelerazione al getto di potenza: le particolari configurazioni di alcuni circuiti che equipaggiano taluni modelli di carburatore. Il sistema di avviamento.

Dettagli

Corso di Laurea in Scienze e Tecnologie Agrarie. Corso di Meccanica e. Meccanizzazione Agricola

Corso di Laurea in Scienze e Tecnologie Agrarie. Corso di Meccanica e. Meccanizzazione Agricola Corso di Laurea in Scienze e Tecnologie Agrarie Corso di Meccanica e Meccanizzazione Agricola Prof. S. Pascuzzi 1 Motori endotermici 2 Il motore endotermico L energia da legame chimico, posseduta dai combustibili

Dettagli

Motori e cicli termodinamici

Motori e cicli termodinamici Motori e cicli termodinamici 1. Motore a scoppio 2. Motore diesel 3. Frigoriferi 4. Centrali elettriche XXII - 0 Trasformazioni Trasformazioni reversibili (quasistatiche: Ciascun passo della trasformazione

Dettagli

Formulario di Fisica Tecnica Matteo Guarnerio 1

Formulario di Fisica Tecnica Matteo Guarnerio 1 Formulario di Fisica Tecnica Matteo Guarnerio 1 CONVENZIONI DI NOTAZIONE Calore scambiato da 1 a 2. Calore entrante o di sorgente. Calore uscente o ceduto al pozzo. CONVERSIONI UNITÀ DI MISURA PIÙ FREQUENTI

Dettagli

PROVE SU PISTA CAN LCU-ONE. LCU-ONE CAN su motori 2 Tempi. Per migliorare la tecnica di guida e per perfezionare la messa a punto del kart

PROVE SU PISTA CAN LCU-ONE. LCU-ONE CAN su motori 2 Tempi. Per migliorare la tecnica di guida e per perfezionare la messa a punto del kart LCU-ONE CAN + TERMOCOPPIA GAS DI SCARICO CONTROLLO PUNTUALE DEL TUO MOTORE PROVE SU PISTA LA PROVA LCU-ONE CAN su motori 2 Tempi UNO STRUMENTO ESSENZIALE Per migliorare la tecnica di guida e per perfezionare

Dettagli

DALLA MACCHINA A VAPORE AL MOTORE A SCOPPIO

DALLA MACCHINA A VAPORE AL MOTORE A SCOPPIO Pagina 1 di 12 DALLA MACCHINA A VAPORE AL MOTORE A SCOPPIO Pagina 2 di 12 LA MACCHINA A VAPORE La macchina di Watt Nella metà del 1700 gli industriali del settore metallurgico avevano la necessità di azionare

Dettagli

Tecnologia rivoluzionaria Evoluzione progettuale. La nuova èra del motore a combustione interna è arrivata

Tecnologia rivoluzionaria Evoluzione progettuale. La nuova èra del motore a combustione interna è arrivata Tecnologia rivoluzionaria Evoluzione progettuale La nuova èra del motore a combustione interna è arrivata Che cos è un motore a ripartizione del ciclo? I motori a ripartizione del ciclo suddividono i quattro

Dettagli

L AVVIAMENTO NEI MOTORI MARINI DI MEDIA E GRANDE POTENZA

L AVVIAMENTO NEI MOTORI MARINI DI MEDIA E GRANDE POTENZA L AVVIAMENTO NEI MOTORI MARINI DI MEDIA E GRANDE POTENZA Quando il motore è fermo, bisogna fornire dall'esterno l'energia necessaria per le prime compressioni, onde portare l'aria ad una temperatura sufficiente

Dettagli

Termodinamica. Sistema termodinamico. Piano di Clapeyron. Sistema termodinamico. Esempio. Cosa è la termodinamica? TERMODINAMICA

Termodinamica. Sistema termodinamico. Piano di Clapeyron. Sistema termodinamico. Esempio. Cosa è la termodinamica? TERMODINAMICA Termodinamica TERMODINAMICA Cosa è la termodinamica? La termodinamica studia la conversione del calore in lavoro meccanico Prof Crosetto Silvio 2 Prof Crosetto Silvio Il motore dell automobile trasforma

Dettagli

Parte 2. Manutenzione della motosega. Operazioni e tecniche

Parte 2. Manutenzione della motosega. Operazioni e tecniche Utilizzo in sicurezza e manutenzione delle motoseghe Parte 2 Manutenzione della motosega. Operazioni e tecniche Al termine di questo modulo sarai in grado di: descrivere la struttura e il funzionamento

Dettagli

Fresco con il sol e 60% de risparmio energetico. SOLARCOOL TECNOLOGIA Spiegazione termodinamica

Fresco con il sol e 60% de risparmio energetico. SOLARCOOL TECNOLOGIA Spiegazione termodinamica Fresco con il sol e 60% de risparmio energetico SOLARCOOL TECNOLOGIA Spiegazione termodinamica L efficienza del sistema Solar Cool è possibile grazie ad un effetto fisico del flusso di massa, che è un

Dettagli

http://users.iol.it/debiasioandrea

http://users.iol.it/debiasioandrea CAP.3 -IL MOTORE http://users.iol.it/debiasioandrea e-mail: editodb@iol.it Pagine successive: ENTER o PG DOWN Pagine precedenti : PG UP Finestra principale Acrobat : ESC Modalità pieno schermo: CTRL +

Dettagli

Dimensionamento di massima di una compressore volumetrico alternativo

Dimensionamento di massima di una compressore volumetrico alternativo Dimensionamento di massima di una compressore volumetrico alternativo Giulio Cazzoli Giugno 2013 v1.0 Si chiede di eettuare il dimensionamento di massima di un compressore volumetrico alternativo che aspiri

Dettagli

CENTRALI TERMOELETTRICHE

CENTRALI TERMOELETTRICHE CENTRALI TERMOELETTRICHE Le centrali termoelettriche sono impianti che utilizzano l energia chimica dei combustibili per trasformarla in energia elettrica. Nelle centrali termoelettriche la produzione

Dettagli

Esercizi di Fisica Tecnica 2013-2014. Termodinamica

Esercizi di Fisica Tecnica 2013-2014. Termodinamica Esercizi di Fisica Tecnica 2013-2014 Termodinamica TD1 In un sistema pistone-cilindro, 1 kg di gas ( = 1,29 ed R * = 190 J/(kg K)) si espande da 5 bar e 90 C ad 1 bar. Nell'ipotesi che la trasformazione

Dettagli

Introduzione ai Motori a Combustione Interna

Introduzione ai Motori a Combustione Interna IPS Mario Carrara Guastalla (RE) Tecnologie e Tecniche di Installazione e Manutenzione Docente: Prof. Matteo Panciroli Introduzione ai Motori a Combustione Interna 1 Classificazione delle macchine MACCHINE

Dettagli

PRESTAZIONI. (di Giorgio Sforza)

PRESTAZIONI. (di Giorgio Sforza) PRESTAZIONI (di Giorgio Sforza) Le prestazioni di un motore sono rappresentate dalle sue curve caratteristiche, dai diagrammi cioè che danno le variazioni della potenza, della coppia motrice e del consumo

Dettagli

La propulsione Informazioni per il PD

La propulsione Informazioni per il PD Informazioni per il PD 1/10 Compito Come funziona un automobile? Gli alunni studiano i diversi tipi di propulsione (motore) dell auto e imparano qual è la differenza tra un motore diesel e uno a benzina.

Dettagli

Motore per alta quota autoraffreddatore (I)

Motore per alta quota autoraffreddatore (I) Motore per alta quota autoraffreddatore (I) DKI.L' ING. LUIGI STIPA. RIASSUNTO: L 'A. chiarisce e illustra alcuni punti di una sua precedente comunicazione al IV Congresso Inte.nazionale di Navigazione

Dettagli

ACCUMULATORI IDRAULICI

ACCUMULATORI IDRAULICI In generale, un accumulatore idraulico può accumulare liquido sotto pressione e restituirlo in caso di necessità; IMPIEGHI 1/2 Riserva di liquido Nei circuiti idraulici per i quali le condizioni di esercizio

Dettagli

Le centrali idroelettriche

Le centrali idroelettriche Le centrali idroelettriche 1 Una centrale idroelettrica può definirsi una macchina in grado di trasformare l'energia potenziale dell'acqua, legata al fatto che l'acqua si trova ad un livello superiore

Dettagli

9. TRASFORMAZIONI TERMODINAMICHE E CICLI REALI

9. TRASFORMAZIONI TERMODINAMICHE E CICLI REALI 9. TRASFORMAZIONI TERMODINAMICHE E CICLI REALI 9. Introduzione I processi termodinamici che vengono realizzati nella pratica devono consentire la realizzazione di uno scambio di energia termica o di energia

Dettagli

9-10 MOTORI A COMBUSTIONE INTERNA e MOTORE DIESEL

9-10 MOTORI A COMBUSTIONE INTERNA e MOTORE DIESEL 9-10 MOTORI A COMBUSTIONE INTERNA e MOTORE DIESEL DIFFERENZE TRA MOTORE A SCOPPIO E DIESEL Il motore a scoppio aspira attraverso i cilindri una miscela esplosiva di aria e benzina nel carburatore, questa

Dettagli

l energia meccanica si trasforma, integralmente e spontaneamente, in energia termica.

l energia meccanica si trasforma, integralmente e spontaneamente, in energia termica. Lezione 26 - pag.1 Lezione 26: Le macchine termiche 26.1. La conversione di energia meccanica in energia termica Sappiamo che quando un corpo cade, nel corso della caduta la sua energia meccanica, se gli

Dettagli

Classificazione delle pompe. Pompe rotative volumetriche POMPE ROTATIVE. POMPE VOLUMETRICHE si dividono in... VOLUMETRICHE

Classificazione delle pompe. Pompe rotative volumetriche POMPE ROTATIVE. POMPE VOLUMETRICHE si dividono in... VOLUMETRICHE Classificazione delle pompe Pompe rotative volumetriche POMPE VOLUMETRICHE si dividono in... POMPE ROTATIVE VOLUMETRICHE Pompe rotative volumetriche Principio di funzionamento Le pompe rotative sono caratterizzate

Dettagli

I Motori Marini 1/2. Motore a Scoppio (2 o 4 tempi) Motori Diesel (2 o 4 tempi)

I Motori Marini 1/2. Motore a Scoppio (2 o 4 tempi) Motori Diesel (2 o 4 tempi) I Motori Marini 1/2 Classificazione Descrizione I motori marini non sono molto diversi da quelli delle auto, con lo stesso principio di cilindri entro cui scorre uno stantuffo, che tramite una biella collegata

Dettagli

Attuatori Pneumatici

Attuatori Pneumatici Gli attuatori pneumatici sono organi che compiono un lavoro meccanico usando come vettore di energia l aria compressa con indubbi vantaggi in termini di pulizia, antideflagranza, innocuità e insensibilità

Dettagli

CORSO DI IMPIANTI DI PROPULSIONE NAVALE

CORSO DI IMPIANTI DI PROPULSIONE NAVALE ACCADEMIA NAVALE 1 ANNO CORSO APPLICATIVO GENIO NAVALE CORSO DI IMPIANTI DI PROPULSIONE NAVALE Lezione 03 Motori a combustione interna A.A. 2011 /2012 Prof. Flavio Balsamo 02 Il motore a combustione interna

Dettagli

PMS PMI CICLO DI UN MOTORE A QUATTRO TEMPI (CICOLO DI OTTO)

PMS PMI CICLO DI UN MOTORE A QUATTRO TEMPI (CICOLO DI OTTO) CICLO DI UN MOTORE A QUATTRO TEMPI (CICOLO DI OTTO Consideriamo, in modo approssimato, il ciclo termodinamico di un motore a quattro tempi. In figura è mostrato il cilindro entro cui scorre il pistone,

Dettagli

LA TERMOLOGIA. studia le variazioni di dimensione di un corpo a causa di una

LA TERMOLOGIA. studia le variazioni di dimensione di un corpo a causa di una LA TERMOLOGIA La termologia è la parte della fisica che si occupa dello studio del calore e dei fenomeni legati alle variazioni di temperatura subite dai corpi. Essa si può distinguere in: Termometria

Dettagli

Capitolo 18 - Sistemi ad assorbimento

Capitolo 18 - Sistemi ad assorbimento Appunti di Fisica Tecnica Capitolo 18 - Sistemi ad assorbimento Introduzione...1 Funzionamento di una macchina frigorifera ad assorbimento...2 Macchina ad acqua-bromuro di litio...4 Macchina ad acqua-ammoniaca...5

Dettagli

MECSPE FIERE DI PARMA 26 marzo 2010

MECSPE FIERE DI PARMA 26 marzo 2010 MECSPE FIERE DI PARMA 26 marzo 2010 PNEUMATICA L efficienza negli impianti e nei sistemi pneumatici Guido Belforte, Gabriella Eula Politecnico di Torino Dipartimento di Meccanica CONDIZIONI DI RIFERIMENTO

Dettagli

MOTORI A COMBUSTIONE INTERNA GENERALITÀ

MOTORI A COMBUSTIONE INTERNA GENERALITÀ MOTORI A COMBUSTIONE INTERNA GENERALITÀ I motori termici sono macchine che hanno lo scopo di trasformare energia termica in energia meccanica. Sebbene l energia termica possa provenire da diverse fonti

Dettagli

Impianto Pneumatico. Capitolo 6 - 6.1 -

Impianto Pneumatico. Capitolo 6 - 6.1 - Capitolo 6 Impianto Pneumatico - 6.1 - 6.1 Introduzione In diversi casi è conveniente sfruttare energia proveniente da aria compressa; questo è soprattutto vero quando il velivolo possiede dei motori a

Dettagli

Lezione estd 29 pagina 1. Argomenti di questa lezione (esercitazione) Iniziare ad affrontare esercizi di termodinamica

Lezione estd 29 pagina 1. Argomenti di questa lezione (esercitazione) Iniziare ad affrontare esercizi di termodinamica Lezione estd 29 pagina 1 Argomenti di questa lezione (esercitazione) Iniziare ad affrontare esercizi di termodinamica Lezione estd 29 pagina 2 Esercizio 3, 5 luglio 2005 Una macchina di Carnot produce

Dettagli

LA CONDENSAZIONE LA CONDENSAZIONE CFP MANFREDINI ESTE (PD) Insegnante. Padovan Mirko 1

LA CONDENSAZIONE LA CONDENSAZIONE CFP MANFREDINI ESTE (PD) Insegnante. Padovan Mirko 1 POTERE CALORIFICO DEI COMBUSTIBILI Il potere calorifico è la quantità di calore prodotta dalla combustione completa di 1 m³ di combustibili gassosi. Generalmente i combustibili hanno un determinato quantitativo

Dettagli

Prima di analizzare i sistemi di compressione

Prima di analizzare i sistemi di compressione AO automazioneoggi appunti Un aria produttiva appunti L aria compressa è utilizzata in svariate applicazioni ma deve avere caratteristiche operative differenti a seconda della tipologia di impiego: ecco

Dettagli

Approfondimento 1: Catalizzatori per l abbattimento degli NO x

Approfondimento 1: Catalizzatori per l abbattimento degli NO x Approfondimento 1: Catalizzatori per l abbattimento degli NO x Il gas fuoriuscente da un motore Diesel viene convogliato nel primo stadio del convertitore catalitico, dove si ha l ossidazione del monossido

Dettagli

Macchina ad Aria Compressa

Macchina ad Aria Compressa Macchina ad Aria Compressa La nostra ricerca si occuperà del motore ad aria compressa. L'obbiettivo è quello di trovare motori alternativi in totale rispetto dell'ambiente. Il motore in questione ha presentato

Dettagli

Funzionamento del motore 4 tempi I componenti fondamentali del motore 4 tempi I componenti ausiliari del motore 4 tempi La trasmissione del moto Le innovazioni motoristiche L influenza dell aerodinamica

Dettagli

I carburatori della Pegaso

I carburatori della Pegaso I carburatori della Pegaso I carburatori che equipaggiano le Pegaso sono del tipo a depressione detti anche a velocità costante (oppure a depressione costante). Questi carburatori, che nella Pegaso funzionano

Dettagli

MACCHINE IDRAULICHE Le macchine idrauliche si suddividono in. ELEMENTI DI IDRODINAMICA (3 a PARTE)

MACCHINE IDRAULICHE Le macchine idrauliche si suddividono in. ELEMENTI DI IDRODINAMICA (3 a PARTE) ELEMENTI DI IDRODINAMICA (3 a PARTE) PERDITE DI CARICO NEI TUBI Le tubature comunemente utilizzate in impiantistica sono a sezione circolare e costante, con conseguente velocità del liquido uniforme e

Dettagli

1. Premessa. 2. Forme di energia

1. Premessa. 2. Forme di energia 1. Premessa. Sinteticamente, il rendimento rappresenta il rapporto tra quanto si ottiene e quanto si spende in un trasferimento di energia. Ad esempio, se la potenza prelevata dal motore (spesa) è 50 KW

Dettagli

Tali fluidi, utilizzati in prossimità del punto di produzione, o trasportati a distanza, possono essere utilizzati per diversi impieghi:

Tali fluidi, utilizzati in prossimità del punto di produzione, o trasportati a distanza, possono essere utilizzati per diversi impieghi: LA COGENERAZIONE TERMICA ED ELETTRICA 1. Introduzione 2. Turbine a Gas 3. Turbine a vapore a ciclo combinato 4. Motori alternativi 5. Confronto tra le diverse soluzioni 6. Benefici ambientali 7. Vantaggi

Dettagli

(gruppo filtro aria perfezionato) per motori EURO 6

(gruppo filtro aria perfezionato) per motori EURO 6 Progetto Europeo AIR-BOX AUTOMOTIVE 2014 AIR-BOX (gruppo filtro aria perfezionato) per motori EURO 6 APPARATO AIR-BOX per la riduzione dei NOx e del CO2 e per l incremento delle prestazioni del motore

Dettagli

Ciclo Rankine. Macchina tipica di un ciclo a vapore

Ciclo Rankine. Macchina tipica di un ciclo a vapore di Piraccini Davide OBBIETTIVI : Inserire un impianto ORC (Organic Rankine Cycle) nel ciclo di bassa pressione della centrale Enel di Porto Corsini e studiare la convenienza tramite il confronto dei rendimenti

Dettagli

PRODUZIONE, DISTRIBUZIONE E TRATTAMENTO ARIA COMPRESSA

PRODUZIONE, DISTRIBUZIONE E TRATTAMENTO ARIA COMPRESSA PRODUZIONE, DISTRIBUZIONE E TRATTAMENTO ARIA COMPRESSA Comando pneumatico: è costituito da un insieme di tubazioni e valvole, percorse da aria compressa, che collegano una centrale di compressione ad una

Dettagli

ENERGIA NELLE REAZIONI CHIMICHE

ENERGIA NELLE REAZIONI CHIMICHE ENERGIA NELLE REAZIONI CHIMICHE Nelle trasformazioni chimiche e fisiche della materia avvengono modifiche nelle interazioni tra le particelle che comportano sempre variazioni di energia "C è un fatto,

Dettagli

IL DIFFUSORE ED IL CONTROLLO DELLA PORTATA D ARIA

IL DIFFUSORE ED IL CONTROLLO DELLA PORTATA D ARIA IL DIFFUSORE ED IL CONTROLLO DELLA PORTATA D ARIA Entriamo nel dettaglio del funzionamento del carburatore motociclistico ed esaminiamo i legami tra le grandezze che regolano l erogazione del combustibile.

Dettagli

La manutenzione per ridurre i costi dell aria compressa ed incrementare l efficienza degli impianti

La manutenzione per ridurre i costi dell aria compressa ed incrementare l efficienza degli impianti Maintenance Stories Fatti di Manutenzione Kilometro Rosso - Bergamo 13 novembre 2013 La manutenzione per ridurre i costi dell aria compressa ed incrementare l efficienza degli impianti Guido Belforte Politecnico

Dettagli

PROBLEMA 1. Soluzione. Indicare quattro requisiti fondamentali che un fluido frigorigeno deve possedere: 1) 2) 3) 4)

PROBLEMA 1. Soluzione. Indicare quattro requisiti fondamentali che un fluido frigorigeno deve possedere: 1) 2) 3) 4) PROBLEMA 1 Indicare quattro requisiti fondamentali che un fluido frigorigeno deve possedere: 1) 2) 3) 4) Deve possedere un elevato calore latente, cioè, deve evaporare asportando molto calore dall ambiente

Dettagli

CALCOLO DEL VOLUME DI GAS NECESSARIO PER IL LAVAGGIO DEI FORNI AD ATMOSFERA CONTROLLATA

CALCOLO DEL VOLUME DI GAS NECESSARIO PER IL LAVAGGIO DEI FORNI AD ATMOSFERA CONTROLLATA CALCOLO DEL VOLUME DI GAS NECESSARIO PER IL LAVAGGIO DEI FORNI AD ATMOSFERA CONTROLLATA Elio Gianotti. Trattamenti Termici Ferioli & Gianotti. Rivoli To Una domanda, peraltro molto semplice, che può però

Dettagli

DISPENSA DI PNEUMATICA

DISPENSA DI PNEUMATICA DISENS DI NEUMTIC 1 RESSIONE La pressione è una grandezza fisica derivata dal rapporto tra forza e superficie. L unità di misura internazionale della pressione è il ascal, anche se è più comodo utilizzare

Dettagli

Valutazioni di massima sui motori a combustione interna

Valutazioni di massima sui motori a combustione interna Valutazioni di massima sui motori a combustione interna Giulio Cazzoli v 1.0 Maggio 2014 Indice Elenco dei simboli 3 1 Motore ad accensione comandata 4 1.1 Dati........................................

Dettagli

* (Le variazioni esposte, dipendono dal tipo di motore e possono variare da veicolo a veicolo).

* (Le variazioni esposte, dipendono dal tipo di motore e possono variare da veicolo a veicolo). Cosa è Hiclone? Hiclone è un semplice dispositivo, esente da manutenzione che si inserisce all'interno dei tubi di induzione dell aria, adatto per i motori a Benzina, Gasolio e GPL; aspirati, ad iniezione,

Dettagli

Vantaggi della mobilità elettrica. Convegno AEIT a Mesiano 3 Dicembre 2014 Relatore: Marcello Pegoretti

Vantaggi della mobilità elettrica. Convegno AEIT a Mesiano 3 Dicembre 2014 Relatore: Marcello Pegoretti Vantaggi della mobilità elettrica Convegno AEIT a Mesiano 3 Dicembre 2014 Relatore: Marcello Pegoretti 1 Premessa il Global Warming e i cambiamenti climatici dovuti al consumo di combustibili fossili sono

Dettagli

Definizione di sorgente di calore e di macchina termica

Definizione di sorgente di calore e di macchina termica 34 Unità Didattica N 19C I principi della ermodinamica Definizione di sorgente di calore e di macchina termica Sorgente di calore è un corpo ( o un sistema di corpi ) a temperatura costante che ha la proprietà

Dettagli

ENERGIA INTERNA ENERGIA INTERNA SPECIFICA. e = E/m = cv T ENTALPIA. H = E + pv ENTALPIA SPECIFICA. h = H/m = cp T h = e + pv = e + p/d L-1

ENERGIA INTERNA ENERGIA INTERNA SPECIFICA. e = E/m = cv T ENTALPIA. H = E + pv ENTALPIA SPECIFICA. h = H/m = cp T h = e + pv = e + p/d L-1 L - SISTEMI APERTI ENERGIA INTERNA E = n Cv T E = m cv T (Cv molare = J/kmol C) (cv massico = J/kg C) ENERGIA INTERNA SPECIFICA e = E/m = cv T ENTALPIA H = E + pv H = n Cp T H = m cp T (Cp molare = J/kmol

Dettagli

CORSO DI IMPIANTI DI PROPULSIONE NAVALE

CORSO DI IMPIANTI DI PROPULSIONE NAVALE ACCADEMIA NAVALE 1 ANNO CORSO APPLICATIVO GENIO NAVALE CORSO DI IMPIANTI DI PROPULSIONE NAVALE Lezione 09 Motori diesel lenti a due tempi A.A. 2011 /2012 Prof. Flavio Balsamo Nel motore a due tempi l intero

Dettagli

14.4 Pompe centrifughe

14.4 Pompe centrifughe 14.4 Pompe centrifughe Le pompe centrifughe sono molto diffuse in quanto offrono una notevole resistenza all usura, elevato numero di giri e quindi facile accoppiamento diretto con i motori elettrici,

Dettagli

Le pompe (Febbraio 2009)

Le pompe (Febbraio 2009) Le pompe (Febbraio 2009) Sommario Premessa 2 Classificazione e campi d impiego delle pompe 3 Prevalenza della pompa 4 Portata della pompa 6 Potenza della pompa 6 Cavitazione 6 Perdite di carico 6 Curve

Dettagli

Il vapor saturo e la sua pressione

Il vapor saturo e la sua pressione Il vapor saturo e la sua pressione Evaporazione = fuga di molecole veloci dalla superficie di un liquido Alla temperatura T, energia cinetica di traslazione media 3/2 K B T Le molecole più veloci sfuggono

Dettagli

Fondamenti di macchine elettriche Corso SSIS 2006/07

Fondamenti di macchine elettriche Corso SSIS 2006/07 9.13 Caratteristica meccanica del motore asincrono trifase Essa è un grafico cartesiano che rappresenta l andamento della coppia C sviluppata dal motore in funzione della sua velocità n. La coppia è legata

Dettagli

ALL INTERNO DEL MOTORE, QUANDO UN PISTONE VIENE SPINTO VERSO IL BASSO PER COMPRESSIONE, VIENE IMPRESSO IL MOVIMENTO ALTERNATO ALL ALBERO MOTORE CHE VIENE QUINDI MESSO IN ROTAZIONE. PER EVITARE CHE L ALBERO

Dettagli

0,209. formula che si risolve facilmente una volta misurata, con adatte apparecchiature, la percentuale in volume di CO 2

0,209. formula che si risolve facilmente una volta misurata, con adatte apparecchiature, la percentuale in volume di CO 2 Approfondimento Analisi dei fumi La regolazione della combustione basata su regole pratiche pecca evidentemente di precisione anche se presenta l indubbio vantaggio dell immediatezza di esecuzione; una

Dettagli

I due apparati per lo studio di una trasformazione isoterma e di una adiabatica sono sostanzialmente uguali, solo che sono fatti com materiale diverso. Vedremo nel seguito la ragione di questa diversità.

Dettagli

Prese d aria supersoniche [1-14]

Prese d aria supersoniche [1-14] Politecnico di Milano Facoltà di Ingegneria Industriale Corso di Laurea in Ingegneria Aerospaziale Insegnamento di Propulsione Aerospaziale Anno accademico 2011/12 Capitolo 4 sezione a2 Prese d aria supersoniche

Dettagli

OFFICINE MINUTE VILLORBA - TREVISO

OFFICINE MINUTE VILLORBA - TREVISO OFFICINE MINUTE VILLORBA - TREVISO Pag 1 di 9 COLONNA ESSICCATOIO STRAHL SERIE AR La colonna di essiccazione è realizzata con pannelli in lamiera zincata strutturale con montanti esterni quantità variabile

Dettagli

GRUPPI FRIGORIFERI AD ASSORBIMENTO SHUANGLIANG

GRUPPI FRIGORIFERI AD ASSORBIMENTO SHUANGLIANG GRUPPI FRIGORIFERI AD ASSORBIMENTO SHUANGLIANG Il ciclo frigorifero Esempio di ciclo frigorifero ad assorbimento con generatore a fiamma diretta Il principio di funzionamento /informazioni utili La termodinamica

Dettagli

Temperatura e Calore

Temperatura e Calore Temperatura e Calore 1 Temperatura e Calore Stati di Aggregazione Temperatura Scale Termometriche Dilatazione Termica Il Calore L Equilibrio Termico La Propagazione del Calore I Passaggi di Stato 2 Gli

Dettagli

Impianto con motore Stirling da 35 kwe di Castel d Aiano

Impianto con motore Stirling da 35 kwe di Castel d Aiano Impianto con motore Stirling da 35 kwe di Castel d Aiano Tavolo tecnico 23-04-2010 Azienda Agraria Sperimentale "Stuard" Ing. Filippo Marini La cogenerazione da cippato di legno Allo stato attuale le tecnologie

Dettagli

Le punterie idrauliche

Le punterie idrauliche Le punterie idrauliche Prima di parlare delle punterie idrauliche, sarà bene ricordare cosa sia esattamente una punteria. Si tratta precisamente di un organo della distribuzione, intendendosi per "distribuzione"

Dettagli

Schema piezometrico di un generico impianto di sollevamento.

Schema piezometrico di un generico impianto di sollevamento. La scelta della pompa da inserire in un generico impianto di sollevamento (Figura 9-) che debba sollevare un assegnata portata non è univoca se a priori non sono assegnati anche il tipo e il diametro delle

Dettagli

Capitolo 03 LA PRESSIONE ATMOSFERICA. 3.1 Esperienza del Torricelli 3.2 Unità di misura delle pressioni

Capitolo 03 LA PRESSIONE ATMOSFERICA. 3.1 Esperienza del Torricelli 3.2 Unità di misura delle pressioni Capitolo 03 LA PRESSIONE ATMOSFERICA 3.1 Esperienza del Torricelli 3.2 Unità di misura delle pressioni 12 3.1 Peso dell aria I corpi solidi hanno un loro peso, ma anche i corpi gassosi e quindi l aria,

Dettagli

Impianto di Sollevamento Acqua

Impianto di Sollevamento Acqua CORSO DI FISICA TECNICA e SISTEMI ENERGETICI Esercitazione 3 Proff. P. Silva e G. Valenti - A.A. 2009/2010 Impianto di Sollevamento Acqua Dimensionare un impianto di sollevamento acqua in grado di soddisfare

Dettagli

LA REALIZZAZIONE DEGLI IMPIANTI DI SCARICO

LA REALIZZAZIONE DEGLI IMPIANTI DI SCARICO Impianto di scarico - Pressioni Impianto di scarico Per impianto di scarico si intende quell insieme di tubazioni, raccordi e apparecchiature necessarie a ricevere, convogliare e smaltire le acque usate

Dettagli

GAS. I gas si assomigliano tutti

GAS. I gas si assomigliano tutti I gas si assomigliano tutti Aeriforme liquido solido GAS Descrizione macroscopica e microscopica degli stati di aggregazione della materia Fornendo energia al sistema, le forze di attrazione tra le particelle

Dettagli

I.I.S. Giulio Natta Istituto di Istruzione Superiore Tecnico per la meccanica e le materie plastiche Liceo delle Scienze Applicate

I.I.S. Giulio Natta Istituto di Istruzione Superiore Tecnico per la meccanica e le materie plastiche Liceo delle Scienze Applicate I.I.S. Giulio Natta Istituto di Istruzione Superiore Tecnico per la meccanica e le materie plastiche Liceo delle Scienze Applicate Impianti Materie Plastiche Modulo 2 Alimentazione Contenuti 1. Premessa

Dettagli

Temperatura termodinamica assoluta

Temperatura termodinamica assoluta Temperatura termodinamica assoluta Nuova definizione di temperatura Si sceglie come punto fisso fondamentale il punto triplo dell acqua, al quale si attribuisce la temperatura T 3 = 273.16 K. Per misurare

Dettagli

Riempimento volumetrico :

Riempimento volumetrico : ASPIRAZIONE ARIA NEL 4 TEMPI Importanza dell' alimentazione dell' aria: la potenza che il motore produce è influenzata pesantemente dalla rapidità con cui essa riesce. Il processo di alimentazione dell'

Dettagli

Fisica per scienze ed ingegneria

Fisica per scienze ed ingegneria Serway, Jewett Fisica per scienze ed ingegneria Capitolo 22 Il primo principio della termodinamica non è altro che una affermazione del principio di conservazione dell energia. Ci dice che se un sistema

Dettagli

Motori Volumetrici a Combustione Interna (MCI)

Motori Volumetrici a Combustione Interna (MCI) Motori Volumetrici a Combustione Interna (MCI) I MCI sono macchine endotermiche volumetriche funzionanti a circuito aperto (con scambio di massa) Le varie trasformazioni termodinamiche dei cicli di riferimento

Dettagli

Valvola per avviamento progressivo cilindri: (Valvola SSC) Serie ASS

Valvola per avviamento progressivo cilindri: (Valvola SSC) Serie ASS Valvola per avviamento progressivo cilindri: (Valvola SSC) Serie ASS Esecuzione con modalità Meter-out: Valvola di controllo velocità cilindro, farfalla fissa e alimentazione pneumatica rapida Esecuzione

Dettagli

INSTALLATO SOTTO IL COFANO, IL SISTEMA DI LUBRIFICAZIONE VAPSAVER, INFATTI, DISTRIBUISCE PER DEPRESSIONE - NEL COLLETTORE

INSTALLATO SOTTO IL COFANO, IL SISTEMA DI LUBRIFICAZIONE VAPSAVER, INFATTI, DISTRIBUISCE PER DEPRESSIONE - NEL COLLETTORE SERBATOIGPL.COM Srl Via G. Di Vittorio, 9 Z.I. - 38068 ROVERETO (TN) tel. 0464 430465 fax 0464 488189 info@serbatoigpl.com - info@vapsaver.com www.serbatoigpl.com MADE IN ITALY VAP-SAVER Pag.1 LA LOTTA

Dettagli

La ventilazione meccanica controllata [VMC]

La ventilazione meccanica controllata [VMC] La ventilazione meccanica controllata [VMC] Sistemi di riscaldamento e di raffrescamento - Principio di funzionamento: immissione forzata di aria in specifici ambienti. - Peculiarità: garantisce il controllo

Dettagli

Regolazione delle Pompe Centrifughe. Dispense per il corso di Macchine e Sistemi Energetici Speciali

Regolazione delle Pompe Centrifughe. Dispense per il corso di Macchine e Sistemi Energetici Speciali Regolazione delle Pompe Centrifughe Dispense per il corso di Macchine e Sistemi Energetici Speciali Corso di Laurea in Scienze ed Ingegneria dei Materiali Aggiornamento al 19/09/2006 Ing Amoresano Amedeo

Dettagli

DIAGNOSI CANDELE NORMALE

DIAGNOSI CANDELE NORMALE DIAGNOSI CANDELE NORMALE Il piede isolatore presenta un colore da bianco-grigio/giallo-grigio a bruno. Il consumo dell'elettrodo è ridotto. Il grado termico della candela di accensione è stato scelto correttamente.

Dettagli