Matlab PDE Toolbox UNIVERSITÀ DEGLI STUDI DI ROMA. Facoltà di Scienze Matematiche Fisiche e Naturali

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Matlab PDE Toolbox UNIVERSITÀ DEGLI STUDI DI ROMA. Facoltà di Scienze Matematiche Fisiche e Naturali"

Transcript

1 UNIVERSITÀ DEGLI STUDI DI ROMA LA SAPIENZA Facoltà di Scienze Matematiche Fisiche e Naturali Corso di Laurea in Matematica Metodi Numerici per Equazioni alle Derivate Parziali Matlab PDE Toolbox Risoluzione di equazioni alle derivate parziali utilizzando Matlab Luca Cerone A.A

2

3 Introduzione Questa tesina ha lo scopo di presentare l'uso di Matlab per la risoluzione numerica di equazioni alle derivate parziali lineari(da qui in avanti EDP). In particolare presenterò il PDE Toolbox, un insieme di funzioni e di utilities dedicate a questo tipo di problema. Nelle prossime pagine spiegherò quali tipi di EDP è possibile risolvere e delineerò una strategia generale per farlo. Dopodiché presenterò in dettaglio sia come sfruttare l'interfaccia graca del toolbox (G.U.I., graphic user interface), sia come eseguire le principali operazioni da linea di comando (C.L., command line), mettendo in risalto i vantaggi e i difetti dei due approcci. Nell'ultima parte applicherò quanto spiegato a due problemi specici e commenterò i risultati così ottenuti. Quanto detto in questa tesina si riferisce alla versione 7.0 di Matlab e alla versione 1.01 del PDE Toolbox. Rispetto alle versioni precedenti ci sono infatti stati dei cambiamenti che potrebbero creare dei problemi di retrocompatibilità. 1 EDP in Matlab: il solver pdepe Prima di introdurre il PDE Toolbox descrivo brevemente una funzione dedicata alle EDP che fa parte del Matlab di base, utile per la risoluzione di sistemi di EDP, in una variabile spaziale e tempo, di tipo ellittico e parabolico. La funzione (che in gergo viene detta solver) in grado di risolvere questi problemi si chiama pdepe: permette di approssimare numericamente la soluzione di sistemi di EDP del tipo c(x, t, u, u x ) u t = x m x (xm f(x, t, u, u x )) + s(x, t, u, u x ) (1.1) trasformandoli in sistemi di equazioni dierenziali ordinarie che risolve poi con il solver ode15 (per informazioni su ode15 si rimanda all'help in linea di Matlab). 1

4 L'equazione (1.1) si suppone valida per t 0 t t f e a x b, con a, b, t 0, t f R. Il termine f(x, t, u, u x ) è un termine di usso, mentre invece s(x, t, u, u x ) è una sorgente. c è una matrice diagonale che rappresenta il modo di interagire delle equazioni del sistema. Gli elementi sulla diagonale possono essere identicamente nulli oppure positivi, ma ce ne deve essere almeno uno positivo: il caso di una singola equazione ellittica non è infatti contemplato dal solver pdepe. Sono permesse discontinuità (di prima specie) delle funzioni c ed s, a patto però che la griglia contenga i punti di discontinuità. m deve essere uguale a 0 se il problema non presenta simmetrie, a 1 se presenta simmetria cilindrica, oppure a 2 se presenta simmetria radiale. Si suppone inoltre che la soluzione u dell'edp soddis la condizione iniziale u(x, t 0 ) = u 0 (x) (1.2) e che negli estremi, soddis le seguenti condizioni al bordo per ogni valore di t: p(a, t, u) + q(a, t)f(a, t, u, u x ) = 0 (1.3) p(b, t, u) + q(b, t)f(a, t, u, u x ) = 0 (1.4) q(x, t) è una matrice diagonale con elementi che sono o identicamente nulli, o sempre diversi da zero. Una volta riscritta la propria EDP nella forma prevista, la si può risolvere numericamente usando il seguente comando: sol=pdepe(m,pdefun,icfun,bcfun,xmesh,tspan) Il signicato dei parametri da passare alla funzione pdepe è il seguente: - m è il termine che compare in (1.1) e che rappresenta il tipo di simmetria del problema; - pdefun è una funzione denita dall'utente e che, ricevuti in input x, t, u, u x, genera c, f e s. È cioè una funzione del tipo 2

5 [c,f,s]=pdefun(x,t,u,dudx) con x e t scalari ed u e dudx vettori che approssimano la soluzione e la derivata parziale, c deve essere un vettore che contiene gli elementi della diagonale della matrice c, f ed s devono essere vettori; - icfun deve essere una funzione che calcola le condizioni iniziali, deve avere la forma u=icfun(x); - bcfun è una funzione che calcola i termini p e q in (1.3) e in (1.4). Ha la forma [pl,ql,pr,qr]=bcfun(xl,ul,xr,ur,t) ul è la soluzione che approssima u in xl= a, ur è la soluzione che approssima u in xr=b. pl e ql sono vettori colonna che corrispondono a p e agli elementi della diagonale di q in a. Analogamente pr e qr corrispondono ai valori di p e della diagonale di q in b; - xmesh è il vettore che contiene i nodi della griglia di [a, b] (il solver richiede che xmesh contenga almeno 3 valori); - tspan è il vettore che contiene i valori degli istanti temporali in cui si vuole conoscere la soluzione. La variabile sol così ottenuta sarà una matrice tridimensionale, dove il generico elemento sol(i, j, k) approssima la k ma componente della soluzione u, all'istante tspan(i) e nel nodo xmesh(j). A titolo di esempio, supponiamo di voler risolvere la seguente EDP parabolica scalare: u t 2 u x 2 = x u(x, 0) = sin(x) u(0, t) = u(2π, t) = 0 3 (1.5)

6 con x (0, 2π) e per t = 0,..., 1. La prima cosa da fare è riscrivere l'equazione nella forma (1.1) e individuare il valore dei coecienti. Nel nostro caso possiamo riscrivere l'edp come 1 u t = 2 u x 2 + x da cui deduciamo che m = 0, c = 1, f = u x e s = x. Analogamente guardando alla forma (1.2) e (1.3), (1.4) delle condizioni iniziali e al bordo rispettivamente, possiamo dedurre che u 0 (x) = sin(x), p(a, t, u) = u = p(b, t, u) = u e inoltre q(a, t, u) = 0 = q(b, t, u). A questo punto si possono scrivere le funzioni da passare come argomenti al solver per la risoluzione numerica dell'equazione. Qui di seguito è riportato il listato del codice da implementare in Matlab per calcolare la soluzione, visualizzarne il prolo al variare del tempo e generare un lmato che mostra l'andamento della soluzione nel tempo. function sol=senzapdetool %generazione dei nodi su x e t. m = 0; x = linspace(0,2*pi,30); t = linspace(0,1,10); sol = u = sol(:,:,1); surf(x,t,u) %profilo della soluzione al variare del tempo figure plot(x,u(end,:)) %grafico della soluzione per t=1 % %le prossime istruzioni servono a generare un filmato che %mostra l'andamento della soluzione nel tempo umax=max(max(sol)); umin=min(min(sol)); [n,m]=size(sol); 4

7 newplot Mpdepe=moviein(n); for i=1:n plot(x,u(i,:)) axis([0 2*pi umin umax]); caxis([umin umax]); Mpdepe(:,i)=getframe; end % % funzione che definisce i valori di c,f ed s function [c,f,s] = pdefun(x,t,u,dudx) c = 1; f = DuDx; s = x; % %funzione che definisce la condizione iniziale function u0 = initcon(x) u0 = sin(x); % %funzione che definisce le condizioni al bordo function [pl,ql,pr,qr] = boundcon(xl,ul,xr,ur,t) pl = ul; ql = 0; pr = ur; qr = 0; Dovrebbe essere chiaro a questo punto che la risoluzione di una EDP utilizzando il solver di base risulta un po' dicoltosa e inoltre, pur essendo adatta in molte situazioni, non permette di risolvere EDP denite su un dominio bidimensionale, né tantomeno di risolvere EDP ellittiche o iperboliche. Come vedremo nelle prossime sezioni, il PDE Toolbox permette innanzitutto di risolvere problemi più complessi e, nella stragrande maggioranza dei casi, in maniera estremamente semplice tramite GUI. 2 Il PDE Toolbox Il PDE Toolbox estende le capacità del solver di base pdepe, permettendo di risolvere EDP e sistemi di EDP ellittiche, paraboliche e iperboliche, denite 5

8 su un dominio limitato Ω R 2 (con condizioni di Dirichlét, condizioni di Neumann e condizioni miste), problemi agli autovalori e anche una classe di equazioni non lineari. In queste pagine mi occuperò principalmente dei tre tipi di EDP lineari seguenti: equazioni ellittiche (c u) + au = f (2.1) equazioni paraboliche equazioni iperboliche d u t (c u) + au = f (2.2) d 2 u (c u) + au = f (2.3) t2 Le equazioni (2.1), (2.2) e (2.3), possono essere viste anche come una notazione compatta per sistemi di EDP rispettivamente ellttici, parabolici o iperbolici. Il Matlab è in gradi di risolvere sistemi che si presentino in forma (2.1), (2.2) e (2.3), anche se non sono, matematicamente parlando, eettivamente del tipo indicato. Da qui in avanti, mi riferirò esclusivamente al caso di EDP scalari e non di sistemi. Nell'equazione (2.1) c, a, f e u sono funzioni a valori complessi denite su Ω. In (2.2) e (2.3) c, a, f, d, sono funzioni a valori complessi che possono eventualmente dipendere anche da t, mentre u è una funzione a valori complessi. Dopo queste informazioni preliminari non rimane che vedere come usare eettivamente il PDE Toolbox per la risoluzione di un problema. 3 L'interfaccia graca: un primo semplice problema Il modo più semplice per risolvere una EDP usando il Toolbox è senza dubbio usare l'interfaccia graca. Dopo aver caricato la GUI tramite il comando pdetool, ci si troverà davanti a una schermata che si presenta come mostrato in gura

9 Figura 3.1: Come si presenta la GUI del PDE Toolbox Per illustrare le funzioni disponibili è conveniente supporre di voler risolvere un problema, ad esempio la seguente equazione ellittica con condizioni al bordo di Dirichlet: u = 1 in Ω (3.1) u = 0 su δω dove Ω R 2 è la sfera di centro l'origine e raggio 1. La prima cosa da fare è disegnare il dominio Ω. Per fare ciò è suciente premere l'icona rappresentante l'ellisse con la croce al centro (vedi gura 3.2), dopodiché si posiziona il cursore sull'origine e, tenendo il tasto destro del mouse, lo si trascina no ad aver ottenuto una circonferenza del raggio desiderato. Il cerchio così ottenuto apparirà con l'interno colorato in grigio, e sarà contrassegnato dall'etichetta C1. Per essere sicuri di aver disegnato proprio il dominio desiderato, si può cliccare due volte sul cerchio e inserire i 7

10 Figura 3.2: Barra degli strumenti del PDE Toolbox dati giusti (coordinate del cerchio e lunghezza del raggio) tramite l'interfaccia che compare. Dopo aver disegnato il dominio si devono specicare le condizioni al bordo. Cliccando sull'icona δω, nell'area di lavoro verrà mostrato il bordo di C1 come composto da 4 archi. Tale rappresentazione del bordo è molto comoda qualora si vogliano imporre condizioni al bordo miste, permettendo di specicare per ogni arco il tipo di condizione desiderata: cliccando due volte su un arco si apre, infatti, un menù che permette di scegliere le condizioni relative a quell'arco. Ciò mette in luce da un lato la semplicità di utilizzo per risolvere problemi con condizioni miste, dall'altro il limite di dover imporre condizioni al bordo solamente su archi pressati. Per ovviare a questo inconveniente si dovrà agire da linea di comando, come spiegherò più avanti. In ogni caso, nel problema che stiamo risolvendo, le condizioni sono dello stesso tipo su tutti gli archi ed è conveniente inserirle tutte in una volta nel modo che segue: aprire il menù di scelta Boundary dunque selezionare Specify Boundary Conditions, e dunque il tipo di condizione che si vuole imporre: nel nostro caso Dirichlet di parametri h = 1 ed r = 0. Dopo aver specicato il dominio e le condizioni al bordo è necessario indicare che tipo di EDP si sta risolvendo e con che parametri. Si clicca dunque sull'icona PDE e si sceglie elliptic con coecienti c = 1, a = 0, f = 1. A questo punto è suciente creare la griglia cliccando sull'icona col triangolo, eventualmente ranarla cliccando sull'icona con più triangolini uno dentro l'altro, e risolvere l'edp cliccando sull'icona con l'uguale. Di default apparirà una rappresentazione bidimensionale della soluzione. Se si vuole il graco 3d basta premere il bottone con la supercie, selezionare la 8

11 Figura 3.3: Come appare il Boundary Mode casella Height (3d plot) e quindi fare clic su plot. Abbiamo sin qui delineato le linee guida da seguire nell'arontare una EDP con Matlab, usando perlopiù impostazioni di default. Il Matlab, però, permette di scegliere molti parametri che possono portare a una più eciente risoluzione dei problemi, sia in termini di tempo, che della precisione ottenuta, come mostrerò nella prossima sezione. 4 GUI impostazioni generiche Ho n qui mostrato come risolvere una semplice EDP, adesso approfondirò le caratteristiche della GUI per risolvere problemi un po' più complessi e avere un maggior controllo dei parametri in gioco. Innanzitutto vediamo le opzioni che sono comuni per i tre tipi di EDP (2.1), (2.2), (2.3). 9

12 Iniziamo dalla creazione del dominio, nel caso precedente Ω era un oggetto estremamente semplice, ma si possono denire domini più complessi ottenuti dall'unione e intersezione di poligoni ed ellissi. Per un dominio che non si possa decomporre in questa maniera sarà necessario denire delle funzioni che lo descrivono e agire da linea di comandi come mostrerò in seguito. Innanzitutto si procede col disegnare le gure di base che compongono il dominio, ad esempio un'ellisse, un triangolo e un rettangolo. Per disegnare un'ellisse generica si clicca su una delle due icone che rappresenta un'ellisse (con o senza croce a seconda che la si voglia tracciare a partire dal centro o delineando i semiassi) e si trascina il cursore nell'area dedicata alla graca. Si può notare la dierenza col caso precedente in cui si voleva disegnare un cerchio: usando il tasto destro del mouse si garantisce che i semiassi siano uguali, il tasto destro garantisce anche che i lati di un rettangolo siano uguali e permette quindi disegnare dei quadrati. Clicchiamo poi sull'icona col rettangolo per tracciare il rettangolo e sull'icona con il poligono per disegnare i tre lati del triangolo (questo pulsante permette inoltre di creare poligoni generici). I tre oggetti sono contrassegnati dalle etichette E1,R1,P1 rispettivamente, e di default il Matlab considera l'unione di questi oggetti come dominio Ω. Suppongo però, che Ω sia dato dall'unione dell'ellisse e del rettangolo alla quale viene tolto il triangolo. Per specicare questo dominio è semplice: in alto, subito sotto la barra degli strumenti, c'è infatti una barra che contiene la cosiddetta SET FORMULA, che indica quale tipo di operazione insiemistica si deve fare con gli oggetti disegnati. Subito dopo il disegno la formula sarà E1 + R1 + P 1 che rappresenta l'unione dei tre oggetti. E' suciente modicare la formula in (E1 + R1) P 1 per ottenere il dominio desiderato (vedi gura 4.1). In generale, le parentesi servono a gestire la precedenza delle operazioni 10

13 Figura 4.1: Composizione di un dominio 11

14 da svolgere sugli insiemi, il + indica l'unione di insiemi, l' l'intersezione e il che l'insieme va tolto da ciò che lo precede. In questo modo si possono creare insiemi anche abbastanza complessi con uno sforzo relativamente modesto. Per quanto riguarda la creazione di un dominio l'unica cosa che resta da dire è che gli elementi che compongono il dominio possono essere ruotati. Per farlo bisogna prima selezionare l'elemento che si desidera ruotare, dopodiché nel menù Draw si sceglie Rotate. A questo punto bisogna scegliere l'angolo di rotazione in gradi (ricordando che un numero positivo indica una rotazione antioraria e un numero negativo una rotazione oraria) e le coordinate del punto che fa da centro della rotazione (di default è il centro di massa dell'oggetto). Analizziamo ora i menù restanti. Sul menù File c'è poco da dire, permette di iniziare una nuova sessione di lavoro, caricarne una, salvarla, salvarla con un nuovo nome, e stamparla. Il menù Edit si attiva solamente quando si stanno disegnando gli oggetti che compongono il dominio, o si stanno modicando le impostazioni del bordo. Ecco il signicato delle opzioni nell'ordine: Undo quando si sta disegnando un poligono, permette di cancellare l'ultimo segmento disegnato; Cut rimuove gli oggetti disegnati ma li conserva in memoria per poterli incollare nella posizione desiderata con Paste; Copy copia gli oggetti in memoria per poterli incollare nella posizione desiderata con Paste, e lascia l'originale dove si trova; Paste incolla gli oggetti in memoria nella posizione desiderata; Clear cancella tutti gli oggetti selezionati; Select All seleziona tutti gli oggetti disegnati. Il menù Options permette di scegliere delle impostazioni utili: Grid visualizza una griglia nell'area di disegno; Grid Spacing permette di scegliere quanto deve essere tta la griglia; 12

15 Snap se questa opzione è selezionata, quando si prova a disegnare un oggetto questo è costretto ad aderire alla griglia (ad esempio i centri delle circonferenze verrano poste sul nodo più vicino, e lo stesso per i vertici di rettangoli e poligoni); Axis Limits permette di selezionare la lunghezza dell'intervallo della x e della y; Axis Equal impone la stessa scala sugli assi x e y; Turn o Toolbar Help disabilita il messaggio di aiuto che compare soermandosi col mouse sulle icone; Zoom permette di ingrandire porzioni dell'area di disegno; Application è l'opzione più interessante: andando con il cursore su Application si apre un menù a tendina che permette di scegliere la modalità desiderata. Quella predenita è Generic Equation, generica EDP, ma ve ne sono molte altre per i generici sistemi di EDP e per le principali applicazioni delle EDP ai problemi della sica e della meccanica. In sostanza, i parametri da inserire negli altri menù non saranno più quelli delle formule (2.1), (2.2), (2.3), ma saranno legati alla forma standard dell'equazione per lo specico problema considerato. Ad esempio per l'equazione stazionaria del calore (Heath Equation), la forma standard dell'edp con condizioni al bordo di Dirichlet è: (k T ) = Q + h (T ext T ) in Ω T = T bound su δω (4.1) dove T è la temperatura, k è il coeciente di conduzione, Q rappresenta la sorgente di calore, h è il coeciente di conduzione per convezione, T ext è la temperatura esterna, T bound è la funzione della temperatura T sul bordo. L'equazione in questione è un'equazione ellittica, ma in questo caso anziché i coecienti visti in precedenza, si dovranno inserire i valori di k, Q, h, T ext, e T bound. La trattazione dettagliata di tutte le modalità per le applicazioni esula dallo scopo di questa tesina, ma informazioni approfondite possono 13

16 essere trovate nell'help in linea di Matlab; Refresh aggiorna e ridisegna tutti gli oggetti graci. I menù che restano sono quelli che maggiormente ci interessano dal punto di vista matematico. Tuttavia le schermate potrebbero variare a seconda del tipo di problema che si aronta, pertanto per spiegarli converrà fare riferimento a problemi specici. 5 GUI impostazioni avanzate per EDP ellittiche Torniamo a considerare l'equazione (3.1) di pagina 7. Abbiamo già visto come risolverla usando le impostazioni di base, vediamo ora qualche opzione più avanzata. Dopo aver disegnato il cerchio unitario, aver settato le condizioni al bordo, scelto il tipo di equazione e inserito i coecienti, apriamo il menù Mesh. Abbiamo già visto gli eetti di Initialize Mesh e Rene Mesh (rispettivamente la crezione della griglia e il suo ranamento), saltiamo per il momento l'opzione Jiggle Mesh e clicchiamo su Parameters. Nella schermata che si apre è possibile impostare alcuni parametri: Maximum Edge Size permette di impostare la lunghezza massima dei lati dei triangoli che compongono la griglia; Mesh Growth Rate deve essere un numero compreso tra 1 e 2, indica la velocità di crescita della griglia, e dà un'indicazione della dierenza di dimensione tra i più piccoli triangoli che compongono la griglia e i più grandi; Jiggle Mode selezionando questa opzione si abilita la funzione di jiggling (da jiggle, scuotere), ossia dopo aver generato la griglia si cerca di far sì che i triangoli siano per quanto più possibile equilateri, in maniera da evitare problemi di malcondizionamento. A ogni triangolo della griglia viene associato un valore di qualità che dipende proprio dalla forma del triangolo. Tra le modalità di Jiggling si può scegliere, ON per eettuare questa operazione una sola volta, Optimize minimum per ripetere l'operazione no a quando 14

17 il più basso valore di qualità dei triangoli non smette di crescere, oppure no a quando non si è raggiunto il numero massimo di iterazioni che si può speci- care più in basso, Optimize mean si comporta come Optimize minimum, ma prendendo come riferimento la qualità media dei triangoli; rene methods permette di scegliere se avere una griglia per quanto più possibile uniforme (opzione regular), oppure se suddividere ad ogni ranamento solamente i lati più lunghi dei triangoli (opzione longest). Sempre dal menù Draw è possibile visualizzare gracamente la qualità dei triangoli con Display Triangle Quality (sono accettabili valori superiori a 0.6), ed eventualmente eseguire manualmente l'operazione di Jiggling cliccando su Jiggling. É inoltre possibile mostrare i numeri dei vertici dei triangoli, e il numero associato ad ogni triangolo, scegliendo Show Node Labels e Show Triangle Labels rispettivamente. Tuttavia, specie quando si lavora con una griglia composta di un numero elevato di triangoli, sconsiglio di abilitare queste opzioni perché richiedono l'uso di una notevole quantità di memoria che potrebbe rallentare in maniera drastica le operazioni da compiere. Andiamo ora ad analizzare il menù Solve. Cliccando su Solve, si lancia il solver che risolve numericamente l'equazione. I parametri utilizzati dal solver possono esere specicati cliccando su Parameters. Nel caso di equazioni ellittiche, si aprirà una nestra che prevede l'abilitazione di due opzioni: Adaptive mesh renement e Use Non Linear Solver. Di default non sono selezionate, tuttavia risultano utili in molte occasioni. Adaptive mesh mode, permette di calcolare la soluzione numerica andando a ranare la griglia solo in quei triangoli dove non si è raggiunta l'accuratezza desiderata. Se lo si seleziona si potrà decidere il numero massimo di triangoli che può essere aggiunto ad ogni ranamento della griglia (Maximum Numbers of Triangles), il numero massimo di ranamenti della griglia da eseguire (Maximum Number of renements), i criteri in base ai quali scegliere: 15

18 Worst Triangles si basa sul peggiore valore di qualità dei triangoli per selezionare i triangoli da ranare, e su una funzione nativa del PDE Tool (pdejmps,che vedremo quando parlerò di C.L.) che fornisce una stima dell'errore sui vari triangoli; il valore indicato in Worst Triangle Fraction deve essere compreso tra 0 e 1, tantò più sarà alto tanti meno triangoli necessiteranno un ranamento, tanto più sarà vicino a 0 tanti più triangoli saranno ranati; Relative Tolerance esegue il ranamento su quei triangoli per i quali l'errore relativo stimato è maggiore della tolleranza indicata nella casella Relative Tolerance; User dened function per indicare un'eventuale funzione creata dall'utente per la selezione dei triangoli; Renement Method, si può scegliere regular o longest con lo stesso signi- cato visto per i parametri del menù Mesh. Per quanto riguarda Use Non Linear Solver è necessario selezionarlo quando ci si trova di fronte a un'equazione non lineare, i parametri da denire solo la tolleranza per l'errore, una eventuale soluzione inziale da cui far cominciare partire l'algoritmo (il solver non lineare si basa sull'algoritmo di Newton che ha convergenza solo locale), il modo di approssimare lo Jacobiano della funzione (xed, usando un metodo di punto sso, lumped approssimandolo con una matrice diagonale, full calcolo completo dello Jacobiano. Le opzioni Adaptive mode e Use Non Linear Solver possono essere attivate sia indipendentemente l'una dall'altra che contemporaneamente. Dopo aver settato tutte queste impostazioni, cliccando sull'icona con l'uguale si procede alla risoluzione numerica. Restano solamente da impostare le proprietà di visualizzazione. Per fare ciò si apra il menù Plot e si clicchi su Parameters. Ecco brevemente il signi- cato dei parametri: Color permette di scegliere in base a quale valore assegnare il colore a quanto 16

19 disegnato nel graco (di default è la soluzione approssimata u); plot style serve per decidere se il colore dovrà sfumare gradatamente (interpolated shad.), o se riferirsi al valor medio della funzione su ciascun triangolo (at shad.; contour se selezionato mostra le curve di livello nel graco; arrows disegna delle frecce per indicare l'andamento del campo vettoriale, le si può scegliere di lunghezza ssa (normalized) oppure proporzionale al modulo del campo vettoriale (proportional); deformed mesh dà una rappresentazione deformata del dominio, la deformazione dipende dal modulo del gradiente; questa opzione deve essere attivata da sola ed è pensata principalmente per problemi di meccanica; Height 3d di default disegna la supercie (x, y, u(x, y)), tuttavia è possibile scegliere la grandezza che si desidera rappresentare sull'asse delle z utilizzando il menù a tendina (ad esempio u ; plot in x-y grid disegna il graco anziché sulla griglia triangolare di partenza, su una griglia rettangolare; contour plot levels indica quante curve di livello disegnare; show mesh rappresenta la griglia nel graco; colormap indica quali colori usare per la rappresentazione graca. Dopo aver congurato tutti i parametri desiderati è suciente cliccare su Plot per visualizzare i risultati nella maniera voluta. Come si sarà notato nel menù di scelta non era possibile selezionare l'opzione Animation, questo perché in una equazione ellittica la soluzione non dipende da una variabile temporale. Tale dipendenza è invece in generale presente in equazioni paraboliche e iperboliche, e per esse sarà possibile ottenere un'animazione che mostra come varia la soluzione in funzione del tempo. 17

20 6 GUI impostazioni avanzate per EDP paraboliche iperboliche In questo paragrafo mostrerò qualche impostazione specica per le equazioni paraboliche e iperboliche. Tratterò insieme i due casi in quanto sono molto simili da spiegare. Sia per il caso parabolico che per quello iperbolico, le uniche cose che dieriscono da quanto visto no ad adesso sono i menù Solve e Plot. Supponiamo di avere un'equazione parabolica. Aprendo il menù Solve e dunque Parameters, apparirà una schermata in cui sarà possibile impostare le seguenti opzioni: Time, deve essere un vettore che rappresenta gli istanti temporali per i quali si vuole calcolare la soluzione; u(t0), funzione che rappresenta la soluzione all'istante iniziale t 0, può essere una funzione di x e y, ad esempio sin(x + y); Relative Tolerance e Absolute Tolerance sono rispettivamente l'errore relativo e quello assoluto che si vuole commettere. Per un'equazione iperbolica il menù Solve si presenterà in maniera pressoché identica, salvo per il fatto che si dovrà inserire anche il valore di u (t 0 ). Sia per le equazioni paraboliche che per quelle iperboliche il menù Plot apparirà identico e, rispetto al caso ellittico ci sono due sole dierenze: si può scegliere l'istante temporale per cui si vuole disegnare il graco, e si può creare una animazione (sia 2D che 3D) dell'evolvere nel tempo della soluzione. Per scegliere il valore del tempo t per il quale si vuole disegnare la soluzione, sarà suciente aprire il menù a tendina time for plot che si trova in basso a destra e selezionare il tempo desiderato. Naturalmente si potranno scegliere tutte le opzioni a disposizione, come visto per il caso ellittico. Per generare un'animazione bidimensionale della soluzione si deve invece 18

21 selezionare Animation. Si può accedere a un menù di opzioni cliccando sul pulsante Options vicino alla casella Animation. Si potranno così impostare il numero di fotogrammi al secondo (Fps) da visualizzare e per quante volte ripetere il lmato (Number of repeats). Nel caso fosse già stato creato un lmato, sarà possibile selezionare Replay, in maniera da visualizzare quello già esistente senza crearne uno nuovo (questa opzione è molto comoda in quanto, soprattutto con griglie tte e intervalli temporali molto lunghi, la generazione di un lmato può richiedere molto tempo e risorse). Per generare una animazione tridimensionale basta selezionare Height 3d e procedere come nel caso bidimensionale. Per vedere come applicare in pratica quanto detto n qui, aronterò ora il seguente problema: 2 u t 2 u + u = 1 u = 0 su δω u(x, y, 0) = sin(x + y) u (x, y, 0) = x y (6.1) dove Ω è il dominio mostrato in gura 6.1, dato dall'unione delle due circonferenze C1 e C2 di raggio 1 e centri rispettivamente ( 0.5, 0) e (0.5, 0). Cercherò la soluzione per gli istanti t n = n, n = 0,..., 5. Dopo aver disegnato il dominio Ω, andiamo a specicare le condizioni al bordo. Clicchiamo sull'icona δω, quindi apriamo il menù Boundary e Specify Boundary Condition. Nel nostro caso sono condizioni di Dirchlét, e basterà impostare i seguenti valori h=1, r=0. Per avere una rappresentazione dei bordi più pulita clicchiamo anche, sempre dal menù Boundary su Remove all subdomain borders. Andiamo ora a specicare il tipo di EDP che si vuole risolvere. menù PDE, apriamo PDE specication, selezioniamo Hyperbolic e inseriamo i seguenti valori per i coecienti: c=1, a=1, f=1, d=1. Dal 19

22 Figura 6.1: Griglia sul dominio Ω del problema (6.1) Prima di generare la griglia e ranarla, apriamo il menù Solve e in Parameters imponiamo le condizioni iniziali: u(t0)=sin(x+y), u'(t0)=x-y. Specichiamo inoltre l'intervallo temporale, nel nostro caso basta inserire la stringa [0 : 1 : 5], nella casella Time. Per la griglia lasciamo le impostazioni predenite, generiamo la griglia cliccando sul triangolo e la raniamo cliccando sull'icona con più triangolini. Per evitare problemi di malcondizionamento dal menù Mesh eettuiamo il jiggling per due volte. Possiamo quindi cliccare sull'uguale per far calcolare la soluzione approssimata. Per impostazione predenita apparirà disegnata una rappresentazione bidimensionale della soluzione all'istante temporale t 5. Vogliamo invece visualizzare un graco tridimensionale per ciascuno degli istanti t n. Apriamo il menù Plot e quindi Parameters. Selezioniamo Height 3d e l'istante temporale per cui vogliamo visualizzare il graco (vedi gura 6.2). 20

Calc è il programma per la gestione di fogli di calcolo della suite OpenOffice.org.

Calc è il programma per la gestione di fogli di calcolo della suite OpenOffice.org. Calc è il programma per la gestione di fogli di calcolo della suite OpenOffice.org. Nuovo documento Anteprima di stampa Annulla Galleria Apri Controllo ortografico Ripristina Sorgente dati Salva Controllo

Dettagli

γ (t), e lim γ (t) cioè esistono la tangente destra e sinistra negli estremi t j e t j+1.

γ (t), e lim γ (t) cioè esistono la tangente destra e sinistra negli estremi t j e t j+1. Capitolo 6 Integrali curvilinei In questo capitolo definiamo i concetti di integrali di campi scalari o vettoriali lungo curve. Abbiamo bisogno di precisare le curve e gli insiemi che verranno presi in

Dettagli

Guida rapida. Cos è GeoGebra? Notizie in pillole

Guida rapida. Cos è GeoGebra? Notizie in pillole Guida rapida Cos è GeoGebra? Un pacchetto completo di software di matematica dinamica Dedicato all apprendimento e all insegnamento a qualsiasi livello scolastico Riunisce geometria, algebra, tabelle,

Dettagli

Introduzione ad Access

Introduzione ad Access Introduzione ad Access Luca Bortolussi Dipartimento di Matematica e Informatica Università degli studi di Trieste Access E un programma di gestione di database (DBMS) Access offre: un supporto transazionale

Dettagli

if t>=0 x=1; else x=0; end fornisce, nella variabile x, il valore della funzione gradino a tempi continui, calcolata in t.

if t>=0 x=1; else x=0; end fornisce, nella variabile x, il valore della funzione gradino a tempi continui, calcolata in t. Il programma MATLAB In queste pagine si introduce in maniera molto breve il programma di simulazione MAT- LAB (una abbreviazione di MATrix LABoratory). Introduzione MATLAB è un programma interattivo di

Dettagli

Rapida Introduzione all uso del Matlab Ottobre 2002

Rapida Introduzione all uso del Matlab Ottobre 2002 Rapida Introduzione all uso del Matlab Ottobre 2002 Tutti i tipi di dato utilizzati dal Matlab sono in forma di array. I vettori sono array monodimensionali, e così possono essere viste le serie temporali,

Dettagli

I Grafici. La creazione di un grafico

I Grafici. La creazione di un grafico I Grafici I grafici servono per illustrare meglio un concetto o per visualizzare una situazione di fatto e pertanto la scelta del tipo di grafico assume notevole importanza. Creare grafici con Excel è

Dettagli

GeoGebra 4.2 Introduzione all utilizzo della Vista CAS per il secondo biennio e il quinto anno

GeoGebra 4.2 Introduzione all utilizzo della Vista CAS per il secondo biennio e il quinto anno GeoGebra 4.2 Introduzione all utilizzo della Vista CAS per il secondo biennio e il quinto anno La Vista CAS L ambiente di lavoro Le celle Assegnazione di una variabile o di una funzione / visualizzazione

Dettagli

I.Stat Guida utente Versione 1.7 Dicembre 2010

I.Stat Guida utente Versione 1.7 Dicembre 2010 I.Stat Guida utente Versione 1.7 Dicembre 2010 1 Sommario INTRODUZIONE 3 I concetti principali di I.Stat 4 Organizzazione dei dati 4 Ricerca 5 GUIDA UTENTE 6 Per iniziare 6 Selezione della lingua 7 Individuazione

Dettagli

IMPOSTARE UNA MASCHERA CHE SI APRE AUTOMATICAMENTE

IMPOSTARE UNA MASCHERA CHE SI APRE AUTOMATICAMENTE IMPOSTARE UNA MASCHERA CHE SI APRE AUTOMATICAMENTE Access permette di specificare una maschera che deve essere visualizzata automaticamente all'apertura di un file. Vediamo come creare una maschera di

Dettagli

Dati importati/esportati

Dati importati/esportati Dati importati/esportati Dati importati Al workspace MATLAB script Dati esportati file 1 File di testo (.txt) Spreadsheet Database Altro Elaborazione dati Grafici File di testo Relazioni Codice Database

Dettagli

Funzioni di più variabili. Ottimizzazione libera e vincolata

Funzioni di più variabili. Ottimizzazione libera e vincolata libera e vincolata Generalità. Limiti e continuità per funzioni di 2 o Piano tangente. Derivate successive Formula di Taylor libera vincolata Lo ordinario è in corrispondenza biunivoca con i vettori di

Dettagli

Funzioni in più variabili

Funzioni in più variabili Funzioni in più variabili Corso di Analisi 1 di Andrea Centomo 27 gennaio 2011 Indichiamo con R n, n 1, l insieme delle n-uple ordinate di numeri reali R n4{(x 1, x 2,,x n ), x i R, i =1,,n}. Dato X R

Dettagli

LA FINESTRA DI OPEN OFFICE CALC

LA FINESTRA DI OPEN OFFICE CALC LA FINESTRA DI OPEN OFFICE CALC Barra di Formattazione Barra Standard Barra del Menu Intestazione di colonna Barra di Calcolo Contenuto della cella attiva Indirizzo della cella attiva Cella attiva Intestazione

Dettagli

Da una a più variabili: derivate

Da una a più variabili: derivate Da una a più variabili: derivate ( ) 5 gennaio 2011 Scopo di questo articolo è di evidenziare le analogie e le differenze, relativamente al calcolo differenziale, fra le funzioni di una variabile reale

Dettagli

WORD (livello avanzato): Struttura di un Documento Complesso. Struttura di un Documento Complesso

WORD (livello avanzato): Struttura di un Documento Complesso. Struttura di un Documento Complesso Parte 5 Adv WORD (livello avanzato): Struttura di un Documento Complesso 1 di 30 Struttura di un Documento Complesso La realizzazione di un libro, di un documento tecnico o scientifico complesso, presenta

Dettagli

Energy Studio Manager Manuale Utente USO DEL SOFTWARE

Energy Studio Manager Manuale Utente USO DEL SOFTWARE Energy Studio Manager Manuale Utente USO DEL SOFTWARE 1 ANALYSIS.EXE IL PROGRAMMA: Una volta aperto il programma e visualizzato uno strumento il programma apparirà come nell esempio seguente: Il programma

Dettagli

Editor vi. Editor vi

Editor vi. Editor vi Editor vi vi 1 Editor vi Il vi è l editor di testo standard per UNIX, è presente in tutte le versioni base e funziona con qualsiasi terminale a caratteri Permette di visualizzare una schermata alla volta

Dettagli

Guida rapida all uso di ECM Titanium

Guida rapida all uso di ECM Titanium Guida rapida all uso di ECM Titanium Introduzione Questa guida contiene una spiegazione semplificata del funzionamento del software per Chiputilizzare al meglio il Tuning ECM Titanium ed include tutte

Dettagli

Modulo. Programmiamo in Pascal. Unità didattiche COSA IMPAREREMO...

Modulo. Programmiamo in Pascal. Unità didattiche COSA IMPAREREMO... Modulo A Programmiamo in Pascal Unità didattiche 1. Installiamo il Dev-Pascal 2. Il programma e le variabili 3. Input dei dati 4. Utilizziamo gli operatori matematici e commentiamo il codice COSA IMPAREREMO...

Dettagli

Legge del Raffreddamento di Newton

Legge del Raffreddamento di Newton Legge del Raffreddamento di Newton www.lepla.eu Obiettivo L'obiettivo di questo esperimento è studiare l'andamento temporale della temperatura di un oggetto che si raffredda e trovare un modello matematico

Dettagli

Le formule possono essere scritte utilizzando un insieme di funzioni predefinite che Excel mette a disposizione, raggruppate per argomento.

Le formule possono essere scritte utilizzando un insieme di funzioni predefinite che Excel mette a disposizione, raggruppate per argomento. Excel: le funzioni Le formule possono essere scritte utilizzando un insieme di funzioni predefinite che Excel mette a disposizione, raggruppate per argomento. DEFINIZIONE: Le funzioni sono dei procedimenti

Dettagli

Esercitazioni di Excel

Esercitazioni di Excel Esercitazioni di Excel A cura dei proff. A. Khaleghi ed A. Piergiovanni. Queste esercitazioni hanno lo scopo di permettere agli studenti di familiarizzare con alcuni comandi specifici di Excel, che sono

Dettagli

How to Develop Accessible Linux Applications

How to Develop Accessible Linux Applications How to Develop Accessible Linux Applications Sharon Snider Copyright 2002 IBM Corporation v1.1, 2002-05-03 Diario delle Revisioni Revisione v1.1 2002-05-03 Revisionato da: sds Convertito in DocBook XML

Dettagli

l Editor vi vi (visual editor) è stato scritto per essere utilizzabile con qualsiasi tipo di terminale.

l Editor vi vi (visual editor) è stato scritto per essere utilizzabile con qualsiasi tipo di terminale. l Editor vi Negli ambienti Unix esistono molti editor di testo diversi; tuttavia vi è l unico che siamo sicuri di trovare in qualsiasi variante di Unix. vi (visual editor) è stato scritto per essere utilizzabile

Dettagli

METODI ITERATIVI PER SISTEMI LINEARI

METODI ITERATIVI PER SISTEMI LINEARI METODI ITERATIVI PER SISTEMI LINEARI LUCIA GASTALDI 1. Metodi iterativi classici Sia A R n n una matrice non singolare e sia b R n. Consideriamo il sistema (1) Ax = b. Un metodo iterativo per la soluzione

Dettagli

IV-1 Funzioni reali di più variabili

IV-1 Funzioni reali di più variabili IV- FUNZIONI REALI DI PIÙ VARIABILI INSIEMI IN R N IV- Funzioni reali di più variabili Indice Insiemi in R n. Simmetrie degli insiemi............................................ 4 2 Funzioni da R n a R

Dettagli

Cross Software ltd Malta Pro.Sy.T Srl. Il gestionale come l'avete sempre sognato... Pag. 1

Cross Software ltd Malta Pro.Sy.T Srl. Il gestionale come l'avete sempre sognato... Pag. 1 Il gestionale come l'avete sempre sognato... Pag. 1 Le funzionalità di X-Cross La sofisticata tecnologia di CrossModel, oltre a permettere di lavorare in Internet come nel proprio ufficio e ad avere una

Dettagli

FUNZIONI AVANZATE DI EXCEL

FUNZIONI AVANZATE DI EXCEL FUNZIONI AVANZATE DI EXCEL Inserire una funzione dalla barra dei menu Clicca sulla scheda "Formule" e clicca su "Fx" (Inserisci Funzione). Dalla finestra di dialogo "Inserisci Funzione" clicca sulla categoria

Dettagli

AUTOMATIZZARE UN'AZIONE COMUNE DI WORD USANDO UNA MACRO

AUTOMATIZZARE UN'AZIONE COMUNE DI WORD USANDO UNA MACRO AUTOMATIZZARE UN'AZIONE COMUNE DI WORD USANDO UNA MACRO Con questa esercitazione guidata imparerai a realizzare una macro. Una macro è costituita da una serie di istruzioni pre-registrate che possono essere

Dettagli

EQUAZIONI E DISEQUAZIONI POLINOMIALI E COLLEGAMENTI CON LA GEOMETRIA ELEMENTARE

EQUAZIONI E DISEQUAZIONI POLINOMIALI E COLLEGAMENTI CON LA GEOMETRIA ELEMENTARE EQUAZIONI E DISEQUAZIONI POLINOMIALI E COLLEGAMENTI CON LA GEOMETRIA ELEMENTARE 1. EQUAZIONI Definizione: un equazione è un uguaglianza tra due espressioni letterali (cioè in cui compaiono numeri, lettere

Dettagli

CS. Cinematica dei sistemi

CS. Cinematica dei sistemi CS. Cinematica dei sistemi Dopo aver esaminato la cinematica del punto e del corpo rigido, che sono gli schemi più semplificati con cui si possa rappresentare un corpo, ci occupiamo ora dei sistemi vincolati.

Dettagli

SOGEAS - Manuale operatore

SOGEAS - Manuale operatore SOGEAS - Manuale operatore Accesso La home page del programma si trova all indirizzo: http://www.sogeas.net Per accedere, l operatore dovrà cliccare sulla voce Accedi in alto a destra ed apparirà la seguente

Dettagli

Funzioni di base. Manualino OE6. Outlook Express 6

Funzioni di base. Manualino OE6. Outlook Express 6 Manualino OE6 Microsoft Outlook Express 6 Outlook Express 6 è un programma, incluso nel browser di Microsoft Internet Explorer, che ci permette di inviare e ricevere messaggi di posta elettronica. È gratuito,

Dettagli

Studente: SANTORO MC. Matricola : 528

Studente: SANTORO MC. Matricola : 528 CORSO di LAUREA in INFORMATICA Corso di CALCOLO NUMERICO a.a. 2004-05 Studente: SANTORO MC. Matricola : 528 PROGETTO PER L ESAME 1. Sviluppare una versione dell algoritmo di Gauss per sistemi con matrice

Dettagli

WINDOWS - Comandi rapidi da tastiera più utilizzati.

WINDOWS - Comandi rapidi da tastiera più utilizzati. WINDOWS - Comandi rapidi da tastiera più utilizzati. La prima colonna indica il tasto da premere singolarmente e poi rilasciare. La seconda e terza colonna rappresenta la combinazione dei i tasti da premere

Dettagli

Appunti sulle disequazioni

Appunti sulle disequazioni Premessa Istituto d Istruzione Superiore A. Tilgher Ercolano (Na) Appunti sulle disequazioni Questa breve trattazione non vuole costituire una guida completa ed esauriente sull argomento, ma vuole fornire

Dettagli

NAVIGAORA HOTSPOT. Manuale utente per la configurazione

NAVIGAORA HOTSPOT. Manuale utente per la configurazione NAVIGAORA HOTSPOT Manuale utente per la configurazione NAVIGAORA Hotspot è l innovativo servizio che offre ai suoi clienti accesso ad Internet gratuito, in modo semplice e veloce, grazie al collegamento

Dettagli

SOFTWARE GESTIONE SMS DA INTERFACCE CL MANUALE D INSTALLAZIONE ED USO

SOFTWARE GESTIONE SMS DA INTERFACCE CL MANUALE D INSTALLAZIONE ED USO CLSMS SOFTWARE GESTIONE SMS DA INTERFACCE CL MANUALE D INSTALLAZIONE ED USO Sommario e introduzione CLSMS SOMMARIO INSTALLAZIONE E CONFIGURAZIONE... 3 Parametri di configurazione... 4 Attivazione Software...

Dettagli

Uso della Guida Informazioni sulle funzioni della Guida incorporate Uso della Guida Uso della finestra Come fare per Uso di altre funzioni di supporto

Uso della Guida Informazioni sulle funzioni della Guida incorporate Uso della Guida Uso della finestra Come fare per Uso di altre funzioni di supporto Uso della Guida Informazioni sulle funzioni della Guida incorporate Uso della Guida Uso della finestra Come fare per Uso di altre funzioni di supporto Informazioni sulle funzioni della Guida incorporate

Dettagli

Data warehouse.stat Guida utente

Data warehouse.stat Guida utente Data warehouse.stat Guida utente Versione 3.0 Giugno 2013 1 Sommario INTRODUZIONE 3 I concetti principali 4 Organizzazione dei dati 4 Ricerca 5 Il browser 5 GUIDA UTENTE 6 Per iniziare 6 Selezione della

Dettagli

ED. Equazioni cardinali della dinamica

ED. Equazioni cardinali della dinamica ED. Equazioni cardinali della dinamica Dinamica dei sistemi La dinamica dei sistemi di punti materiali si può trattare, rispetto ad un osservatore inerziale, scrivendo l equazione fondamentale della dinamica

Dettagli

OPERAZIONI SUL FILE SYSTEM OPERAZIONI SUL FILE SYSTEM

OPERAZIONI SUL FILE SYSTEM OPERAZIONI SUL FILE SYSTEM SPOSTARE un file o una sottodirectory da una directory ad un altra COPIARE un file o una directory da una directory all altra RINOMINARE un file o una directory CANCELLARE un file o una directory CREARE

Dettagli

Boot Camp Guida di installazione e configurazione

Boot Camp Guida di installazione e configurazione Boot Camp Guida di installazione e configurazione Indice 3 Introduzione 4 Panoramica dell'installazione 4 Passo 1: Verificare la presenza di aggiornamenti 4 Passo 2: Per preparare il Mac per Windows 4

Dettagli

INFORMATIVA FINANZIARIA

INFORMATIVA FINANZIARIA Capitolo 10 INFORMATIVA FINANZIARIA In questa sezione sono riportate le quotazioni e le informazioni relative ai titoli inseriti nella SELEZIONE PERSONALE attiva.tramite la funzione RICERCA TITOLI è possibile

Dettagli

Lab. 1 - Introduzione a Matlab

Lab. 1 - Introduzione a Matlab Lab. 1 - Introduzione a Matlab Alcune informazioni su Matlab Matlab è uno strumento per il calcolo scientifico utilizzabile a più livelli, dalla calcolatrice tascabile, alla simulazione ed analisi di sistemi

Dettagli

a. 10 4 b. 10-15 c. 10 25 d. 10-4 a. 4,375 10-7 b. 3,625 10-6 c. 4,375 10 2 d. nessuno dei precedenti valori a. 10-5 b. 10 +5 c. 10 +15 d.

a. 10 4 b. 10-15 c. 10 25 d. 10-4 a. 4,375 10-7 b. 3,625 10-6 c. 4,375 10 2 d. nessuno dei precedenti valori a. 10-5 b. 10 +5 c. 10 +15 d. 1) Il valore di 5 10 20 è: a. 10 4 b. 10-15 c. 10 25 d. 10-4 2) Il valore del rapporto (2,8 10-4 ) / (6,4 10 2 ) è: a. 4,375 10-7 b. 3,625 10-6 c. 4,375 10 2 d. nessuno dei precedenti valori 3) La quantità

Dettagli

Metodi numerici per la risoluzione di equazioni. Equazioni differenziali ordinarie

Metodi numerici per la risoluzione di equazioni. Equazioni differenziali ordinarie Metodi numerici per la risoluzione di equazioni differenziali ordinarie Dipartimento di Matematica, http://dm.ing.unibs.it/gastaldi/ Lezione 5-31 ottobre 2005 Outline 1 Il problema di Cauchy Il problema

Dettagli

ITCG Cattaneo via Matilde di canossa n.3 - Castelnovo ne' Monti (RE) SEZIONE I.T.I. - Corso di Fisica - prof. Massimo Manvilli

ITCG Cattaneo via Matilde di canossa n.3 - Castelnovo ne' Monti (RE) SEZIONE I.T.I. - Corso di Fisica - prof. Massimo Manvilli ITCG C. CATTANEO via Matilde di Canossa n.3 - Castelnovo ne' Monti (Reggio Emilia) Costruzione del grafico di una funzione con Microsoft Excel Supponiamo di aver costruito la tabella riportata in figura

Dettagli

CHE COS È DOCFLY FATTURAZIONE PA... 3 1.1 IL GESTIONALE WEB... 3 1.2 ACCESSO ALL INTERFACCIA WEB... 4 1.3 FUNZIONALITÀ DELL INTERFACCIA WEB...

CHE COS È DOCFLY FATTURAZIONE PA... 3 1.1 IL GESTIONALE WEB... 3 1.2 ACCESSO ALL INTERFACCIA WEB... 4 1.3 FUNZIONALITÀ DELL INTERFACCIA WEB... 1. CHE COS È DOCFLY FATTURAZIONE PA... 3 1.1 IL GESTIONALE WEB... 3 1.2 ACCESSO ALL INTERFACCIA WEB... 4 1.3 FUNZIONALITÀ DELL INTERFACCIA WEB... 5 1.3.1 CREAZIONE GUIDATA DELLA FATTURA IN FORMATO XML

Dettagli

LE FUNZIONI MATEMATICHE

LE FUNZIONI MATEMATICHE ALGEBRA LE FUNZIONI MATEMATICHE E IL PIANO CARTESIANO PREREQUISITI l l l l l conoscere il concetto di insieme conoscere il concetto di relazione disporre i dati in una tabella rappresentare i dati mediante

Dettagli

AMBIENTE DEV PASCAL. Dev-Pascal 1.9.2. Finestra di apertura

AMBIENTE DEV PASCAL. Dev-Pascal 1.9.2. Finestra di apertura Dev-Pascal 1.9.2 1 Dev-Pascal è un ambiente di sviluppo integrato per la programmazione in linguaggio Pascal sotto Windows prodotto dalla Bloodshed con licenza GNU e liberamente scaricabile al link http://www.bloodshed.net/dev/devpas192.exe

Dettagli

MINI GUIDA SINTETICA per l uso della lavagna interattiva multimediale

MINI GUIDA SINTETICA per l uso della lavagna interattiva multimediale MINI GUIDA SINTETICA per l uso della lavagna interattiva multimediale InterWrite SchoolBoard è un software per lavagna elettronica di facile utilizzo. Può essere adoperata anche da studenti diversamente

Dettagli

Flusso a costo minimo e simplesso su reti

Flusso a costo minimo e simplesso su reti Flusso a costo minimo e simplesso su reti La particolare struttura di alcuni problemi di PL può essere talvolta utilizzata per la progettazione di tecniche risolutive molto più efficienti dell algoritmo

Dettagli

Corso di Informatica Generale (C. L. Economia e Commercio) Ing. Valerio Lacagnina Rappresentazione in virgola mobile

Corso di Informatica Generale (C. L. Economia e Commercio) Ing. Valerio Lacagnina Rappresentazione in virgola mobile Problemi connessi all utilizzo di un numero di bit limitato Abbiamo visto quali sono i vantaggi dell utilizzo della rappresentazione in complemento alla base: corrispondenza biunivoca fra rappresentazione

Dettagli

Problema n. 1: CURVA NORD

Problema n. 1: CURVA NORD Problema n. 1: CURVA NORD Sei il responsabile della gestione del settore Curva Nord dell impianto sportivo della tua città e devi organizzare tutti i servizi relativi all ingresso e all uscita degli spettatori,

Dettagli

FIRESHOP.NET. Gestione Utility & Configurazioni. Rev. 2014.3.1 www.firesoft.it

FIRESHOP.NET. Gestione Utility & Configurazioni. Rev. 2014.3.1 www.firesoft.it FIRESHOP.NET Gestione Utility & Configurazioni Rev. 2014.3.1 www.firesoft.it Sommario SOMMARIO Introduzione... 4 Impostare i dati della propria azienda... 5 Aggiornare il programma... 6 Controllare l integrità

Dettagli

2009 Elite Computer. All rights reserved

2009 Elite Computer. All rights reserved 1 PREMESSA OrisDent 9001 prevede la possibilità di poter gestire il servizio SMS per l'invio di messaggi sul cellulare dei propri pazienti. Una volta ricevuta comunicazione della propria UserID e Password

Dettagli

Trattamento aria Regolatore di pressione proporzionale. Serie 1700

Trattamento aria Regolatore di pressione proporzionale. Serie 1700 Trattamento aria Serie 7 Serie 7 Trattamento aria Trattamento aria Serie 7 Serie 7 Trattamento aria +24VDC VDC OUTPUT MICROPROCESS. E P IN EXH OUT Trattamento aria Serie 7 Serie 7 Trattamento aria 7 Trattamento

Dettagli

INSTALLAZIONE E UTILIZZO DEL COMPILATORE Code::Blocks 8.02

INSTALLAZIONE E UTILIZZO DEL COMPILATORE Code::Blocks 8.02 INSTALLAZIONE E UTILIZZO DEL COMPILATORE Code::Blocks 8.02 Download Si può scaricare gratuitamente la versione per il proprio sistema operativo (Windows, MacOS, Linux) dal sito: http://www.codeblocks.org

Dettagli

Ultimo aggiornamento.: 18/02/2006 Pagina 1 di 25

Ultimo aggiornamento.: 18/02/2006 Pagina 1 di 25 Introduzione al programma POWERPOINT Ultimo aggiornamento.: 18/02/2006 Pagina 1 di 25 Introduzione al programma POWERPOINT 1 1 Introduzione al programma 3 2 La prima volta con Powerpoint 3 3 Visualizzazione

Dettagli

Non tutto, ma un po di tutto

Non tutto, ma un po di tutto ALFREDO MANGIA Non tutto, ma un po di tutto Nozioni fondamentali per conoscere e usare un foglio di calcolo. Corso di alfabetizzazione all informatica Settembre 2004 SCUOLA MEDIA GARIBALDI Genzano di Roma

Dettagli

MEGA Process. Manuale introduttivo

MEGA Process. Manuale introduttivo MEGA Process Manuale introduttivo MEGA 2009 SP4 1ª edizione (giugno 2010) Le informazioni contenute nel presente documento possono essere modificate senza preavviso e non costituiscono in alcun modo un

Dettagli

METODO DELLE FORZE 1. METODO DELLE FORZE PER LA SOLUZIONE DI STRUTTURE IPERSTATICHE. 1.1 Introduzione

METODO DELLE FORZE 1. METODO DELLE FORZE PER LA SOLUZIONE DI STRUTTURE IPERSTATICHE. 1.1 Introduzione METODO DELLE FORZE CORSO DI PROGETTZIONE STRUTTURLE a.a. 010/011 Prof. G. Salerno ppunti elaborati da rch. C. Provenzano 1. METODO DELLE FORZE PER L SOLUZIONE DI STRUTTURE IPERSTTICHE 1.1 Introduzione

Dettagli

Import Dati Release 4.0

Import Dati Release 4.0 Piattaforma Applicativa Gestionale Import Dati Release 4.0 COPYRIGHT 2000-2005 by ZUCCHETTI S.p.A. Tutti i diritti sono riservati.questa pubblicazione contiene informazioni protette da copyright. Nessuna

Dettagli

IN BASSO NELLA FINESTRA C È LA BARRA DI DISEGNO. SE NON È VISIBILE, FARE CLIC SUL MENU IN ALTO: VISUALIZZA / BARRE DEGLI STRUMENTI / DISEGNO

IN BASSO NELLA FINESTRA C È LA BARRA DI DISEGNO. SE NON È VISIBILE, FARE CLIC SUL MENU IN ALTO: VISUALIZZA / BARRE DEGLI STRUMENTI / DISEGNO FARE UNA MAPPA CON OPENOFFICE IMPRESS START/PROGRAMMI APRIRE IMPRESS SCEGLIERE PRESENTAZIONE VUOTA. POI CLIC SU AVANTI E DI NUOVO SU AVANTI. QUANDO AVANTI NON COMPARE PIÙ, FARE CLIC SU CREA CHIUDERE LE

Dettagli

Incorporare oggetti 3D interattivi in documenti PDF

Incorporare oggetti 3D interattivi in documenti PDF Incorporare oggetti 3D interattivi in documenti PDF Software utilizzato: Miktex portable 2.9 (135 MB) - distribuzione TeX/LaTeX (freeware) AccuTrans 3D 2.12.1 (6.9 MB) modica e converte le 3D (shareware

Dettagli

SCUOLANET UTENTE DOCENTE

SCUOLANET UTENTE DOCENTE 1 ACCESSO A SCUOLANET Si accede al servizio Scuolanet della scuola mediante l'indirizzo www.xxx.scuolanet.info (dove a xxx corrisponde al codice meccanografico della scuola). ISTRUZIONI PER IL PRIMO ACCESSO

Dettagli

Accuratezza di uno strumento

Accuratezza di uno strumento Accuratezza di uno strumento Come abbiamo già accennato la volta scora, il risultato della misurazione di una grandezza fisica, qualsiasi sia lo strumento utilizzato, non è mai un valore numerico X univocamente

Dettagli

CHIAVETTA INTERNET ONDA MT503HSA

CHIAVETTA INTERNET ONDA MT503HSA CHIAVETTA INTERNET ONDA MT503HSA Manuale Utente Linux Debian, Fedora, Ubuntu www.ondacommunication.com Chiavet ta Internet MT503HSA Guida rapida sistema operativo LINUX V 1.1 33080, Roveredo in Piano (PN)

Dettagli

Si sa che la via più breve tra due punti è la linea retta. Ma vi siete mai chiesti, Qual è la via più breve tra tre punti? o tra quattro punti?

Si sa che la via più breve tra due punti è la linea retta. Ma vi siete mai chiesti, Qual è la via più breve tra tre punti? o tra quattro punti? Dov'è Moriart? Cerchiamo la via più breve con Mathcad Potete determinare la distanza più breve da tre punti e trovare Moriart? Si sa che la via più breve tra due punti è la linea retta. Ma vi siete mai

Dettagli

Posta Elettronica Certificata

Posta Elettronica Certificata Posta Elettronica Certificata Manuale di utilizzo del servizio Webmail di Telecom Italia Trust Technologies Documento ad uso pubblico Pag. 1 di 33 Indice degli argomenti 1 INTRODUZIONE... 3 1.1 Obiettivi...

Dettagli

REGEL - Registro Docenti

REGEL - Registro Docenti REGEL - Registro Docenti INFORMAZIONI GENERALI Con il Registro Docenti online vengono compiute dai Docenti tutte le operazioni di registrazione delle attività quotidiane, le medesime che si eseguono sul

Dettagli

CAPITOLO PRIMO IL CONCETTO DI ALGORITMO 1

CAPITOLO PRIMO IL CONCETTO DI ALGORITMO 1 1.1 Che cos è un algoritmo CAPITOLO PRIMO IL CONCETTO DI ALGORITMO 1 Gli algoritmi sono metodi per la soluzione di problemi. Possiamo caratterizzare un problema mediante i dati di cui si dispone all inizio

Dettagli

Dispense di Informatica Anno Scolastico 2008/2009 Classe 3APS. Dal Problema all'algoritmo

Dispense di Informatica Anno Scolastico 2008/2009 Classe 3APS. Dal Problema all'algoritmo stituto Tecnico Statale Commerciale Dante Alighieri Cerignola (FG) Dispense di nformatica Anno Scolastico 2008/2009 Classe 3APS Dal Problema all'algoritmo Pr.: 001 Ver.:1.0 Autore: prof. Michele Salvemini

Dettagli

con software libero Modulo 4 Spreadsheets (Fogli elettronici) Pag. 1

con software libero Modulo 4 Spreadsheets (Fogli elettronici) Pag. 1 con software libero Modulo 4 Spreadsheets (Fogli elettronici) Pag. 1 Indice generale GUIDA A CALC 3.5... 3 1 Utilizzo dell'applicazione... 3 1.1 LAVORARE CON IL FOGLIO ELETTRONICO...3 1.2 MIGLIORARE LA

Dettagli

Gestione Nuova Casella email

Gestione Nuova Casella email Gestione Nuova Casella email Per accedere alla vecchia casella questo l indirizzo web: http://62.149.157.9/ Potrà essere utile accedere alla vecchia gestione per esportare la rubrica e reimportala come

Dettagli

etrex 10 manuale di avvio rapido

etrex 10 manuale di avvio rapido etrex 10 manuale di avvio rapido Operazioni preliminari Panoramica del dispositivo attenzione Per avvisi sul prodotto e altre informazioni importanti, consultare la guida Informazioni importanti sulla

Dettagli

Guida alla WebMail Horde

Guida alla WebMail Horde Guida alla WebMail Horde La funzione principale di un sistema Webmail è quella di gestire la propria posta elettronica senza dover utilizzare un programma client installato sul computer. Il vantaggio è

Dettagli

Client PEC Quadra Guida Utente

Client PEC Quadra Guida Utente Client PEC Quadra Guida Utente Versione 3.2 Guida Utente all uso di Client PEC Quadra Sommario Premessa... 3 Cos è la Posta Elettronica Certificata... 4 1.1 Come funziona la PEC... 4 1.2 Ricevuta di Accettazione...

Dettagli

IL MOTO. 1 - Il moto dipende dal riferimento.

IL MOTO. 1 - Il moto dipende dal riferimento. 1 IL MOTO. 1 - Il moto dipende dal riferimento. Quando un corpo è in movimento? Osservando la figura precedente appare chiaro che ELISA è ferma rispetto a DAVIDE, che è insieme a lei sul treno; mentre

Dettagli

Prolog: aritmetica e ricorsione

Prolog: aritmetica e ricorsione Capitolo 13 Prolog: aritmetica e ricorsione Slide: Aritmetica e ricorsione 13.1 Operatori aritmetici In logica non vi è alcun meccanismo per la valutazione di funzioni, che è fondamentale in un linguaggio

Dettagli

Capitolo 9: PROPAGAZIONE DEGLI ERRORI

Capitolo 9: PROPAGAZIONE DEGLI ERRORI Capitolo 9: PROPAGAZIOE DEGLI ERRORI 9.1 Propagazione degli errori massimi ella maggior parte dei casi le grandezze fisiche vengono misurate per via indiretta. Il valore della grandezza viene cioè dedotto

Dettagli

Strumenti 3D per SMART Notebook 11.1. Manuale dell'utente

Strumenti 3D per SMART Notebook 11.1. Manuale dell'utente Strumenti 3D per SMART Notebook 11.1 Manuale dell'utente Registrazione del prodotto Se si registra il prodotto SMART, si verrà informati delle nuove funzionalità e aggiornamenti software disponibili. Registrazione

Dettagli

Rilevazione degli apprendimenti. Anno Scolastico 2006 2007 PROVA DI MATEMATICA. Scuola Secondaria di II grado. Classe Terza Tipo A. Codici. Scuola:...

Rilevazione degli apprendimenti. Anno Scolastico 2006 2007 PROVA DI MATEMATICA. Scuola Secondaria di II grado. Classe Terza Tipo A. Codici. Scuola:... Ministero della Pubblica Istruzione Rilevazione degli apprendimenti Anno Scolastico 2006 2007 PROVA DI MATEMATICA Scuola Secondaria di II grado Classe Terza Tipo A Codici Scuola:..... Classe:.. Studente:.

Dettagli

QUADERNI DI DIDATTICA

QUADERNI DI DIDATTICA Department of Applied Mathematics, University of Venice QUADERNI DI DIDATTICA Tatiana Bassetto, Marco Corazza, Riccardo Gusso, Martina Nardon Esercizi sulle funzioni di più variabili reali con applicazioni

Dettagli

Se il corso non si avvia

Se il corso non si avvia Se il corso non si avvia Ci sono quattro possibili motivi per cui questo corso potrebbe non avviarsi correttamente. 1. I popup Il corso parte all'interno di una finestra di popup attivata da questa finestra

Dettagli

F U N Z I O N I. E LORO RAPPRESENTAZIONE GRAFICA di Carmine De Fusco 1 (ANCHE CON IL PROGRAMMA PER PC "DERIVE")

F U N Z I O N I. E LORO RAPPRESENTAZIONE GRAFICA di Carmine De Fusco 1 (ANCHE CON IL PROGRAMMA PER PC DERIVE) F U N Z I O N I E LORO RAPPRESENTAZIONE GRAFICA di Carmine De Fusco 1 (ANCHE CON IL PROGRAMMA PER PC "DERIVE") I N D I C E Funzioni...pag. 2 Funzioni del tipo = Kx... 4 Funzioni crescenti e decrescenti...10

Dettagli

Germano Pettarin E-book per la preparazione all ECDL ECDL Modulo 2 Sistema Operativo Windows Argomenti del Syllabus 5.0

Germano Pettarin E-book per la preparazione all ECDL ECDL Modulo 2 Sistema Operativo Windows Argomenti del Syllabus 5.0 Germano Pettarin E-book per la preparazione all ECDL ECDL Modulo 2 Sistema Operativo Windows Argomenti del Syllabus 5.0 G. Pettarin ECDL Modulo 2: Sistema Operativo 2 Modulo 2 Il sistema operativo Windows

Dettagli

CATTURARE LO SCHERMO INTERO O LA FINESTRA ATTIVA

CATTURARE LO SCHERMO INTERO O LA FINESTRA ATTIVA CATTURARE LO SCHERMO INTERO O LA FINESTRA ATTIVA Supponiamo di voler eseguire una istantanea del nostro desktop, quella che in gergo si chiama Screenshot (da screen, schermo, e shot, scatto fotografico).

Dettagli

Il Plug-in gratuito integrato in progecad Professional, per la realizzazione di planimetrie in formato DOCFA. CAD Solutions. Ver. 1.

Il Plug-in gratuito integrato in progecad Professional, per la realizzazione di planimetrie in formato DOCFA. CAD Solutions. Ver. 1. DOCFA Plug-in Il Plug-in gratuito integrato in progecad Professional, per la realizzazione di planimetrie in formato DOCFA CAD Solutions www.progecad.com Ver. 1.0 P a g i n a 2 P a g i n a 3 Indice Indice...

Dettagli

ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO 2004

ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO 2004 ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO 004 Il candidato risolva uno dei due problemi e 5 dei 10 quesiti in cui si articola il questionario. PROBLEMA 1 Sia f la funzione definita da: f

Dettagli

Introduzione allo Scilab Parte 3: funzioni; vettori.

Introduzione allo Scilab Parte 3: funzioni; vettori. Introduzione allo Scilab Parte 3: funzioni; vettori. Felice Iavernaro Dipartimento di Matematica Università di Bari http://dm.uniba.it/ iavernaro felix@dm.uniba.it 13 Giugno 2007 Felice Iavernaro (Univ.

Dettagli

GUIDA ALL UTILIZZO DELL ECM 8

GUIDA ALL UTILIZZO DELL ECM 8 GUIDA ALL UTILIZZO DELL ECM 8 GUIDA ALL UTILIZZO DELL ECM 8 1) Introduzione Pg 3 2) L area amministratore Pg 3 2.1) ECM Pg 4 2.1.1) Sezione Struttura Pg 5 2.1.2) Sezione Documento Pg 7 2.1.3) Sezione Pubblicazione

Dettagli

Corso SOL Gestione catalogo libro moderno 21-22 settembre 2009

Corso SOL Gestione catalogo libro moderno 21-22 settembre 2009 Corso SOL Gestione catalogo libro moderno 21-22 settembre 2009 Introduzione generale Autenticazione dell operatore https://sebina1.unife.it/sebinatest Al primo accesso ai servizi di Back Office, utilizzando

Dettagli

3.0 DATA CENTER. PER TOPLINE 2009/2012, SERIE ROX e orologi. www.sigmasport.com

3.0 DATA CENTER. PER TOPLINE 2009/2012, SERIE ROX e orologi. www.sigmasport.com DATA CENTER PER TOPLINE 2009/2012, SERIE ROX e orologi 3.0 Indice 1 Premessa...3 2 DATA CENTER 3...4 2.1 Utilizzo dei dispositivi SIGMA con DATA CENTER 3....4 2.2 Requisiti di sistema....4 2.2.1 Computer

Dettagli

ACCESSO AL PORTALE INTERNET GSE

ACCESSO AL PORTALE INTERNET GSE ACCESSO AL PORTALE INTERNET GSE Guida d uso per la registrazione e l accesso Ver 3.0 del 22/11/2013 Pag. 1 di 16 Sommario 1. Registrazione sul portale GSE... 3 2. Accesso al Portale... 8 2.1 Accesso alle

Dettagli

UNIVERSITA DEGLI STUDI DI TORINO WORD

UNIVERSITA DEGLI STUDI DI TORINO WORD WORD SOMMARIO 1. Muoversi nel testo... 1 2. Taglia, copia e incolla... 2 3. Aprire, salvare e chiudere... 3 4. Trovare e sostituire... 4 5. Visualizzare in modi diversi... 6 6. Formattare e incolonnare...

Dettagli

Integrazione numerica

Integrazione numerica Integrazione numerica Lucia Gastaldi Dipartimento di Matematica, http://dm.ing.unibs.it/gastaldi/ Lezione 6-20-26 ottobre 2009 Indice 1 Formule di quadratura semplici e composite Formule di quadratura

Dettagli