I convertitori c.a.-c.c. sono stati i primi convertitori di potenza ad essere realizzati in maniera statica. Tranne che in particolari applicazioni,

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "I convertitori c.a.-c.c. sono stati i primi convertitori di potenza ad essere realizzati in maniera statica. Tranne che in particolari applicazioni,"

Transcript

1

2 I convertitori c.a.-c.c. sono stati i primi convertitori di potenza ad essere realizzati in maniera statica. Tranne che in particolari applicazioni, nelle quali sia essenziale assorbire energia dalla rete in c.a. con un elevato fattore di potenza e/o con un ridotto contenuto armonico, i convertitori c.a.-c.c. sono realizzati mediante Diodi e Tiristori. L impiego dei Tiristori non comporta l aggiunta di circuiti ausiliari di spegnimento, in quanto il problema dello spegnimento è risolto con l ausilio della stessa tensione di alimentazione (commutazione naturale).

3 Nel seguito verranno esaminate le principali strutture dei convertitori c.a.-c.c. a commutazione naturale (a semionda e ad onda intera, con alimentazione monofase e trifase, monodirezionali e bidirezionali) e, per ciascuna di queste, verranno fornite indicazioni per il calcolo dei valori istantanei, medi ed efficaci della tensione e della corrente fornite al carico e per la determinazione del valore massimo della tensione applicata ai Tiristori.

4 In realtà, i convertitori a semionda presentano un interesse applicativo del tutto trascurabile; la loro descrizione ha quindi il solo scopo di facilitare la comprensione del funzionamento dei circuiti più complessi. La trattazione sarà effettuata idealizzando il comportamento di tutti i componenti. Limitatamente ai convertitori maggiormente impiegati, verranno infine considerati: gli effetti prodotti dal convertitore sulla rete di alimentazione; l influenza dell induttanza propria della sorgente di alimentazione.

5 In tutti i circuiti di conversione si supporrà che il convertitore venga alimentato tramite un trasformatore. In realtà solo in alcuni circuiti (convertitori con trasformatore a presa centrale) la presenza del trasformatore è necessaria; negli altri, viene inserito solo se si desidera: avere una tensione di alimentazione diversa da quella di rete; isolare galvanicamente il carico dalla rete di alimentazione, il trasformatore può essere omesso.

6 Il convertitore monofase a semionda è il più semplice convertitore c.a.-c.c. ed è costituito, oltre che dal trasformatore di alimentazione, che, come già evidenziato, può anche non essere presente, da un Tiristore. Il suo funzionamento sarà analizzato considerando dapprima un carico puramente resistivo e, successivamente, un carico resistivo induttivo.

7 Se il Tiristore viene scelto con una tensione diretta maggiore del valore di picco, E a, della tensione e a di alimentazione, in assenza di impulsi di accensione questo rimane sempre interdetto e nel carico non circola alcuna corrente.

8 Se invece, ad ogni periodo T, della tensione di alimentazione, si applica al Tiristore un impulso di accensione nel semiperiodo durante il quale la V ak è positiva, il Tiristore entra in conduzione e, nell ipotesi di carico puramente resistivo, continua a condurre fino al successivo passaggio per lo zero della tensione di alimentazione.

9 Si indica con t a (ritardo di accensione) il ritardo intercorrente tra l istante in cui la tensione di alimentazione attraversa lo zero con pendenza positiva (cioè l istante a partire dal quale il pilotaggio del Tiristore è in grado di provocarne l accensione) e l istante in cui il Tiristore viene acceso. Si indica con a = wt a l angolo di accensione del Tiristore.

10

11

12 I valori medi della tensione e della corrente applicate al carico risultano quindi pari a:

13 I valori efficaci della tensione applicata al carico e della corrente che circola nel Tiristore e nel carico possono essere calcolati mediante le seguenti espressioni: Infine, la potenza trasferita al carico è pari a:

14 Occorre notare che nel secondario del trasformatore fluisce la stessa corrente che attraversa il Tiristore ed il carico. Tale corrente è monodirezionale ed impone al nucleo del trasformatore di lavorare in una condizione di dissimmetria rispetto all origine; pertanto il circuito magnetico del trasformatore deve essere sovradimensionato ed è spesso indispensabile, onde evitare la sua saturazione, usare un trasformatore con traferro.

15 Il legame tra il valore medio della tensione applicata al carico e quello della variabile di controllo a risulta fortemente non lineare; è comunque possibile superare tale inconveniente impiegando un circuito di pilotaggio che permette di ottenere un legame lineare tra la sua tensione di ingresso e c ed il valore medio della tensione fornita dal convertitore.

16 e c = tensione di controllo e g = forma d onda ausiliaria v 1 = segnale impulsivo rettangolare v 2 = segnale impulsivo bipolare ottenuto per derivazione da v 1 v 3 = segnale impulsivo unipolare di pilotaggio del Tiristore

17 Per ottenere un legame lineare tra il valore medio della tensione fornita dal convertitore ed il valore della tensione di controllo e c, occorre che la tensione ausiliaria e g sia costituita dalla somma di un segnale sinusoidale, con pulsazione w e in anticipo di un angolo pari a p/2 rispetto ad e a, e di un segnale continuo di ampiezza pari a quella della componente sinusoidale. e g e a e g e a w t

18

19 Avendo scelto l angolo di accensione a diventa: si ottiene, quindi: se inoltre: il valore medio non dipende da E a.

20 L impiego di un circuito di comando che permetta di ottenere un legame lineare tra la variabile di controllo e il valore medio della tensione applicata al carico risulta comodo quando, non essendo richiesta una elevata precisione, il controllo della tensione di uscita può essere effettuato senza ricorrere ad una struttura a catena chiusa. Quando, invece, la precisione richiesta è tale da non potere essere soddisfatta con un controllo a catena aperta, si fa in genere ricorso a circuiti di comando più semplici, poiché il sistema di controllo a catena chiusa assicura l inseguimento del valor medio di tensione desiderato.

21 Quando il carico presenta, in serie alla resistenza R, anche una induttanza L, la conduzione del Tiristore non termina nell istante in cui la tensione e a di alimentazione attraversa lo zero con pendenza negativa. Pertanto, lo spegnimento del Tiristore avviene in corrispondenza ad un angolo s (angolo di spegnimento), maggiore di p, il cui valore dipende, oltre che dal valore di a, dai parametri del carico.

22 Il valore medio della tensione di uscita, a causa del ritardato spegnimento, assume un valore minore di quello che si sarebbe ottenuto nel caso di carico puramente resistivo.

23 Per determinare il valore dell angolo di spegnimento, occorre calcolare l andamento della corrente fornita dal convertitore. Durante l intervallo di tempo compreso tra l accensione e lo spegnimento del Tiristore la tensione applicata al carico è pari ad e a. L andamento della corrente i u assorbita dal carico viene ricavato mediante la seguente equazione differenziale: con la condizione iniziale:

24 risolvendo l equazione differenziale si ottiene: in cui

25 risolvendo l equazione differenziale si ottiene: La forma d onda della corrente fornita al carico è composta da due termini. Il primo, costituito da una sinusoide ritardata di un angolo rispetto alla tensione e a, corrisponde alla corrente che si avrebbe nel circuito in assenza del Tiristore.

26 risolvendo l equazione differenziale si ottiene: Il secondo ha un andamento esponenziale decrescente, di ampiezza iniziale pari ad Asin ( a - ) e costante di tempo uguale a quella del carico, e tiene conto del transitorio di accensione.

27

28 Per ricavare il valore di s occorre uguagliare a zero l espressione della corrente, ottenendo la seguente equazione trascendente: che non può essere risolta in maniera analitica, ma solo per via numerica.

29 Nella figura sono riportate le curve che forniscono il valore di s funzione di sa e del parametro wl/r.

30 Inserendo il valore di s nell espressione del valore medio si ricava:

31 Siccome il valore medio della tensione applicata all induttanza è nullo, il valore medio della corrente i u risulta pari al valore medio della tensione diviso per la resistenza del carico: Quando la resistenza R è uguale a zero anche il valore medio di v u diventa nullo; per ricavare il valore medio della corrente occorre considerare il suo andamento in un periodo:

32 integrando tale andamento si ottiene:

33 Il ritardo introdotto dall induttanza sullo spegnimento del Tiristore provoca una riduzione dei valori medi della tensione e della corrente applicate al carico; questa riduzione è particolarmente consistente per valori di wl/r maggiori di qualche unità. Per evitare ciò, si può ricorrere all inserzione di un Diodo (Diodo di libera circolazione) in parallelo al carico.

34 La presenza del Diodo di libera circolazione consente una nuova via di passaggio della corrente di carico quando la tensione di alimentazione diventa negativa, impedendo che la tensione fornita dal convertitore possa diventare negativa.

35 Quando la costante di tempo del carico è piccola rispetto al periodo, al successivo istante di accensione del Tiristore la corrente i u è praticamente nulla; in caso contrario la corrente applicata al carico non si annulla mai e la conduzione del Tiristore inizia con un gradino di corrente. La presenza dell induttanza e del Diodo di libera circolazione riduce l ondulazione della corrente fornita dal convertitore; il comportamento esterno del convertitore viene, però, profondamente modificato (i convertitori con Diodi sono sempre monodirezionali).

36 I due Tiristori funzionano alternativamente ogni semiperiodo e vengono accesi, con lo stesso angolo di ritardo a, rispetto agli istanti in cui la tensione e a diventa positiva (RC 1 ) e negativa (RC 2 ).

37 Quando il carico è puramente resistivo, la tensione e la corrente applicate al carico assumono gli andamenti illustrati in figura

38 I valori medi della tensione e della corrente applicate al carico e il valore della potenza trasferita risultano doppi di quelli precedenti: Per contro, il valore efficace della corrente che circola in ogni Tiristore è identico a quello già ricavato per il circuito a semionda.

39 I valori efficaci della tensione e della corrente applicate al carico risultano pari a radice di 2 volte quelli relativi al circuito a semionda. È da notare, infine, che nel circuito in esame la corrente che circola nel carico fluisce alternativamente nei due semisecondari del trasformatore; pertanto, se i due semisecondari sono perfettamente uguali, la componente continua della forza magnetomotrice applicata al nucleo del trasformatore risulta nulla.

40 Quando il carico presenta, in serie alla resistenza, anche una induttanza L, il convertitore può operare secondo due distinte modalità di funzionamento: conduzione continua; conduzione discontinua. Quando l angolo di spegnimento s < p + a, nell istante in cui un Tiristore viene chiuso, l altro Tiristore si è già spento; in tale situazione, quindi, la conduzione è di tipo discontinuo e le tensioni applicate al carico e ad un Tiristore assumono gli andamenti illustrati nella prossima figura.

41 In conduzione discontinua i valori medi della v u e i u applicate al carico risultano doppi di quelli relativi al circuito a semionda.

42 Quando, invece, il valore di s > p + a, nell istante in cui RC 2 viene acceso RC 1 si trova ancora in conduzione. Pertanto, l accensione di RC 2 provoca lo spegnimento di RC 1 e la commutazione della corrente da RC 1 a RC 2 ; supponendo che la commutazione sia istantanea, le tensioni applicate al carico e ad RC 1 e la corrente i u assumono gli andamenti illustrati nella figura.

43

44 In conduzione continua, i valori medi della tensione e della corrente fornite dal convertitore sono, pertanto, indipendenti dal valore di wl/r e risultano pari a: Per un assegnato valore del rapporto wl/r, al crescere dell angolo di accensione il funzionamento passa da conduzione continua a conduzione discontinua.

45 Esiste, quindi, un valore di a per cui la conduzione è al limite tra i due tipi di funzionamento; in corrispondenza a tale valore di a le due espressioni del valore medio della tensione applicata al carico forniscono lo stesso risultato. Pertanto, il grafico che fornisce il valore medio della tensione fornita dal convertitore può essere ricavato sovrapponendo al grafico relativo alla conduzione discontinua la curva relativa alla conduzione continua ed eliminando i tratti di caratteristica allasinistra di quest ultima curva.

46 V M doppio rispetto al semionda

47 La curva esterna corrisponde al caso di carico puramente resistivo (conduzione sempre discontinua) mentre la curva interna corrisponde al funzionamento con conduzione continua. Le curve intermedie corrispondono, invece, al funzionamento con conduzione discontinua, per vari valori del rapporto wl/r. E interessante osservare che, a differenza del circuito a semionda, nel convertitore ad onda intera il valore medio della tensione applicata al carico può raggiungere il valore V M per qualsiasi valore del rapporto wl/r.

48 Il circuito di pilotaggio precedentemente illustrato può essere utilizzato anche nel caso di convertitore ad onda intera, impiegando due identici circuiti e due segnali ausiliari, eg 1 e eg 2, distinti per i due Tiristori. Se il carico è puramente resistivo, scegliendo: il valore medio della tensione applicata al carico risulta:

49 Se, invece, il valore di wl/r è sufficientemente elevato da garantire la conduzione continua in quasi tutto il campo di escursione del valore medio della tensione di uscita, risulta conveniente scegliere i seguenti andamenti dei segnali ausiliari: il valore medio della tensione applicata al carico risulta:

50 Anche nel caso di circuito ad onda intera, l impiego di un Diodo di libera circolazione permette di ottenere un valore medio della tensione e della corrente applicate al carico indipendente dal valore di wl/r. Per contro, come in tutti i convertitori che comprendono Diodi, il convertitore diventa monodirezionale.

51 Quando si impiega il Diodo di libera circolazione l interesse a determinare se la conduzione è di tipo continuo o discontinuo risulta trascurabile, in quanto il tipo di conduzione non modifica in maniera significativa il funzionamento del convertitore. Si può, comunque, osservare che nei convertitori ad onda intera con Diodo di libera circolazione la conduzione è in generale di tipo continuo anche per piccoli valori del rapporto wl/r.

52 Un convertitore ad onda intera può essere ottenuto anche senza l impiego di un trasformatore a presa centrale una configurazione circuitale a ponte.

53 Agendo opportunamente sull accensione dei Tiristori, le forme d onda della tensione e della corrente applicate al carico e quella della corrente che attraversa i Tiristori risultano, nelle diverse condizioni di carico, identiche a quelle già esaminate.

54 Vantaggi: Possibilità di collegamento diretto alla sorgente senza trasformatore a presa centrale; a parità di tensione fornita al carico, il dimensionamento in tensione dei Tiristori è pari alla metà del precedente.

55 Svantaggi: Si impiegano 4 Tiristori anziché 2; maggiore caduta di tensione diretta dovuta alla contemporanea conduzione di 2 Tiristori. Non adatto per bassi valori di E a.

56 Carico puramente resistivo Conduzione continua

57 Quando l ampiezza della tensione di alimentazione è elevata, il circuito a ponte risulta più conveniente di quello con trasformatore a presa centrale sia per la riduzione della tensione applicata ai Tiristori sia perché richiede un minore sovradimensionamento del trasformatore di alimentazione. Viceversa, la maggiore caduta di tensione dovuta alla presenza di due Tiristori in serie ne sconsiglia l impiego quando l ampiezza della tensione di alimentazione è molto piccola.

58 Anche nel circuito a ponte totalmente controllato, l utilizzazione di un Diodo di libera circolazione permette di ottenere che i valori medi della tensione e della corrente applicate al carico siano indipendenti dalla eventuale induttanza presente nel carico; l impiego di un Diodo di libera circolazione non risulta, però, conveniente in quanto lo stesso tipo di funzionamento può essere ottenuto impiegando un convertitore a ponte semicontrollato, che risulta più economico.

59 Il convertitore monofase a ponte semicontrollato deriva da quello a ponte totalmente controllato mediante la sostituzione di due Tiristori con due Diodi. Due possibili soluzioni

60 La prima soluzione ha vantaggio di avere i catodi dei due Tiristori allo stesso potenziale e, quindi, i relativi circuiti di pilotaggio non necessitano di disaccoppiamento galvanico. In assenza di pilotaggio la corrente non può circolare sul carico.

61 L altra soluzione presenta il vantaggio di un migliore dimensionamento dei Tiristori per quanto riguarda il valore efficace della corrente, dovuto alla conduzione dei diodi. Inoltre, la corrente può circolare sul carico anche in assenza di pilotaggio. Svantaggio: I catodi dei RC si trovano a potenziali diversi, quindi, i circuiti di pilotaggio devono essere galvanicamente disaccoppiati.

62 Nell istante t = t a = a /w, in cui viene inviato un impulso di accensione al Tiristore RC 1, questo inizia a condurre assieme a D 2. Dopo mezzo periodo, viene acceso il Tiristore RC 2 che inizia a condurre assieme a D 1.

63 Quando il carico è puramente resistivo la conduzione del Tiristore e del Diodo terminano al successivo passaggio per lo zero della tensione di alimentazione. Pertanto, come mostrato nella successiva figura, gli andamenti delle tensioni e delle correnti applicate al carico e ai semiconduttori risultano identici a quelli di un convertitore a ponte totalmente controllato con carico puramente resistivo.

64

65 Quando il carico presenta anche una componente induttiva, nell istante in cui la tensione e a attraversa lo zero, la corrente assorbita dal carico non è nulla e la conduzione del convertitore prosegue. Appena la tensione e a si inverte, il Diodo D 1 si trova polarizzato direttamente ed inizia a condurre mentre il Diodo D 2 (che stava conducendo) viene polarizzato inversamente.

66 Pertanto il Diodo D 2 si spegne e la corrente assorbita dal carico continua a circolare tramite RC 1 e D 1, che svolgono la funzione del diodo di libera circolazione. Gli andamenti delle tensioni applicate al carico e ai Tirsitori rimangono pertanto identici a quelli già illustrati nel caso di carico resistivo.

67 Tipologie: Convertitore a semionda Convertitore ad onda intera con trasformatore a presa centrale; Convertitore a ponte totalmente controllato; Convertitore a ponte semicontrollato. L esame del comportamento dei convertitori trifase sarà effettuato supponendo che il sistema di alimentazione sia perfettamente simmetrico, cioè che le tre tensioni di fase abbiano la stessa ampiezza E a e siano esattamente sfasate tra loro di un terzo di periodo; si supporrà inoltre che la sequenza ciclica sia r, s, t.

68 p/6 p/3 p/2 4p/6 5p/6 4p/3 3p/2 Andamento delle tre tensioni di fase; sequenza ciclica r, s, t. Anche nei convertitori trifase, il funzionamento del convertitore è influenzato dalla natura del carico; per semplicità verranno esaminati in dettaglio solo i due casi estremi di carico puramente resistivo e di carico prettamente induttivo.

69 Lo schema di principio del convertitore trifase a semionda è costituito, oltre che da un trasformatore trifase con secondario a stella e neutro accessibile, da tre Tiristori che connettono il carico alle tre fasi del secondario del trasformatore.

70 Anche nel caso di convertitori trifase, il controllo del convertitore viene effettuato agendo sul ritardo di accensione dei singoli Tiristori e cioè sulla durata dell intervallo di tempo (o dell intervallo angolare) intercorrente tra l istante in cui ogni Tiristore può, se pilotato, entrare in conduzione e quello in cui viene inviato il relativo impulso di pilotaggio. A differenza, però, da quanto avviene nei circuiti monofase, in quelli trifase l istante in cui un Tiristore può entrare in conduzione non coincide con il passaggio per lo zero di una tensione di fase, ma con l istante in cui la tensione della fase corrispondente diventa maggiore (o minore) delle altre due tensioni di fase.

71 Nel caso del convertitore a semionda la condizione che permette a RC r di poter condurre corrisponde a e r >e t ed e r >e s, ovvero che la tensione concatenata e rt attraversi lo zero con pendenza positiva.

72 Si verificano due diverse modalità di funzionamento del convertitore a seconda del valore di a. Infatti quando a < p/6, nell istante in cui un nuovo Tiristore entra in conduzione quello precedentemente acceso si trova ancora in conduzione. Pertanto, la conduzione risulta di tipo continuo anche se il carico è puramente resistivo. In questa condizione operativa, ogni Tiristore conduce per un angolo pari a 2p/3; il valore medio della tensione applicata al carico ed il valore efficace della corrente che circola in ogni Tiristore risultano quindi:

73 p/6 p/3 p/2 4p/6 5p/6 p 4p/3 3p/2 a < p/6 Tensione max. applicata ai Tiristori

74 In questa condizione operativa, ogni Tiristore conduce per un angolo pari a 2p/3; il valore medio della tensione applicata al carico ed il valore efficace della corrente che circola in ogni Tiristore risultano quindi: Il valore medio della tensione è circa il 30% più elevato rispetto al caso monofase (E a /2p), mentre la Ieff che circola su ciacun Tiristore è minore poiché è minore il tempo di conduzione.

75 Quando a >p/6, invece, ogni Tiristore viene abilitato alla conduzione solo dopo che quello precedentemente acceso ha smesso di condurre. Pertanto, in questo caso la conduzione risulta discontinua e ogni Tiristore conduce per un angolo pari a 5p/6 - a.

76 p/6 p/3 p/2 4p/6 5p/6 p 4p/3 3p/2 a > p/6

77 Il valore medio della tensione applicata al carico ed il valore efficace della corrente che circola in ogni Tiristore risultano pertanto:

78 Il funzionamento passa da continuo a discontinuo quando a = p/6. Il valore medio della tensione di uscita si annulla per a = 5p/6.

79 p/6 p/3 p/2 4p/6 5p/6 p 4p/3 3p/2 Se wl >>R, la conduzione risulta di tipo continuo fino ad un a prossimo a p/2.

80 In questa situazione operativa la tensione fornita dal convertitore ha un valore medio pari a: L espressione del valore medio coincide con quella già ottenuta per il funzionamento con carico puramente resistivo e angolo di accensione minore di p/6.

81 Se si suppone, inoltre, di poter trascurare l ondulazione della corrente assorbita dal carico, il valore efficace della corrente che circola in ogni Tiristore è pari a: Quando, invece, a p/2 la conduzione è sempre di tipo discontinuo ed il valore medio della tensione di uscita è praticamente nullo.

82 Quando l angolo di accensione è maggiore di p/6 ed il carico è debolmente induttivo, la conduzione può, a seconda dei valori di wl/r e di a, risultare di tipo continuo o di tipo discontinuo. La prossima figura riporta gli andamenti del valore medio della tensione applicata al carico, per vari valori di wl/r, al variare dell angolo di accensione.

83 wl/r Dipendenza dal carico ridotta rispetto al caso monofase. A parità di wl/r, nel caso trifase l intervallo di a per il quale si ha conduzione continua è più esteso.

84 wl/r La dipendenza dal carico può venire eliminata inserendo un diodo di libera circolazione.

85

86 Il ritardo di accensione dei Tiristori RC r, RC s e RC t inizia nell istante in cui la relativa tensione di fase diventa maggiore delle altre due mentre il ritardo di accensione dei Tiristori RC r, RC s e RC t inizia nell istante in cui la relativa tensione di fase diventa minore delle altre due. Analogamente a quanto succede nel convertitore a semionda, quando a è piccolo (< p/3) la conduzione risulta di tipo continuo per qualsiasi valore di wl/r.

87 p/6 p/3 p/2 2p/3 5p/6 p 4p/3

88 Il valore medio della tensione di uscita risulta: Se il carico è puramente resistivo il valore efficace della corrente che circola in ogni Tiristore è pari a:

89 Viceversa, se il carico presenta una induttanza tale da poter supporre che la corrente i u risulti praticamente costante, si ha: Quando a > p/3, l andamento della tensione applicata al carico dipende dal valore di wl/r; verranno pertanto esaminati separatamente i due casi di carico puramente resistivo e di carico prettamente induttivo.

90 Nel caso di carico puramente resistivo, quando a >p/3, nell istante in cui un nuovo Tiristore entra in conduzione quello precedentemente acceso ha già smesso di condurre. La conduzione risulta, pertanto, discontinua e ogni Tiristore conduce per un angolo pari a 2p/3 - a.

91 p/6 p/3 p/2 2p/3 5p/6 p 4p/3

92 Il valore medio della tensione applicata al carico ed il valore efficace della corrente che circola in ogni Tiristore risultano quindi:

93 p/6 p/3 p/2 2p/3 p 4p/3 Quando wl >>R la conduzione risulta di tipo continuo fino ad un valore dell angolo di accensione prossimo a p/2.

94 L espressione del valore medio della tensione fornita dal convertitore coincide con quella già ottenuta quando l angolo di accensione è minore di p/3. Se si suppone, inoltre, che la corrente assorbita dal carico possa essere considerata costante, il valore efficace della corrente che circola in ogni Tiristore è pari a

95 Quando a > p/3 ed il carico è debolmente induttivo, la conduzione può, a seconda dei valori di wl/r e di a, risultare di tipo continuo o di tipo discontinuo. La prossima figura riporta gli andamenti del valore medio della tensione applicata al carico, per vari valori di wl/r, al variare dell angolo di accensione.

96 La zona nella quale si ha conduzione discontinua diventa ancora più limitata rispetto al convertitore trifase a semionda.

97 Un funzionamento analogo a quello del convertitore trifase ad onda intera può essere ottenuto anche senza l ausilio di un trasformatore a presa centrale.

98 L analisi del comportamento del circuito di conversione risulta semplificata se si prendono in considerazione, invece delle tensioni di fase, gli andamenti delle tensioni concatenate. Se si scelgono le tre tensioni di fase con i seguenti andamenti: quelli delle sei tensioni concatenate risultano:

99

100 p/6 p/3 p/2 2p/3 5p/6 p 4p/3

101 Gli andamenti delle tensioni concatenate sono analoghi a quelli delle tensioni di fase del circuito con trasformatore a presa centrale e ij p/6 e rs e rt e st e sr e tr e ts e i -e e r -e t e s -e r e s t -e s w t w t

102 Pertanto le forme d onda della tensione applicata al carico da un convertitore a ponte totalmente controllato risultano del tutto analoghe a quelle fornite dall altro convertitore se si assume, come istante iniziale del ritardo di accensione del generico Tiristore RC i della parte superiore del ponte, l istante in cui la relativa tensione di fase e i diventa maggiore delle altre due, mentre si considera, per i Tiristori RC i della parte inferiore, l istante in cui la tensione e i diventa minore delle altre due.

103

104 Per quanto concerne l ampiezza della tensione fornita dal convertitore, si può rilevare che, essendo l ampiezza delle tensioni concatenate pari a 3 volte quella delle tensioni di fase, anche il valore medio della tensione fornita al carico sarà pari a 3 volte quella ricavata per il convertitore con trasformatore a presa centrale. Conduzione continua Conduzione discontinua e carico resistivo

105 Per quanto riguarda infine il dimensionamento in corrente dei Tiristori, si può osservare che, nel convertitore a ponte totalmente controllato, la conduzione interessa contemporaneamente due Tiristori; pertanto la durata degli intervalli di tempo durante i quali ogni Tiristore si trova in conduzione risulta doppia di quella ricavata nel caso precedente e, quindi, a parità di corrente assorbita dal carico, il valore efficace della corrente che circola in ogni Tiristore risulta pari a 2 volte quello relativo al convertitore precedente.

106 L impiego di una struttura a ponte semicontrollato permette di dimezzare il numero di Tiristori e di ottenere una forma d onda della tensione applicata al carico indipendente dal valore di wl/r.

107 Se si assume, come istante iniziale del ritardo di accensione del generico Tiristore RC i l istante in cui la relativa tensione di fase e i diventa maggiore delle altre due quando a <p/3 la tensione applicata al carico assume l andamento:

108 Il suo valore medio risulta, pertanto, pari a:

109 Quando, invece, a >p/3 la tensione applicata al carico assume l andamento:

110 e il suo valore medio, pari a: può essere calcolato impiegando la stessa formula qualsiasi sia l angolo di accensione.

111 L analisi del comportamento dei vari tipi di convertitore ha mostrato che, all aumentare della complessità del circuito di conversione (monofase a semionda, monofase ad onda intera, trifase a semionda, trifase ad onda intera), si riducono sia l ondulazione presente sulla forma d onda della tensione fornita al carico sia la dipendenza del valore medio della tensione di uscita dal valore di wl/r del carico.

112 Per ridurre l entità dei circuiti di filtraggio, che spesso devono essere inseriti tra il convertitore ed il carico al fine di livellare l andamento della tensione e/o della corrente, nelle applicazioni di elevata potenza si ricorre all impiego di convertitori polifase. L analisi del funzionamento di tali convertitori è fortemente specialistica; si può, comunque, osservare che una sorgente esafase può essere agevolmente ottenuta, partendo da una rete trifase, impiegando due trasformatori trifase, con la stessa tensione di uscita, ma con i secondari uno collegato a stella e l altro a triangolo.

I convertitori c.a.-c.a. possono essere suddivisi in tre categorie: convertitori a controllo di fase, cicloconvertitori, convertitori a matrice.

I convertitori c.a.-c.a. possono essere suddivisi in tre categorie: convertitori a controllo di fase, cicloconvertitori, convertitori a matrice. Tra i vari tipi di convertitori monostadio, i convertitori c.a.-c.a. sono quelli che presentano il minore interesse applicativo, a causa delle notevoli limitazioni per quanto concerne sia la qualità della

Dettagli

Corso di Elettronica di Potenza (9 CFU) ed Elettronica Industriale (6CFU) Convertitori c.a.-c.a. 2/24

Corso di Elettronica di Potenza (9 CFU) ed Elettronica Industriale (6CFU) Convertitori c.a.-c.a. 2/24 Tra i vari tipi di convertitori monostadio, i convertitori c.a.-c.a. sono quelli che presentano il minore interesse applicativo, a causa delle notevoli limitazioni per quanto concerne sia la qualità della

Dettagli

a.a. 2014/2015 Docente: Stefano Bifaretti

a.a. 2014/2015 Docente: Stefano Bifaretti a.a. 2014/2015 Docente: Stefano Bifaretti email: bifaretti@ing.uniroma2.it Gli schemi circuitali impiegati per la realizzazione dei convertitori statici sono molteplici. Infatti, la struttura del convertitore

Dettagli

Per potenze superiore alle decine di MVA ed a causa dell elevato costo dei GTO di più elevate prestazioni è spesso economicamente conveniente

Per potenze superiore alle decine di MVA ed a causa dell elevato costo dei GTO di più elevate prestazioni è spesso economicamente conveniente Per potenze superiore alle decine di MVA ed a causa dell elevato costo dei GTO di più elevate prestazioni è spesso economicamente conveniente ricorrere all impiego di Tiristori. A differenza dei Transitor

Dettagli

Convertitori e regolatori a tiristori

Convertitori e regolatori a tiristori Convertitori e regolatori a tiristori Raddrizzatori controllati e non Convertitori a tiristori Ponti di Graetz controllati/non controllati, monofase e trifase Regolatori ca/ca a Triac Importanza del carico:

Dettagli

Laboratorio misure elettroniche ed elettriche: regolatori di tensione a tiristori

Laboratorio misure elettroniche ed elettriche: regolatori di tensione a tiristori Laboratorio misure elettroniche ed elettriche: regolatori di tensione a tiristori Circuiti di accensione per tiristori (Tavole E.1.1 - E.1.2) Considerazioni teoriche Per le debite considerazioni si fa

Dettagli

Il motore in corrente continua è utilizzato nei più svariati tipi di azionamenti, con potenze che variano da qualche decina di W ad alcuni MW.

Il motore in corrente continua è utilizzato nei più svariati tipi di azionamenti, con potenze che variano da qualche decina di W ad alcuni MW. Il motore in corrente continua è utilizzato nei più svariati tipi di azionamenti, con potenze che variano da qualche decina di W ad alcuni MW. Nel campo delle medie e alte potenze si impiegano sempre motori

Dettagli

L effetto prodotto da un carico attivo verrà, pertanto, analizzato solo nel caso di convertitore monofase.

L effetto prodotto da un carico attivo verrà, pertanto, analizzato solo nel caso di convertitore monofase. Come nel caso dei convertitori c.c.-c.c., la presenza di un carico attivo non modifica il comportamento del convertitore se questo continua a funzionare con conduzione continua. Nei convertitori trifase

Dettagli

Gli alimentatori stabilizzati

Gli alimentatori stabilizzati Gli alimentatori stabilizzati Scopo di un alimentatore stabilizzato è di fornire una tensione di alimentazione continua ( cioè costante nel tempo), necessaria per poter alimentare un dispositivo elettronico

Dettagli

Sistemi elettronici di conversione

Sistemi elettronici di conversione Sistemi elettronici di conversione (conversione ac-dc, ac-ac, dc-dc, dc-ac) C. Petrarca Cenni su alcuni componenti elementari Diodo, tiristore, contattore statico, transistore Interruttore ideale interruttore

Dettagli

Amplificatori in classe A con accoppiamento capacitivo

Amplificatori in classe A con accoppiamento capacitivo Ottobre 00 Amplificatori in classe A con accoppiamento capacitivo amplificatore in classe A di Fig. presenta lo svantaggio che il carico è percorso sia dalla componente di segnale, variabile nel tempo,

Dettagli

Elettronica generale - Santolo Daliento, Andrea Irace Copyright The McGraw-Hill srl

Elettronica generale - Santolo Daliento, Andrea Irace Copyright The McGraw-Hill srl 1 1. Per il circuito raddrizzatore a doppia semionda di Fig. 3.21 si valuti la massima tensione inversa che può esser presente su ogni diodo e si disegni l uscita del raddrizzatore nel caso in cui il valore

Dettagli

4.4 Il regolatore di tensione a diodo zener.

4.4 Il regolatore di tensione a diodo zener. 4.4 l regolatore di tensione a diodo zener. n molte applicazioni il valore del fattore di ripple ottenibile con un alimentatore a raddrizzatore e filtro capacitivo non è sufficientemente basso. Per renderlo

Dettagli

ELETTRONICA CdS Ingegneria Biomedica

ELETTRONICA CdS Ingegneria Biomedica ELEONICA CdS Ingegneria Biomedica LEZIONE A.03 Circuiti a diodi: configurazioni, analisi, dimensionamento addrizzatori a semplice e doppia semionda addrizzatori a filtro (L, C e LC) Moltiplicatori di tensione

Dettagli

a.a. 2015/2016 Docente: Stefano Bifaretti

a.a. 2015/2016 Docente: Stefano Bifaretti a.a. 2015/2016 Docente: Stefano Bifaretti email: bifaretti@ing.uniroma2.it Controllo ad anello aperto Il filtro LC è necessario per ridurre le ondulazioni di corrente e di tensione ed è dimensionato in

Dettagli

ISTITUTO ISTRUZIONE SUPERIORE "L. EINAUDI" ALBA ANNO SCOLASTICO 2016/2017

ISTITUTO ISTRUZIONE SUPERIORE L. EINAUDI ALBA ANNO SCOLASTICO 2016/2017 ISTITUTO ISTRUZIONE SUPERIORE "L. EINAUDI" ALBA ANNO SCOLASTICO 2016/2017 CLASSE 4 I Disciplina: Elettrotecnica ed Elettronica PROGETTAZIONE DIDATTICA ANNUALE Elaborata dai docenti: Linguanti Vincenzo,

Dettagli

DIODO. La freccia del simbolo indica il verso della corrente.

DIODO. La freccia del simbolo indica il verso della corrente. DIODO Si dice diodo un componente a due morsetti al cui interno vi è una giunzione P-N. Il terminale del diodo collegato alla zona P si dice anodo; il terminale collegato alla zona N si dice catodo. Il

Dettagli

Corso di ELETTRONICA INDUSTRIALE INVERTITORI MONOFASE A TENSIONE IMPRESSA

Corso di ELETTRONICA INDUSTRIALE INVERTITORI MONOFASE A TENSIONE IMPRESSA 1 Corso di LTTRONICA INDUSTRIAL INVRTITORI MONOFAS A TNSION IMPRSSA 0. 2 Principi di funzionamento di invertitori monofase a tensione impressa 0. 3 Principi di funzionamento di invertitori monofase a tensione

Dettagli

Il blocco amplificatore realizza la funzione di elevare il livello (di tensione o corrente) del segnale (in tensione o corrente) in uscita da una

Il blocco amplificatore realizza la funzione di elevare il livello (di tensione o corrente) del segnale (in tensione o corrente) in uscita da una l blocco amplificatore realizza la funzione di elevare il livello (di tensione o corrente) del segnale (in tensione o corrente) in uscita da una sorgente. Nel caso, come riportato in figura, il segnale

Dettagli

Capitolo 10 (Ultimo aggiornamento ) 10.1 Componenti di potenza a semiconduttore

Capitolo 10 (Ultimo aggiornamento ) 10.1 Componenti di potenza a semiconduttore Capitolo 10 (Ultimo aggiornamento 12.07.04) 10.1 Componenti di potenza a semiconduttore Sono componenti di potenza a semiconduttore: - i diodi - i transistori - i tiristori Questi tre componenti hanno

Dettagli

In conduzione continua si ottiene una tensione sul carico v c proporzionale al valore desiderato v i.

In conduzione continua si ottiene una tensione sul carico v c proporzionale al valore desiderato v i. Controllo ad anello aperto Il filtro LC è necessario per ridurre le ondulazioni di corrente e di tensione ed è dimensionato in modo da mantenere v c circa costante. R rappresenta le perdite sugli avvolgimenti

Dettagli

RELAZIONE DI LABORATORIO

RELAZIONE DI LABORATORIO RELAZIONE DI LABORATORIO Esercitazione di laboratorio di Elettrotecnica N 3 Svolta in data 30/11/2010 Corso di laurea in Ingegneria Aerospaziale Docente del corso ZICH RICCARDO Squadra (A,B,C) B Tavolo

Dettagli

Generatore. Generatore. Un sistema a raggi-x consiste di: Tubo a raggi-x. Sistema di rilevazione

Generatore. Generatore. Un sistema a raggi-x consiste di: Tubo a raggi-x. Sistema di rilevazione Generatore Un sistema a raggi-x consiste di: Tubo a raggi-x Sistema di rilevazione Generatore Il generatore trasferisce la potenza elettrica P (KW) al tubo a raggi-x I parametri U (KV) e I (ma) vengono

Dettagli

Corso di Elettronica di Potenza (12 CFU) ed Elettronica Industriale (6 CFU) Convertitori c.c.-c.a. 2/101

Corso di Elettronica di Potenza (12 CFU) ed Elettronica Industriale (6 CFU) Convertitori c.c.-c.a. 2/101 Tra le varie famiglie di convertitori, i convertitori c.c.-c.a. (comunemente indicati come inverter ) sono quelli che prevedono il più elevato numero di soluzioni circuitali, in dipendenza sia dal livello

Dettagli

Se la Vi è applicata all ingresso invertente si avrà un comparatore invertente con la seguente caratteristica:

Se la Vi è applicata all ingresso invertente si avrà un comparatore invertente con la seguente caratteristica: I comparatori sono dispositivi che consentono di comparare (cioè di confrontare ) due segnali. Di norma uno dei due è una tensione costante di riferimento Vr. Il dispositivo attivo utilizzato per realizzare

Dettagli

A.S. 2014/15 CLASSE 4 BEE MATERIA: ELETTROTECNICA ED ELETTRONICA

A.S. 2014/15 CLASSE 4 BEE MATERIA: ELETTROTECNICA ED ELETTRONICA A.S. 2014/15 CLASSE 4 BEE MATERIA: ELETTROTECNICA ED ELETTRONICA UNITA DI APPRENDIMENTO 1: RETI ELETTRICHE IN DC E AC Essere capace di applicare i metodi di analisi e di risoluzione riferiti alle grandezze

Dettagli

Capitolo 8 Misura di Potenza in Trifase

Capitolo 8 Misura di Potenza in Trifase Capitolo 8 di in Trifase Si vuole effettuare una misura di potenza utilizzando un metodo di carico trifase fittizio. Vengono impiegati in un primo momento tre wattmetri numerici sulle tre fasi ed in seguito

Dettagli

IL DIODO. 1 - Generalità

IL DIODO. 1 - Generalità IL DIODO 1 - Generalità Un cristallo di materiale semiconduttore, drogato in modo da creare una giunzione pn, costituisce un diodo a semiconduttore. In fig. 1 sono illustrati la struttura e il simbolo

Dettagli

Collaudo statico di un ADC

Collaudo statico di un ADC Collaudo statico di un ADC Scopo della prova Verifica del funzionamento di un tipico convertitore Analogico-Digitale. Materiali 1 Alimentatore 1 Oscilloscopio 1 Integrato ADC 0801 o equivalente Alcuni

Dettagli

I.I.S.S. G. CIGNA MONDOVI

I.I.S.S. G. CIGNA MONDOVI I.I.S.S. G. CIGNA MONDOVI PROGRAMMAZIONE INDIVIDUALE ANNO SCOLASTICO 2016-2017 CLASSE QUARTA A TRIENNIO TECNICO-ELETTRICO MATERIA ELETTROTECNICA ED ELETTRONICA DOCENTE BONGIOVANNI DARIO MATTEO LIBRI DI

Dettagli

La corrente alternata

La corrente alternata La corrente alternata Corrente continua e corrente alternata Le correnti continue sono dovute ad un generatore i cui poli hanno sempre lo stesso segno e pertanto esse percorrono un circuito sempre nello

Dettagli

Circuito RC con d.d.p. sinusoidale

Circuito RC con d.d.p. sinusoidale Circuito C con d.d.p. sinusoidale Un circuito C-serie ha la seguente configurazione: G è la resistenza interna del generatore. Misura dello sfasamento della tensione ai capi del condensatore rispetto alla

Dettagli

Politecnico di Torino DU Ingegneria Elettronica - AA Elettronica Applicata II - Workbook / Note per appunti - Gruppo argomenti 1

Politecnico di Torino DU Ingegneria Elettronica - AA Elettronica Applicata II - Workbook / Note per appunti - Gruppo argomenti 1 E2.1. ALIMENTATORI Tutti i circuiti e sistemi elettronici richiedono energia per funzionare; tale energia viene fornita tramite una o più alimentazioni, generalmente in forma di tensione continua di valore

Dettagli

La struttura circuitale del multivibratore monostabile deriva da quella dell astabile modificata nel seguente modo:

La struttura circuitale del multivibratore monostabile deriva da quella dell astabile modificata nel seguente modo: Generalità Il multivibratore monostabile è un circuito retroazionato positivamente, che presenta una tensione di uscita V out stabile che può essere modificata solo a seguito di un impulso esterno di comando

Dettagli

RELAZIONE DI TELECOMUNICAZIONI ITIS Vobarno Titolo: I Transistor

RELAZIONE DI TELECOMUNICAZIONI ITIS Vobarno Titolo: I Transistor RLAZION DI TLCOMUNICAZIONI ITIS Vobarno Titolo: I Transistor Nome: Samuele Sandrini 4AT 05/10/14 Un transistor a giunzione bipolare (BJT Bipolar Junction Transistor) è formato da tre zone di semiconduttore

Dettagli

Circuiti elettrici non lineari. Il diodo

Circuiti elettrici non lineari. Il diodo Circuiti elettrici non lineari Il diodo Misure con l oscilloscopio e con il multimetro Edgardo Smerieri Laura Faè PLS - AIF - Corso Estivo di Fisica Genova 009 Individuazione dei pin del diodo Anodo Anodo

Dettagli

Transistore bipolare a giunzione (BJT)

Transistore bipolare a giunzione (BJT) ransistore bipolare a giunzione (J) Parte 1 www.die.ing.unibo.it/pers/mastri/didattica.htm (versione del 22-5-2012) ransistore bipolare a giunzione (J) l transistore bipolare a giunzione è un dispositivo

Dettagli

Invertitori trifase a tensione impressa

Invertitori trifase a tensione impressa Invertitori trifase a tensione impressa Principi di funzionamento Invertitore di tensione trifase Invertitore trifase: insieme di tre invertitori monofase che sfruttano la stessa tensione di alimentazione

Dettagli

Componenti a Semiconduttore

Componenti a Semiconduttore Componenti a Semiconduttore I principali componenti elettronici si basano su semiconduttori (silicio o germani) che hanno subito il trattamento del drogaggio. In tal caso si parla di semiconduttori di

Dettagli

Esercizi aggiuntivi Unità A2

Esercizi aggiuntivi Unità A2 Esercizi aggiuntivi Unità A2 Esercizi svolti Esercizio 1 A2 ircuiti in corrente alternata monofase 1 Un circuito serie, con 60 Ω e 30 mh, è alimentato con tensione V 50 V e assorbe la corrente 0,4 A. alcolare:

Dettagli

Il comportamento di un amplificatore ideale, ad esempio di tensione, è descritto dalla relazione lineare V out = A V in (3.1)

Il comportamento di un amplificatore ideale, ad esempio di tensione, è descritto dalla relazione lineare V out = A V in (3.1) Capitolo 3 Amplificazione 3.1 Circuiti attivi Gli elementi circuitali considerati sino ad ora, sia lineari (resistenze, capacità, induttanze e generatori indipendenti), sia non lineari (diodi), sono detti

Dettagli

Cos è un alimentatore?

Cos è un alimentatore? Alimentatori Cos è un alimentatore? Apparato in grado di fornire una o più tensioni richieste al funzionamento di altre attrezzature, partendo dalla rete elettrica (in Europa: alternata a 220 V, 50 Hz).

Dettagli

RISONANZA. Fig.1 Circuito RLC serie

RISONANZA. Fig.1 Circuito RLC serie RISONANZA Risonanza serie Sia dato il circuito di fig. costituito da tre bipoli R, L, C collegati in serie, alimentati da un generatore sinusoidale a frequenza variabile. Fig. Circuito RLC serie L impedenza

Dettagli

4.13 Il circuito comparatore

4.13 Il circuito comparatore 4.13 Il circuito comparatore Il circuito comparatore è utile in tutti quei casi in cui si debba eseguire un controllo d ampiezza di tensioni continue; il dispositivo si realizza, generalmente, con un microamplificatore

Dettagli

Elettronica per l'informatica 21/10/03

Elettronica per l'informatica 21/10/03 Unità D: Gestione della potenza D.1 D.2 D.3 Alimentatori a commutazione D.4 Pilotaggio di carichi D.5 Gestione della potenza 1 2 componentistica e tecnologie riferimenti di tensione, regolatori e filtri

Dettagli

Capitolo Descrizione tecnica del sensore MAF a filo caldo

Capitolo Descrizione tecnica del sensore MAF a filo caldo Capitolo 2 2.1 Descrizione tecnica del sensore MAF a filo caldo Come anticipato nel paragrafo 1.3.3, verrà ora analizzato in maniera più approfondita il principio di funzionamento del sensore MAF, con

Dettagli

Multivibratore astabile con Amp. Op.

Multivibratore astabile con Amp. Op. Multivibratore astabile con Amp. Op. Il multivibratore astabile è un generatore di onde quadre e rettangolari; esso è un circuito retroazionato positivamente, avente due stati entrambi instabili, che si

Dettagli

REGOLATORI di POTENZA A TRENI D'ONDA PER FORNI ELETTRICI

REGOLATORI di POTENZA A TRENI D'ONDA PER FORNI ELETTRICI REGOLATORI di POTENZA A TRENI D'ONDA PER FORNI ELETTRICI I regolatori di potenza a treni d'onda RPO permettono di variare su un comando esterno, a livello di segnale, la potenza assorbita da un forno elettrico.

Dettagli

Contenuti dell unità + C A0 L

Contenuti dell unità + C A0 L 1 ontenuti dell unità Questa unità considera problemi di transitorio in reti: 1) contenenti un solo elemento reattivo (1 condensatore oppure 1 induttore) a) alimentate da generatori costanti in presenza

Dettagli

1. Il moto della sbarretta (OLIMPIADI della FISICA 1991)

1. Il moto della sbarretta (OLIMPIADI della FISICA 1991) 1. Il moto della sbarretta (OLIMPIADI della FISICA 1991) Obiettivi Determinare la f.e.m. indotta agli estremi di un conduttore rettilineo in moto in un campo magnetico Applicare il secondo principio della

Dettagli

Prova a vuoto e in corto circuito di un trasformatore trifase

Prova a vuoto e in corto circuito di un trasformatore trifase Prova a vuoto e in corto circuito di un trasformatore trifase Oggetto della prova Prova a vuoto e in corto circuito di un trasformatore trifase per la determinazione dei parametri del circuito equivalente

Dettagli

Misure Elettriche ed Elettroniche Esercitazioni Lab - Circuiti con diodi e condensatori 1. Circuiti con diodi e condensatori

Misure Elettriche ed Elettroniche Esercitazioni Lab - Circuiti con diodi e condensatori 1. Circuiti con diodi e condensatori Esercitazioni Lab - Circuiti con diodi e condensatori 1 Circuiti con diodi e condensatori Esercitazioni Lab - Circuiti con diodi e condensatori 2 Circuito con diodo e condensatore Consideriamo un circuito

Dettagli

Collegamento di resistenze

Collegamento di resistenze Collegamento di resistenze Resistenze in serie Vogliamo calcolare la resistenza elettrica del circuito ottenuto collegando tra loro più resistenze in serie. Colleghiamo a una pila di forza elettromotrice

Dettagli

Trasformatore. Parte 3 Trasformatori speciali www.die.ing.unibo.it/pers/mastri/didattica.htm (versione del 29-11-2010) Autotrasformatore (1)

Trasformatore. Parte 3 Trasformatori speciali www.die.ing.unibo.it/pers/mastri/didattica.htm (versione del 29-11-2010) Autotrasformatore (1) Trasformatore Parte 3 Trasformatori speciali www.die.ing.unibo.it/pers/mastri/didattica.htm (versione del 9--00) Autotrasformatore () L autotrasformatore è un trasformatore dotato di un solo avvolgimento

Dettagli

Filtri passivi Risposta in frequenza dei circuiti RC-RL-RLC

Filtri passivi Risposta in frequenza dei circuiti RC-RL-RLC 23. Guadagno di un quadripolo Filtri passivi isposta in frequenza dei circuiti C-L-LC In un quadripolo generico (fig. ) si definisce guadagno G il rapporto tra il valore d uscita e quello d ingresso della

Dettagli

Le modulazioni impulsive

Le modulazioni impulsive Le modulazioni impulsive a cura di Francesco Galgani (www.galgani.it) Indice 1 Introduzione 2 2 La modulazione PAM 3 2.1 Cenni teorici....................................... 3 2.2 Simulazione con il computer

Dettagli

Il convertitore bidirezionale a commutazione forzata trova ampio impiego anche in versione trifase.

Il convertitore bidirezionale a commutazione forzata trova ampio impiego anche in versione trifase. Il convertitore bidirezionale a commutazione forzata trova ampio impiego anche in versione trifase. In questa versione, anzi, non è necessario impiegare il filtro risonante L 1 C 1, in quanto il trasferimento

Dettagli

Corsodi Elettronica di Potenza (9 CFU) ed Elettronica Industriale (6 CFU) Componenti 1/62

Corsodi Elettronica di Potenza (9 CFU) ed Elettronica Industriale (6 CFU) Componenti 1/62 I primi convertitori in grado di controllare il flusso di energia elettrica sono stati realizzati impiegando macchine elettriche rotanti. Tali convertitori (convertitori rotanti), il più noto dei quali

Dettagli

Filtri di Alimentazione

Filtri di Alimentazione Filtri di Alimentazione Appendice al modulo relativo al Diodo giovedì 6 febbraio 009 Corso di Elettronica 1 premessa Esaminando il diodo a semiconduttore sono stati studiati i circuiti raddrizzatori a

Dettagli

Studio di circuiti contenenti diodi Uso di modelli semplificati

Studio di circuiti contenenti diodi Uso di modelli semplificati STUDIO DI CIRCUITI CONTENENTI DIODI USO DI MODELLI SEMPLIFICATI 1 Primo modello 2 Secondo modello 4 Terzo modello 6 La caratteristica e la retta di carico 8 Studio di circuiti contenenti diodi Uso di modelli

Dettagli

Corso di ELETTRONICA INDUSTRIALE

Corso di ELETTRONICA INDUSTRIALE Corso di ELETTROICA IDUSTRIALE Trasformatori ad alta frequenza Trasformatori ad alta frequenza Motivazioni per l uso di trasformatori ad AF Richiami sul trasformatore ideale Relazioni tra le tensioni Relazioni

Dettagli

Conversione DC/AC. Introduzione

Conversione DC/AC. Introduzione Introduzione Questo tipo di convertitore trova applicazione per l alimentazione dei motori in corrente alternata e nei gruppi di continuità (UPS), ovvero tutte le volte che sia necessaria una forma d onda

Dettagli

Motori elettrici di diversa struttura e potenza

Motori elettrici di diversa struttura e potenza Motori elettrici di diversa struttura e potenza Tralasciando i motori omopolari, il cui interesse nel settore degli azionamenti risulta del tutto trascurabile, i motori elettrici possono venire suddivisi

Dettagli

R Eo R E R/2 R/2. R V O (t) V in (t) E O

R Eo R E R/2 R/2. R V O (t) V in (t) E O ESECIZIO 1: La tensione v IN (t) in ingresso al circuito in figura 1 è costituita da un onda triangolare periodica con valore di picco V P 4V, offset 1V e frequenza 1 KHz. Sapendo che 1V, si tracci l andamento

Dettagli

ELETTRIK FLASH Prof S. Seccia

ELETTRIK FLASH Prof S. Seccia ELETTRIK FLASH Prof S. Seccia ELETTROTECNICA IMPIANTI ELETTRICI CONTINUA ALTERNATA SISTEMI TRIFASE LABORATORIO LINEE ELETTRICHE BIPOLI IN SERIE DATA LA TENSIONE Pag 2 BIPOLI IN SERIE DATA LA CORRENTE Pag

Dettagli

POLITECNICO DI TORINO TERZA ESERCITAZIONE ATTENZIONE

POLITECNICO DI TORINO TERZA ESERCITAZIONE ATTENZIONE POLITECNICO DI TORINO Laboratorio di Elettrotecnica Data: Gruppo: Allievi: TERZA ESERCITAZIONE Strumenti utilizzati Materiale necessario Generatore di funzioni da banco Oscilloscopio da banco Bread-board

Dettagli

Le macchine in corrente continua sono composte da una parte fissa (statore o induttore) e da una parte rotante (rotore o indotto).

Le macchine in corrente continua sono composte da una parte fissa (statore o induttore) e da una parte rotante (rotore o indotto). Il motore in c.c. è stato il motore elettrico maggiormente impiegato negli azionamenti a velocità variabile; ciò è dovuto sia alla maggiore semplicità costruttiva dei convertitori con uscita in corrente

Dettagli

Analizziamo ora il circuito in figura, dove Vin è un generatore di tensione alternata sinusoidale:

Analizziamo ora il circuito in figura, dove Vin è un generatore di tensione alternata sinusoidale: Raddrizzatore a doppia semionda: caso ideale Analizziamo ora il circuito in figura, dove Vin è un generatore di tensione alternata sinusoidale: Questa particolare struttura di collegamento di quattro diodi

Dettagli

Esercitazione Misure su circuiti magnetici. 3 - Rilievo del ciclo di isteresi dinamico di un nucleo magnetico

Esercitazione Misure su circuiti magnetici. 3 - Rilievo del ciclo di isteresi dinamico di un nucleo magnetico Esercitazione Misure su circuiti magnetici - 1 Esercitazione Misure su circuiti magnetici 1 - Oggetto Caratterizzazione di materiali magnetici. Strumento virtuale per il rilievo del ciclo di isteresi dinamico.

Dettagli

1. Circuito equivalente di un trasformatore trifase

1. Circuito equivalente di un trasformatore trifase . Circuito equivalente di un trasformatore trifase Poiché la rete magnetica rappresentativa del nucleo dei trasformatori trifase a due avvolgimenti (per colonna) può essere rappresentata come indipendente

Dettagli

CONVERTITORI DC/DC STEP DOWN

CONVERTITORI DC/DC STEP DOWN CONVERTITORI DC/DC STEP DOWN GENERALITÀ I convertitori step down in custodia sono assemblati in contenitore con grado di protezione IP 21 adatto all installazione all interno dei quadri elettrici. Con

Dettagli

CONVERTITORI DC/DC STEP UP

CONVERTITORI DC/DC STEP UP CONVERTITORI DC/DC STEP UP GENERALITÀ I convertitori step up in custodia sono assemblati in contenitore con grado di protezione IP 21 adatto all installazione all interno dei quadri elettrici. Con i due

Dettagli

SCUOLE MANZONI FONDAZIONE MALAVASI Via Scipione dal Ferro, 10/2 Bologna

SCUOLE MANZONI FONDAZIONE MALAVASI Via Scipione dal Ferro, 10/2 Bologna SCUOLE MANZONI FONDAZIONE MALAVASI Via Scipione dal Ferro, 10/2 Bologna ISTITUTO TECNICO AERONAUTICO DEI TRASPORTI E DELLA LOGISTICA CORSO DI ELETTROTECNICA, ELETTRONICA E AUTOMAZIONE CLASSE 4 I.T.T.L.

Dettagli

Misure voltamperometriche su dispositivi ohmici e non ohmici

Misure voltamperometriche su dispositivi ohmici e non ohmici Misure voltamperometriche su dispositivi ohmici e non ohmici Laboratorio di Fisica - Liceo Scientifico G.D. Cassini Sanremo 7 ottobre 28 E.Smerieri & L.Faè Progetto Lauree Scientifiche 6-9 Ottobre 28 -

Dettagli

Alimentatore con uscita variabile

Alimentatore con uscita variabile D N400 LM7 SW F T 5 - + 4 D4 D + C 00uF VI GND VO R 0 R K D N400 + C uf A 4 8 0:8 BRIDGE R4,8K + C 0uF R,K V Versione del 6 ottobre 006 Alimentatore con uscita variabile Vogliamo progettare un alimentatore

Dettagli

Le tensioni di alimentazione +Va e Va devono essere applicate rispetto alla zona di massa.

Le tensioni di alimentazione +Va e Va devono essere applicate rispetto alla zona di massa. 4.2 Sul calcolo del guadagno di un microamplificatore Uno schema elettrico che mostra il più semplice impiego di un circuito integrato è tracciato in figura 4.4, in essa è riportato un microamplificatore

Dettagli

MACCHINE ELETTRICHE 23 giugno 2005 Elettrotecnica _ Energetica _

MACCHINE ELETTRICHE 23 giugno 2005 Elettrotecnica _ Energetica _ MACCHINE ELETTRICHE 23 giugno 2005 Elettrotecnica _ Energetica _ DOMANDE DI TEORIA 1) Circuiti equivalenti di un trasformatore monofase e considerazioni relative ai vari parametri. 2) Diagramma polare

Dettagli

1N4001 LM317 VI GND. + C1 2200uF. + C2 10uF

1N4001 LM317 VI GND. + C1 2200uF. + C2 10uF Alimentatore con uscita variabile rev. del /06/008 pagina /0 D N400 LM7 SW F T 5 - + 4 D4 D + C 00uF VI GND VO 0 K D N400 + C uf A 4 8 0:8 BIDGE 4,8K + C 0uF,K V Alimentatore con uscita variabile Vogliamo

Dettagli

Potenza in regime sinusoidale

Potenza in regime sinusoidale 26 Con riferimento alla convenzione dell utilizzatore, la potenza istantanea p(t) assorbita da un bipolo è sempre definita come prodotto tra tensione v(t) e corrente i(t): p(t) = v(t) i(t) Considerando

Dettagli

SCR - TIRISTORE. Per capire il funzionamento dell SCR, possiamo pensare lo stesso come la connessione di due transistor complementari, PNP e NPN.

SCR - TIRISTORE. Per capire il funzionamento dell SCR, possiamo pensare lo stesso come la connessione di due transistor complementari, PNP e NPN. SCR - TIRISTORE L SCR (Silicon Controller Rectifier) o tiristore, il cui simbolo grafico è rappresentato in figura, è un componente elettronico basato su semiconduttori che ha un comportamento simile al

Dettagli

I semiconduttori. Il drogaggio è un operazione che avviene con diffusione di vapori a temperature intorno ai 1000 C.

I semiconduttori. Il drogaggio è un operazione che avviene con diffusione di vapori a temperature intorno ai 1000 C. I semiconduttori Presentano le seguenti caratteristiche: hanno una resistività intermedia tra quelle di un isolante ed un conduttore presentano una struttura cristallina, cioè con disposizione nello spazio

Dettagli

FUNZIONAMENTO TRANSITORIO DEL TRASFORMATORE TRANSITORIO DI INSERZIONE A VUOTO

FUNZIONAMENTO TRANSITORIO DEL TRASFORMATORE TRANSITORIO DI INSERZIONE A VUOTO FUNZIONAMENTO TRANSITORIO DEL TRASFORMATORE TRANSITORIO DI INSERZIONE A VUOTO t = 0 Z 1 Z 2 Z 0 CIRCUITO EQUIVALENTE DI UNA FASE 1 FUNZIONAMENTO TRANSITORIO DEL TRASFORMATORE A VUOTO Per lo studio del

Dettagli

Integrazioni al corso di Economia Politica (anno accademico ) Marianna Belloc

Integrazioni al corso di Economia Politica (anno accademico ) Marianna Belloc Integrazioni al corso di Economia Politica (anno accademico 2013-2014) Marianna Belloc 1 L elasticità Come è già noto, la funzione di domanda di mercato indica la quantità che il mercato è disposto ad

Dettagli

Università del Salento Corso di Laurea Triennale in Ingegneria Industriale Secondo esonero di FISICA GENERALE 2 del 16/01/15

Università del Salento Corso di Laurea Triennale in Ingegneria Industriale Secondo esonero di FISICA GENERALE 2 del 16/01/15 Università del Salento Corso di Laurea Triennale in Ingegneria Industriale Secondo esonero di FISICA GENERALE 2 del 16/01/15 Esercizio 1 (7 punti): Nella regione di spazio compresa tra due cilindri coassiali

Dettagli

Generatori di tensione

Generatori di tensione Correnti alternate Generatori di tensione Sinora come generatore di forza elettromotrice abbiamo preso in considerazione soltanto la pila elettrica. Questo generatore ha la caratteristica di fornire sempre

Dettagli

7. Convertitori statici

7. Convertitori statici Corso di Elementi di ingegneria elettrica di potenza Angelo Baggini angelo.baggini@unibg.it 7. Convertitori statici Corso di Elettrotecnica NO Introduzione Generazione industriale energia elettrica: Sistema

Dettagli

II.3.1 Inverter a componenti discreti

II.3.1 Inverter a componenti discreti Esercitazione II.3 Caratteristiche elettriche dei circuiti logici II.3.1 Inverter a componenti discreti Costruire il circuito dell invertitore in logica DTL e verificarne il funzionamento. a) Posizionando

Dettagli

Laurea Magistrale in Ingegneria Energetica. Corso di Elettronica di Potenza (12 CFU) a.a. 20I2/2013. Stefano Bifaretti

Laurea Magistrale in Ingegneria Energetica. Corso di Elettronica di Potenza (12 CFU) a.a. 20I2/2013. Stefano Bifaretti Laurea Magistrale in Ingegneria Energetica Corso di Elettronica di Potenza (12 CFU) a.a. 20I2/2013 Stefano Bifaretti Ad ogni commutazione degli interruttori statici di un convertitore è associata una dissipazione

Dettagli

Appunti tratti dal videocorso di Elettrotecnica 1 del prof. Graglia By ALeXio

Appunti tratti dal videocorso di Elettrotecnica 1 del prof. Graglia By ALeXio Appunti tratti dal videocorso di Elettrotecnica 1 del prof. Graglia By ALeXio Parte f Variabili di stato In un dato istante di tempo, l energia immagazzinata nell elemento reattivo (condensatore od induttore)

Dettagli

ISTITUTO TECNICO INDUSTRIALE STATALE "G. MARCONI" Via Milano n PONTEDERA (PI) ANNO SCOLASTICO 2005/2006 CORSO SPERIMENTALE LICEO TECNICO

ISTITUTO TECNICO INDUSTRIALE STATALE G. MARCONI Via Milano n PONTEDERA (PI) ANNO SCOLASTICO 2005/2006 CORSO SPERIMENTALE LICEO TECNICO ISTITUTO TECNICO INDUSTRIALE STATALE "G. MARCONI" Via Milano n. 2-56025 PONTEDERA (PI) 0587 53566/55390 - Fax: 0587 57411 - : iti@marconipontedera.it - Sito WEB: www.marconipontedera.it ANNO SCOLASTICO

Dettagli

I.T.I.S. Max Planck Verifica di Elettronica Oscillatori classe 5 A/Tel a.s. 2013/14 COGNOME E NOME Data: 27/11/2013

I.T.I.S. Max Planck Verifica di Elettronica Oscillatori classe 5 A/Tel a.s. 2013/14 COGNOME E NOME Data: 27/11/2013 I.T.I.. Max Planck Verifica di Elettronica Oscillatori classe 5 A/Tel a.s. 03/4 OGNOME E NOME Data: 7//03 Quesito ) (50%) Dato il circuito qui a fianco che rappresenta un oscillatore sinusoidale a ponte

Dettagli

Il diodo è un componente elettronico a due terminali, uno chiamato ANODO e uno CATODO.

Il diodo è un componente elettronico a due terminali, uno chiamato ANODO e uno CATODO. Il diodo è un componente elettronico a due terminali, uno chiamato ANODO e uno CATODO. Il suo simbolo è il seguente: Per ricordare qual è il CATODO si deve immaginare di vedere una K(atodo) e per l'anodo

Dettagli

Appunti di Elettronica I Lezione 3 Risoluzione dei circuiti elettrici; serie e parallelo di bipoli

Appunti di Elettronica I Lezione 3 Risoluzione dei circuiti elettrici; serie e parallelo di bipoli Appunti di Elettronica I Lezione 3 Risoluzione dei circuiti elettrici; serie e parallelo di bipoli Valentino Liberali Dipartimento di Tecnologie dell Informazione Università di Milano, 2603 Crema email:

Dettagli

Università degli studi di Bergamo Facoltà di Ingegneria

Università degli studi di Bergamo Facoltà di Ingegneria Università degli studi di ergamo Facoltà di Ingegneria Corso di elettrotecnica Soluzione tema d esame del 16 giugno 1998 Esercizio n 1 Data la rete in figura determinare le correnti I 1,I 2,I,I 5 e la

Dettagli

Trasformatore monofase

Trasformatore monofase La caduta di tensione industriale è positiva per carichi induttivi, puramente resistivi e debolmente capacitivi, è invece negativa (innalzamento di tensione nel passaggio da vuoto a carico) per carichi

Dettagli

Misure di tensione alternata 1

Misure di tensione alternata 1 1/5 1 Introduzione 1 La seguente esercitazione di laboratorio riguarda l uso dei voltmetri nella modalità di misura di tensioni in alternata. Obiettivo dell esercitazione, oltre a raffinare la dimestichezza

Dettagli

Esercizi di Elettronica Digitale Monostabile #1

Esercizi di Elettronica Digitale Monostabile #1 Esercizi di Elettronica Digitale Monostabile # M.Borgarino Università di Modena e Reggio Emilia Facoltà di ngegneria (0/09/006 Descrizione del circuito Lo schematico riportato nella seguente Figura rappresenta

Dettagli

Elettronica Analogica. Luxx Luca Carabetta

Elettronica Analogica. Luxx Luca Carabetta Elettronica Analogica Luxx Luca Carabetta Diodi Raddrizzatori Alimentatori Diodi Il nome sta a ricordare la struttura di questo componente, che è formato da due morsetti, anodo e katodo. La versione che

Dettagli

Tra le varie famiglie di convertitori, i convertitori c.c.-c.a. (comunemente indicati come inverter ) sono quelli che prevedono il più elevato numero

Tra le varie famiglie di convertitori, i convertitori c.c.-c.a. (comunemente indicati come inverter ) sono quelli che prevedono il più elevato numero Tra le varie famiglie di convertitori, i convertitori c.c.-c.a. (comunemente indicati come inverter ) sono quelli che prevedono il più elevato numero di soluzioni circuitali, in dipendenza sia dal livello

Dettagli

Misure con l oscilloscopio (e non) su circuiti con amplificatori operazionali

Misure con l oscilloscopio (e non) su circuiti con amplificatori operazionali Misure con l oscilloscopio (e non) su circuiti con amplificatori operazionali Edgardo Smerieri Laura Faè PLS - AIF - Corso Estivo di Fisica Genova 2009 Amplificatore operazionale perché? Moltiplicazione

Dettagli