Stadi Amplificatori di Base

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Stadi Amplificatori di Base"

Transcript

1 Stadi Amplificatori di Base Biagio Provinzano Marzo 2005 Ipotesi di lavoro: i) Transistor npn acceso ed in zona attiva v BE 1 0.7V e v C >v B ii) Consideriamo un classico schema di polarizzazione con quattro resistenze discrete ed una singola alimentazione positiva, pensando di lavorare in zona attiva diretta iii) Operiamo in media frequenza utilizzando il modello semplificato del transistor per piccoli segnali v be V T (= k BT e 26mV con T = 300K) Di seguito riporto delle formule utili che descrivono i parametri del modello impiegato e le relazioni funzionali tra le correnti del transistor sempre in zona attiva diretta. i C = I S e v BE V T (1 + v CE ) V A µ g m (BJT) ic = v BE r π = v be i b r e = v be r o = i C = βi B i E = i C α α = i E = i C + i B i C =I C β β +1 ' I C ( 40 ma V T V per I C =1mA) = V T I B = β g m range dei kω = V T = α range delle decine di Ω i e I E g m " µ # 1 ic ' V A centinaia di kω v CE r π = (β +1)r e v BE =V BE 1 In queste note riprendiamo dal Sedra la convenzione adottata per rappresentare i segnali in cui si vuole separare il bias ed il contributo di piccolo segnale, v BE = V BE + v be. I C 1

2 Amplificatore ad emettitore comune (con elettrodo a massa) disegnato per il segnale, dove R B = R B1 k R B2. Stadio ad Emettitore Comune R in = R B1 k R B2 k r π R out = R C k r o = R in g m (R C k R L k r o ) v in R + R in Osservazione 1 Nell analisi di piccolo segnale, passando dalla tensione di base del transistor alla tensione di collettore (uscita), si ha una inversione di segno. Osservazione 2 Il massimo guadagno ottenibile con un singolo stadio amplificatore CE è dato da lim RL A V = g m r o = V A VT (consideriamo pari a uno R C la partizione resistiva in ingresso, apriamo l uscita e sostituiamo R C con un generatore ideale di corrente). 2

3 Amplificatore ad emettitore comune (senza elettrodi a massa) disegnato per il segnale Stadio ad Emettitore Comune con resistenza sull emettitore R in ' R B1 k R B2 k (β +1)(r e + R E ),se ' R B1 k R B2 k βr E,conβ À 1 e R E À r e # g m R E R out = R C k r o "1+ 1+ R E r π+(rkr B1kR B2) ½ r o À R E r o À R C k R L ' R C k r o (1 + g m R E ) se R E r π +(R k R B1 k R B2 ) ¾ ' R in g m (R C k R L ) v in R + R in con r e ³1+ R CkR L r o R E + r e ³1+ RCkRL g m r o À 1 r o (β +1)À R C k R L r o À R E ' R in g m (R C k R L ),ser o À R C k R L R + R in 1+g m R E ' R in R + R in (R C k R L ) R E,seinoltreg m R E À 1 r o 3

4 Osservazione 3 Nell espressione della resistenza di uscita se r π À (R k R B1 k R B2 ) ed R E +, si ottiene comunque R out = R C k r o (β +1), poichè la corrente di test iniettata nel collettore continua a scorrere nella base del transistore. Osservazione 4 Ancheinquestocasoilguadagnoditensione v out v in risulta invertente ed è dato (senza contare la partizione di tensione all ingresso dell amplificatore,chediventapariadunoquandor in À R s ) dal rapporto tra la resistenza complessiva nel circuito di collettore e la resistenza totale nel circuito di emettitore. Osservazione 5 LavorandoconunaresistenzaR E di emettitore si introduce esplicitamente una controreazione negativa nello schema dell amplificatore proposto. Ciò porta ad avere tre principali vantaggi: 1) il guadagno A V diventa meno dipendente da β; 2) si può applicare un segnale di maggiore ampiezza in ingresso senza rischiare distorsioni non lineari; 3) si migliora notevolmente la risposta alle alte frequenze (contemporaneamente si riduce il guadagno di un 1 fattore 1+g m R E ) Stadio a base comune disegnato per il segnale 4

5 Stadio a Base Comune µ R in ' R E k r e 1+ R ½ C k R L g,con m r o À 1 r o r o (β +1)À R C k R L ' r e = α ½ ¾ ro À R,seancora C k R L g m R E À r e R out = R C k [r o +(1+g m r o )(R k R E k r π )] ' R C k βr o con (R k R E k r π ) ' r π ¾ ' + R in g m (R C k R L k r o ),cong m r o À 1 v in R + R in Osservazione 6 In questo caso non c è inversione di segno passando dalla tensione di emettitore alla tensione di collettore. Il guadagno di corrente in corto circuito risulta uguale ad α. Questoamplificatore ha una larghezza di banda più ampia di quella dell amplificatore ad emettitore comune. Osservazione 7 Nella formula approssimata proposta per la R in ci si può chiedere cosa succede se R C k R L 0Ω. Si può obiettare che pur agendo r o, la formula ci restituisce solo R in ' R E k r e. Questo è il risultato della approssimazione fatta, per cui se si fa il calcolo diretto con il circuito equivalente sitrovalaseguenteformula R in = R E k r π r o (β +1)r o + r π ' R E k r e,se(β +1)r o À r π per cui con questa approssimazione, praticamente sempre verificata, le due formule si conciliano. Osservazione 8 Si noti con attenzione che nel caso in cui R L, R C (sostituiamo R C con un generatore ideale di corrente), l emettitore non è più un punto ad impedenza molto bassa per il segnale (ovvero α g m ) ma si ottiene R in = r π. 5

6 Stadio amplificatore a collettore comune disegnato per il segnale Stadio a Collettore Comune R in = R B1 k R B2 k (β +1)[r e +(R L k R E k r o )] R out = R E k r o k r π +(R k R B1 k R B2 ) = β +1 α = R E k r o k + (R k R B1 k R B2 ) g m β +1 =+ R in (R E k R L k r o ) v in R + R in r e +(R E k R L k r o ) ' + R in g m (R E k R L k r o ) R + R in 1+g m (R E k R L k r o ),conα' 1 Osservazione 9 In questa configurazione il guadagno di tensione passando dal terminale di base a quello di emettitore (uscita) è pari circa ad uno, di qui il nome di inseguitore di tensione (impiego come buffer di tensione, ultimo stadio di un amplificatore multistadio). Osservazione 10 Il massimo guadagno teorico (pari ad uno) di piccolo segnale ottenibile con uno stadio CC si ha considerando R in (ovvero β ), r o, R L +, R E + (ovvero si considera un generatore ideale di tensione che imponga la corrente di emetittore). 6

7 Passiamo alle strutture MOS... Ipotesi di lavoro: i) NMOS ad arricchimento (per fissare le idee) acceso e polarizzato in zona di saturazione v GS >V th e v GD <V th ii) Consideriamo un classico schema di polarizzazione con quattro resistenze discrete ed una singola alimentazione positiva, pensando di lavorare sempre nella regione di saturazione iii) Operiamo in media frequenza utilizzando il modello semplificato del MOS per piccoli segnali v gs 2(V GS V th ) Alcune formule utili e parametri del modello. r o = i D = K(v GS V th ) 2 (1 + v DS V A ) (in zona di saturazione) K = 1 2 µ nc ox W L µ g m (MOS) id = v GS v GS =V GS = 2K(v GS V th ) W = µ n C ox L (v GS V th ) " µ id v DS = p 2µ n C ox r W L p ID 2 ma V per I D =1mA e W L = 100 = in generale si ha g m (MOS) v GS =V GS <g (BJT) m # 1 ' V A I D decine/centinaia di kω 7

8 Stadio a Source Comune R in = R G1 k R G2 R out = R D k r o v in = R in R + R in g m (R D k R L k r o ) Amplificatore a source comune (con elettrodo di source a massa) disegnato per il segnale, dove R G = R G1 k R G2 Osservazione 11 Nell analisi di piccolo segnale, passando dalla tensione di gate del MOS alla tensione di drain (uscita), si ha una inversione di segno. Osservazione 12 Il massimo guadagno ottenibile con un singolo stadio amplificatore CS è dato da lim RL A V = g m r o = 2V A V GS V th = 2V A V ov (consideriamo pari a uno la partizione resistiva in ingresso, apriamo l uscita e sostituiamo R D R D con un generatore ideale di corrente). Osservazione 13 Si noti come in questa configurazione non si ha effetto body, poichè la tensione più bassa è la massa alla quale sono agganciati sia il source che il substrato. 8

9 Stadio a Source Comune con resistenza sul source R in = R G1 k R G2 R out = R D k [r o + R S (1 + g m r o )] ' R D k r o (1 + g m R S ),cong m r o À 1 = R in g m (r o k R D k R L ) v in R + R in 1+ R S(1+g m r o ) r o +R D kr L ½ ' R in R + R in g m (R D k R L ) 1+g m R S,se g m r o À 1 r o À R D k R L ' R in R + R in (R D k R L ) R S,seinoltreg m R S À 1 Osservazione 14 Se si tiene in conto l effetto body, bisogna sostituire g m con g m + g mb nella formula ricavata per la resistenza di uscita e al denominatore dell espressione del guadagno. ¾ Amplificatore a source comune con una resistenza sul source, disegnato per il segnale 9

10 Stadio a Gate Comune R in = R S k 1 (1 + R D k R L ) g m r o R out = R D k [r o +(1+g m r o )(R S k R)] ' R D k r o [1 + g m (R S k R)],cong m r o À 1 ' + R in g m (R D k R L k r o ),seg m r o À 1 v in R + R in Osservazione 15 Per la R in sipuòfareundiscorsoanalogoaquellofattoa proposito dello stadio a base comune. Cosa se succede se R D k R L 0Ω? Anche qui si può eseguire il calcolo diretto r o R in = R S k ' R S k 1,cong m r o À 1 1+g m r o g m per cui anche in questo caso l apparente discrepanza tra le due formule viene annulata con la condizione, praticamente sempre verificata, sopra espressa. Osservazione 16 Soprattutto per il MOS si noti con attenzione che nel caso in cui R L, R C (sostituiamo R C con un generatore ideale di corrente), il source non è più un punto ad impedenza molto bassa per il segnale (ovvero 1 g m ) ma si ottiene R in =. Osservazione 17 Se si tiene in conto l effetto body, bisogna sostituire g m con g m + g mb nelle formule ricavate per le resistenze di ingresso e di uscita e nell espressione del guadagno. 10

11 Stadio a gate comune disegnato per il segnale Stadio a Drain Comune R in = R G1 k R G2 R out = R S k r o k 1 g m =+ R in (R S k R L k r o ) v in R + R 1 in g m +(R S k R L k r o ) = + R in g m (R S k R L k r o ) R + R in 1+g m (R S k R L k r o ) 11

12 Amplificatore a drain comune disegnato per il segnale Osservazione 18 Se si tiene in conto l effetto body, bisogna sostituire g m con g m + g mb nella formula ricavata per la resistenza di uscita e al denominatore dell espressione del guadagno. Osservazione 19 A differenza dell emitter follower l inseguitore di tensione presentato (source follower) ha un guadagno teorico massimo pari a 1 lim A V = = 1 R L g m + g mb 1+χ r o R S R in con χ = g mb g m = Onde evitare distorsioni per ampi segnali bisogna quindi eliminare l effetto del substrato con accorgimenti tecnologici (fabbricando il dispositivo in una well isolata). 12

AMPLIFICATORI INVERTENTI A SINGOLO TRANSISTORE

AMPLIFICATORI INVERTENTI A SINGOLO TRANSISTORE configurazione CE: AMPLIFICATORI INVERTENTI A SINGOLO TRANSISTORE configurazione CS: G. Martines 1 ANALISI IN CONTINUA Circuito di polarizzazione a quattro resistenze. NOTE: I parametri del modello a piccolo

Dettagli

Esercitazione 3. Biagio Provinzano Aprile Esercizio 1. I BJT npn hanno la stessa area e la stessa corrente di saturazione, consideriamo

Esercitazione 3. Biagio Provinzano Aprile Esercizio 1. I BJT npn hanno la stessa area e la stessa corrente di saturazione, consideriamo Esercitazione 3 Biagio Provinzano Aprile 005 Esercizio I BJT npn hanno la stessa area e la stessa corrente di saturazione, consideriamo V A, β = 00, V BE = 0.7V in zona attiva ed infine Cπ = C µ =0pF.

Dettagli

Il TRANSISTOR. Il primo transistor della storia

Il TRANSISTOR. Il primo transistor della storia Il TRANSISTOR Il primo transistor della storia Inventori del Transistor Il Transistor Bipolare a Giunzione (BJT) è stato inventato nei laboratori BELL nel 1948, da tre fisici: John Bardeen Walter Brattain,

Dettagli

Il TRANSISTOR. Il primo transistor della storia

Il TRANSISTOR. Il primo transistor della storia Il TRANSISTOR Il primo transistor della storia Inventori del Transistor Il Transistor Bipolare a Giunzione (BJT) è stato inventato nei laboratori BELL nel 1948, da tre fisici: John Bardeen Walter Brattain,

Dettagli

Corso di ELETTRONICA 1 (Elettronici N.O.) 17/06/2003

Corso di ELETTRONICA 1 (Elettronici N.O.) 17/06/2003 Corso di ELETTRONICA 1 (Elettronici N.O.) 17/06/2003 Si analizzi l amplificatore mostrato in figura, determinando: 1. il valore del guadagno di tensione a frequenze intermedie; 2. le frequenze di taglio

Dettagli

Note sugli Stadi Differenziali

Note sugli Stadi Differenziali Note sugli Stadi Differenziali Biagio Provinzano Maggio 005 Gli stadi differenziali a BJT e a MOS risultano molto utili nella progettazione di circuiti analogici in tecnologia monolitica, essenzialmente

Dettagli

Esonero del Corso di Elettronica I 23 aprile 2001

Esonero del Corso di Elettronica I 23 aprile 2001 Esonero del Corso di Elettronica I 23 aprile 2001 1) Nell amplificatore MO di figura k=5.10-4 A/V 2, V T = 2 V, = 10K Ω, =10V, =3V. eterminare il guadagno di tensione per un segnale applicato tra gate

Dettagli

ESERCIZIO 1. Soluzione. Per risolvere il problema utilizzo il modello di Ebers-Moll, grazie al quale potrò calcolare L E, W, L C, infatti so che

ESERCIZIO 1. Soluzione. Per risolvere il problema utilizzo il modello di Ebers-Moll, grazie al quale potrò calcolare L E, W, L C, infatti so che ESERCIZIO Su un transistor BJT pnp caratterizzato da N E = 0 8 cm 3 N B = 0 6 cm 3 N C = 0 5 cm 3 A = mm 2 vengono effettuate le seguenti misure: Tensione V CB negativa, emettitore aperto: I C = 0nA Tensione

Dettagli

Transistor bipolare a giunzione (bjt bipolar junction transistor)

Transistor bipolare a giunzione (bjt bipolar junction transistor) Transistor bipolare a giunzione (bjt bipolar junction transistor) Il transistor e' formato da due diodi contrapposti con una regione in comune (base) B B E C N E P E N C IE IC E P E C emettitore collettore

Dettagli

Amplificatori elementari con carico attivo MOSFET E connesso a diodo

Amplificatori elementari con carico attivo MOSFET E connesso a diodo Amplificatori elementari con carico attio MOSFET E connesso a diodo i ( ) = K g = µ C W L I V t m n OX G. Martines MOSFET DE connesso a diodo GS = 0, il transistore può funzionare in regione di triodo

Dettagli

Schemi e caratteristiche dei principali amplificatori a BJT

Schemi e caratteristiche dei principali amplificatori a BJT Schemi e caratteristiche dei principali amplificatori a BJT Sommario argomenti trattati Schemi e caratteristiche dei principali amplificatori a BJT... 1 Amplificatore emettitore comune o EC... 1 Amplificatore

Dettagli

Informazioni logistiche e organizzative Applicazione di riferimento. caratteristiche e tipologie di moduli. Circuiti con operazionali reazionati

Informazioni logistiche e organizzative Applicazione di riferimento. caratteristiche e tipologie di moduli. Circuiti con operazionali reazionati Elettronica per telecomunicazioni 1 Contenuto dell unità A Informazioni logistiche e organizzative Applicazione di riferimento caratteristiche e tipologie di moduli Circuiti con operazionali reazionati

Dettagli

Appendice A. A.1 Amplificatore con transistor bjt

Appendice A. A.1 Amplificatore con transistor bjt Appendice A A.1 Amplificatore con transistor bjt Il circuito in fig. A.1 è un esempio di amplificatore a più stadi. Si utilizza una coppia differenziale di ingresso (T 1, T 2 ) con un circuito current

Dettagli

AMPLIFICATORE DIFFERENZIALE

AMPLIFICATORE DIFFERENZIALE AMPLIFICATORE DIFFERENZIALE Per amplificatore differenziale si intende un circuito in grado di amplificare la differenza tra due segnali applicati in ingresso. Gli ingressi sono due: un primo ingresso

Dettagli

COMPITO DI ELETTRONICA I ELETTRONICI INFORMATICI ELETTRICI

COMPITO DI ELETTRONICA I ELETTRONICI INFORMATICI ELETTRICI 18-01-2003 Q3 Q4 v out Q2 M1 v s i s Dz =3 V V Z =2 V Diodo zener ideale =1 kω =1.5 kω =250 Ω =1 kω β=100 K n =µ n C ox /2=50 µa/v 2 W/L=16/0.8 V Tn = 1 V C π = C gs =10 pf C µ = C gd =1 pf C1=C2=C3=1

Dettagli

Indice generale. Prefazione. Capitolo 1. Richiami di analisi dei circuiti 1. Capitolo 2. Analisi in frequenza e reti STC 39

Indice generale. Prefazione. Capitolo 1. Richiami di analisi dei circuiti 1. Capitolo 2. Analisi in frequenza e reti STC 39 Indice generale Prefazione xi Capitolo 1. Richiami di analisi dei circuiti 1 1.1. Bipoli lineari 1 1.1.1. Bipoli lineari passivi 2 1.1.2. Bipoli lineari attivi 5 1.2. Metodi di risoluzione delle reti 6

Dettagli

Esperimentazioni di Fisica 3. Appunti sugli. Amplificatori Differenziali. M De Vincenzi

Esperimentazioni di Fisica 3. Appunti sugli. Amplificatori Differenziali. M De Vincenzi Esperimentazioni di Fisica 3 Appunti sugli. Amplificatori Differenziali M De Vincenzi 1 Introduzione L amplificatore differenziale è un componente elettronico che (idealmente) amplifica la differenza di

Dettagli

Page 1. Elettronica delle telecomunicazioni ETLCE - A1 08/09/ DDC 1. Politecnico di Torino Facoltà dell Informazione. Contenuti del Gruppo A

Page 1. Elettronica delle telecomunicazioni ETLCE - A1 08/09/ DDC 1. Politecnico di Torino Facoltà dell Informazione. Contenuti del Gruppo A Modulo Politecnico di Torino Facoltà dell Informazione Elettronica delle telecomunicazioni A Amplificatori, oscillatori, mixer A1- Amplificatori a transistori» Punto di funzionamento,» guadagno e banda»

Dettagli

MOSFET o semplicemente MOS

MOSFET o semplicemente MOS MOSFET o semplicemente MOS Sono dei transistor e come tali si possono usare come dispositivi amplificatori e come interruttori (switch), proprio come i BJT. Rispetto ai BJT hanno però i seguenti vantaggi:

Dettagli

ν S R B2 Prova n 1: V CC R C R B1 C C R S C S C L out R L Prove d'esame

ν S R B2 Prova n 1: V CC R C R B1 C C R S C S C L out R L Prove d'esame Prova n 1: Per il seguente circuito determinare: 1. R B1, R E tali che: I C = 0,5 ma; V E = 5 V; 2. Guadagno di tensione a piccolo segnale v out /v s alle medie frequenze; 3. Frequenza di taglio inferiore;

Dettagli

CORSO DI ELETTRONICA DELLE TELECOMUNICAZIONI

CORSO DI ELETTRONICA DELLE TELECOMUNICAZIONI CORSO DI ELETTRONICA DELLE TELECOMUNICAZIONI 17 FEBBRAIO 2004 DOMANDE DI TEORIA 1) E dato un generatore con impedenza di sorgente di 50 Ω, che pilota un amplificatore di cui è nota la figura di rumore

Dettagli

ELETTRONICA II. Prof. Dante Del Corso - Politecnico di Torino. Parte A: Transistori in commutazione Lezione n. 3 - A - 3:

ELETTRONICA II. Prof. Dante Del Corso - Politecnico di Torino. Parte A: Transistori in commutazione Lezione n. 3 - A - 3: ELETTRONICA II Prof. Dante Del Corso - Politecnico di Torino Parte A: Transistori in commutazione Lezione n. 3 - A - 3: Transistori MOS in commutazione Elettronica II - Dante Del Corso - Gruppo A - 8 n.

Dettagli

PROVA SCRITTA di DISPOSITIVI ELETTRONICI del 10 Giugno 2016

PROVA SCRITTA di DISPOSITIVI ELETTRONICI del 10 Giugno 2016 PROVA SCRITTA di DISPOSITIVI ELETTRONICI del 0 Giugno 206 ESERCIZIO Il transistore bipolare npn nelle gure ha N Demettitore = N Dcollettore = 0 7 cm 3, N Abase = 0 6 cm 3, µ n = 0. m 2 /Vs, τ n = τ p =

Dettagli

Page 1. Elettronica delle telecomunicazioni 2003 DDC 1. Politecnico di Torino Facoltà dell Informazione. Contenuti del Gruppo A

Page 1. Elettronica delle telecomunicazioni 2003 DDC 1. Politecnico di Torino Facoltà dell Informazione. Contenuti del Gruppo A Modulo Politecnico di Torino Facoltà dell Informazione Elettronica delle telecomunicazioni Amplificatori e oscillatori A1 - Amplificatori a transistori» Punto di funzionamento,» guadagno e banda» distorsioni,

Dettagli

2πCR 1 [R 5 (R 3 +R 4 )+R 3 R 4 ]

2πCR 1 [R 5 (R 3 +R 4 )+R 3 R 4 ] /0 ESERCIZIO. - Risposta in frequenza A. O. ideale) R 2 v s) = v s s) +v u s) +R 2 +R 2 Eguagliando v + s) = v s)): segue f z = R 2 v s s) +v u s) = v u s) +R 2 +R 2 v u s) R 3 + [ v u s) Af) = A 0 Cs

Dettagli

DEE POLITECNICO DI BARI LABORATORIO DI ELETTRONICA APPLICATA ESERCITAZIONE 2

DEE POLITECNICO DI BARI LABORATORIO DI ELETTRONICA APPLICATA ESERCITAZIONE 2 POLITECNICO DI BARI DEE DIPARTIMENTO ELETTROTECNICA ELETTRONICA Via E. Orabona, 4 70125 Bari (BA) Tel. 080/5460266 - Telefax 080/5460410 LABORATORIO DI ELETTRONICA APPLICATA Circuito di autopolarizzazione

Dettagli

DE e DTE: PROVA SCRITTA DEL 4 Giugno 2012

DE e DTE: PROVA SCRITTA DEL 4 Giugno 2012 DE e DTE: PROA SCRITTA DEL 4 Giugno 2012 ESERCIZIO 1 (DE,DTE) Una giunzione pn (N A = N D = 10 16 cm 3, τ n = τ p = 10 6 s, µ n = 1000 cm 2 /s, µ p = 450 cm 2 /s, S = 1 mm 2 ) è polarizzata con = 0.5.

Dettagli

Transistori MOS. Ing. Ivan Blunno 21 aprile 2005

Transistori MOS. Ing. Ivan Blunno 21 aprile 2005 Transistori MOS Ing. Ivan Blunno 1 aprile 005 1 Introduzione In questa dispensa verranno presentati i transistor MOS (Metal Oxide Semiconductor) di tipo N e P dal punto di vista del loro funzionamento

Dettagli

PROVA SCRITTA di DISPOSITIVI ELETTRONICI del 6 Febbraio 2019

PROVA SCRITTA di DISPOSITIVI ELETTRONICI del 6 Febbraio 2019 PROVA SCRITTA di DISPOSITIVI ELETTRONICI del 6 Febbraio 2019 ESERCIZIO 1 In gura sono rappresentati due diodi identici: N A = 10 16 cm 3, N D = 10 15 cm 3, µ n = 0.1 m 2 /Vs, µ p = 0.03 m 2 /Vs, τ n =

Dettagli

= A v1 A v2 R o1 + R i2 A v A v1 A v2. se R i2 R o1

= A v1 A v2 R o1 + R i2 A v A v1 A v2. se R i2 R o1 Amplificatori a due stadi STADIO 1 STADIO 2 R s R o1 R o2 v s + _ vi1 R i1 + A v1 v i1 _ v i2 R i2 + Av2vi2 _ vo2 RL A v v o2 v i1 = A v1 A v2 R i2 R o1 + R i2 A v A v1 A v2 se R i2 R o1 A.Nigro Laboratorio

Dettagli

Esercitazione n 2: Circuiti di polarizzazione (2/2)

Esercitazione n 2: Circuiti di polarizzazione (2/2) Esercitazione n 2: Circuiti di polarizzazione (2/2) 1) Per il circuito di in Fig. 1 dimensionare R in modo tale che la corrente di collettore di Q 1 sia 5 ma. Siano noti: V CC = 15 V; β = 150; Q1 = Q2

Dettagli

Modello di Ebers-Moll del transistore bipolare a giunzione

Modello di Ebers-Moll del transistore bipolare a giunzione D Modello di Ebers-Moll del transistore bipolare a giunzione Un transistore bipolare è un dispositivo non lineare che può essere modellato facendo ricorso alle caratteristiche non lineari dei diodi. Il

Dettagli

Dispositivi e Tecnologie Elettroniche. Modelli di ampio e piccolo segnale del MOSFET

Dispositivi e Tecnologie Elettroniche. Modelli di ampio e piccolo segnale del MOSFET Dispositivi e Tecnologie Elettroniche Modelli di ampio e piccolo segnale del MOFET Modello di ampio segnale Le regioni di funzionamento per ampio segnale sono: interdizione quadratica saturazione I D =

Dettagli

Fondamenti di Elettronica, Sez.3

Fondamenti di Elettronica, Sez.3 Fondamenti di Elettronica, Sez.3 Alessandra Flammini alessandra.flammini@unibs.it Ufficio 24 Dip. Ingegneria dell Informazione 030-3715627 Lunedì 16:30-18:30 Fondamenti di elettronica, A. Flammini, AA2018-2019

Dettagli

DE e DTE: PROVA SCRITTA DEL 8 Giugno 2015

DE e DTE: PROVA SCRITTA DEL 8 Giugno 2015 DE e DTE: PROVA SCRITTA DEL 8 Giugno 2015 ESERCIZIO 1 (DE,DTE) Il transistore in gura è un n + pn + con base = 10 16 cm 3, τ n = 1 µs, µ n = 0.1 m 2 /Vs, S = 1mm 2. La resistenza R C = 1 kω, e V CC = 12

Dettagli

ELETTROTECNICA ED ELETTRONICA (C.I.) Modulo di Elettronica. Lezione 7. a.a

ELETTROTECNICA ED ELETTRONICA (C.I.) Modulo di Elettronica. Lezione 7. a.a 32586 - ELETTROTENIA ED ELETTRONIA (.I.) Modulo di Elettronica Lezione 7 a.a. 2010-2011 Bipolar Junction Transistor (BJT) Il BJT è realizzato come una coppia di giunzioni PN affiancate. Esistono due categorie

Dettagli

Tel: Laboratorio Micro (Ex Aula 3.2) Ricevimento: Giovedì

Tel: Laboratorio Micro (Ex Aula 3.2) Ricevimento: Giovedì DEIS University of Bologna Italy Progetto di circuiti analogici L-A Luca De Marchi Email: l.demarchi@unibo.it Tel: 051 20 93777 Laboratorio Micro (Ex Aula 3.2) Ricevimento: Giovedì 15.00-17.00 DEIS University

Dettagli

Amplificatori operazionali

Amplificatori operazionali Amplificatori operazionali Parte 4 www.die.ing.unibo.it/pers/mastri/didattica.htm (versione del 3-5-07) Amplificatori operazionali non ideali Il comportamento degli amplificatori operazionali reali si

Dettagli

DE e DTE: PROVA SCRITTA DEL 5 febbraio ESERCIZIO 1 (DTE) 1) Descrivere i processi e disegnare le maschere necessarie alla realizzazione

DE e DTE: PROVA SCRITTA DEL 5 febbraio ESERCIZIO 1 (DTE) 1) Descrivere i processi e disegnare le maschere necessarie alla realizzazione DE e DTE: PROVA SCRITTA DEL 5 febbraio 011 ESERCIZIO 1 (DTE) 1) Descrivere i processi e disegnare le maschere necessarie alla realizzazione del dispositivo di cui nella figura è mostrata la sezione; la

Dettagli

Curva caratteristica del transistor

Curva caratteristica del transistor Curva caratteristica del transistor 1 AMPLIFICATORI Si dice amplificatore un circuito in grado di aumentare l'ampiezza del segnale di ingresso. Un buon amplificatore deve essere lineare, nel senso che

Dettagli

Compito di Elettronica I 23/01/2002

Compito di Elettronica I 23/01/2002 Compito di Elettronica I 23/01/2002 VC VC R C C3 v s + > R E vo r i ut V C =3 V V C =5 V =100 KΩ =200 KΩ =300 KΩ R C =2.5 KΩ R E =1.3 KΩ =2.5 KΩ β=100 C π =10 pf C µ =1 pf ==C3=1 µf!"il punto di lavoro

Dettagli

POLITECNICO DI MILANO

POLITECNICO DI MILANO POLITECNICO DI MILANO www.polimi.it ELETTRONICA per ingegneria BIOMEDICA prof. Alberto TOSI Sommario Transistore MOSFET Struttura Equazioni caratteristiche Curve caratteristiche Funzionamento come amplificatore

Dettagli

Amplificatori Differenziali

Amplificatori Differenziali Amplificatori Differenziali nei simboli non si esplicitano gli alimentatori DC, cioè Normalmente i circuiti che realizzano l amplificatore differenziale e operazionale non contengono un nodo elettricamente

Dettagli

CAPITOLO 7 DISPOSITIVI INTEGRATI ANALOGICI

CAPITOLO 7 DISPOSITIVI INTEGRATI ANALOGICI 139 CAPTOLO 7 DSPOSTV NTEGRAT ANALOGC Negli amplificatori la necessità di ottenere elevate impedenze ed elevati guadagni impone spesso l utilizzo di resistenze di valore molto alto; inoltre l accoppiamento

Dettagli

ESERCIZIO Punto di riposo, R 1,R 2. Detta I C = I C1 = I C2 = 2.5mA e ipotizzando I B1 I C1,I B2 I C2, si ha

ESERCIZIO Punto di riposo, R 1,R 2. Detta I C = I C1 = I C2 = 2.5mA e ipotizzando I B1 I C1,I B2 I C2, si ha 1/16 ESERCIZIO 1 1.1 - Punto di riposo, R 1,R 2 Detta I C = I C1 = I C2 = 2.5mA e ipotizzando I B1 I C1,I B2 I C2, si ha V CE1 = V R E I E1 I E2 ) V 2R E I C = 12.0 V. 1) Nel punto di riposo si ha I B1

Dettagli

Il MOSFET (Metal Oxide Semiconductor Field Effect Transistor).

Il MOSFET (Metal Oxide Semiconductor Field Effect Transistor). Il MOSFET (Metal Oxide Semiconductor Field Effect Transistor). a figura 1 mostra la sezione di una porzione di fetta di silicio in corrispondenza di un dispositio MOSFET a canale n. In condizioni di funzionamento

Dettagli

Soluzione del compito di Elettronica e di Elettronica Digitale del 15 gennaio 2003

Soluzione del compito di Elettronica e di Elettronica Digitale del 15 gennaio 2003 Soluzione del compito di Elettronica e di Elettronica Digitale del 5 gennaio 2003 Esercizio Calcolo di R 5, R 6 e del punto di lavoro dei transistori Per l analisi del punto di riposo prendiamo in considerazione

Dettagli

Amplificatori operazionali

Amplificatori operazionali mplificatori operazionali Parte 5 Circuiti con operazionali e BJT www.die.ing.unibo.it/pers/mastri/didattica.htm (versione del 21-5-2019) 53-BJT-buffer.asc Impiego di un transistor per aumentare la massima

Dettagli

DE e DTE: PROVA SCRITTA DEL 28 Gennaio 2016 ESERCIZIO 1 (DE,DTE) Un transistore bipolare n + pn (N Abase = cm 3, N Dcollettore = cm 3, µ

DE e DTE: PROVA SCRITTA DEL 28 Gennaio 2016 ESERCIZIO 1 (DE,DTE) Un transistore bipolare n + pn (N Abase = cm 3, N Dcollettore = cm 3, µ DE e DTE: PROA SCRITTA DEL 28 Gennaio 2016 ESERCIZIO 1 (DE,DTE) Un transistore bipolare n + pn (N Abase = 10 16 cm 3, N Dcollettore = 10 15 cm 3, µ n = 0.1 m 2 /s, τ n = 10 6, S = 1 mm 2 ) è polarizzato

Dettagli

Laboratorio di Elettronica II. Esperienza 3. Progetto di un amplificatore con BJT

Laboratorio di Elettronica II. Esperienza 3. Progetto di un amplificatore con BJT Laboratorio di Elettronica II Esperienza 3 Progetto di un amplificatore con BJT 1 Attività Progetto e verifica al simulatore di un amplificatore, date le specifiche funzionali desiderate: Progetto preliminare

Dettagli

Capitolo VI. Risposta in frequenza

Capitolo VI. Risposta in frequenza Capitolo VI Risposta in frequenza Nel capitolo I è stata brevemente introdotta la risposta in frequenza di un amplificatore (o, meglio, di reti a singola costante di tempo). Si è anche accennato all effetto

Dettagli

Lezione A3 - DDC

Lezione A3 - DDC Elettronica per le telecomunicazioni Unità A: Amplificatori, oscillatori, mixer Lezione A.3 Punto di funzionamento, guadagno e banda distorsioni, rumore, 1 Contenuto dell unità A Lezione A3 Informazioni

Dettagli

Corso di ELETTRONICA II modulo. Ingegneria Clinica, Ingegneria Biomedica e Ingegneria dei Sistemi. Prof. Domenico Caputo. Esame del 19 febbraio 2009

Corso di ELETTRONICA II modulo. Ingegneria Clinica, Ingegneria Biomedica e Ingegneria dei Sistemi. Prof. Domenico Caputo. Esame del 19 febbraio 2009 Esame del 19 febbraio 2009 Nel circuito di figura Is è un generatore di corrente con l andamento temporale riportato nel grafico. Determinare l'evoluzione temporale della V out e disegnarne il grafico

Dettagli

Elettronica dei Sistemi Digitali Le porte logiche CMOS

Elettronica dei Sistemi Digitali Le porte logiche CMOS Elettronica dei Sistemi Digitali Le porte logiche CMOS Valentino Liberali Dipartimento di Tecnologie dell Informazione Università di Milano, 26013 Crema e-mail: liberali@dti.unimi.it http://www.dti.unimi.it/

Dettagli

A Laurea in Fisica - Anno Accademico

A Laurea in Fisica - Anno Accademico A Laurea in Fisica - Anno Accademico 2018-2019 30 ottobre 2018 Primo esonero del Lab di Seg. e Sistemi Nome : ognome : Matricola : anale/prof : Gruppo Lab.: iportate su questo foglio le risposte numeriche

Dettagli

14 Giugno 2006 Prova scritta di Circuiti Integrati Analogici (tempo a disposizione 90 min)

14 Giugno 2006 Prova scritta di Circuiti Integrati Analogici (tempo a disposizione 90 min) 14 Giugno 2006 M3 M4 M2 M1 R Nel circuito in figura determinare: 1) trascurando l effetto di modulazione della lunghezza di canale, il legame tra la corrente che scorre nella resistenza R e i parametri

Dettagli

Esercitazione n 3: Amplificatore a base comune

Esercitazione n 3: Amplificatore a base comune Esercitazione n 3: Amplificatore a base comune 1) Per il circuito in Fig. 1 determinare il valore delle resistenze di polarizzazione affinché si abbia: I C = 0,2 ma; V C = 3 V; V E = 1,9 V. Sia noto che:

Dettagli

Esercitazione 4. Biagio Provinzano Maggio 2005

Esercitazione 4. Biagio Provinzano Maggio 2005 Esercitazione Biagio Provinzano Maggio 2005 Si consideri la rete riportata in Figura, con i seguenti dati: f T =0MHz (operazionale compensato internamente), R =2kΩ, R 2 =9kΩ, R F =9kΩ. I generatori i(t)

Dettagli

Michele Scarpiniti. L'Amplificatore Operazionale

Michele Scarpiniti. L'Amplificatore Operazionale Michele Scarpiniti L'Amplificatore Operazionale MICHELE SCARPINITI L Amplificatore Operazionale Versione 1.0 Dipartimento DIET Università di Roma La Sapienza via Eudossiana 18, 00184 Roma L AMPLIFICATORE

Dettagli

MOS Field-Effect Transistors (MOSFETs)

MOS Field-Effect Transistors (MOSFETs) MOS Field-Effect Transistors (MOSFETs) A. Ranieri Laboratorio di Elettronica A.A. 2009-2010 1 Struttura fisica di un transistore NMOS ad accrescimento. Tipicamente L = 0.1 a 3 m, W = 0.2 a 100 m e lo spessore

Dettagli

CAP.4 TRANSISTOR BIPOLARE (BJT): AMPLIFICATORE E INTERRUTTORE

CAP.4 TRANSISTOR BIPOLARE (BJT): AMPLIFICATORE E INTERRUTTORE CAP.4 TRANSISTOR BIPOLARE (BJT): AMPLIFICATORE E INTERRUTTORE 1. Transistore bipolare a giunzione (BJT). 2. Retta di carico e punto di lavoro 3. Modelli DC a largo segnale. 4. Circuiti di polarizzazione.

Dettagli

DE e DTE: PROVA SCRITTA DEL 29 Giugno 2015

DE e DTE: PROVA SCRITTA DEL 29 Giugno 2015 DE e DTE: PROVA SCRITTA DEL 29 Giugno 2015 ESERCIZIO 1 (DE,DTE) Un transistore (emettitore n + ) è caratterizzato da base = 5 10 15 cm 3, lunghezza metallurgica W met = 4 µm, τ n = 1 µs, µ n = 0.1 m 2

Dettagli

Circuiti Integrati Analogici

Circuiti Integrati Analogici Circuiti Integrati Analogici prof.irace a.a.007/008 Circuiti Integrati Analogici Prof. Irace a.a.007/008 1 - Il MOSFET come interruttore In figura è riportato un transistore MOS a canale n Sappiamo che

Dettagli

5. Amplificatori. Corso di Fondamenti di Elettronica Fausto Fantini a.a

5. Amplificatori. Corso di Fondamenti di Elettronica Fausto Fantini a.a 5. Amplificatori Corso di Fondamenti di Elettronica Fausto Fantini a.a. 2010-2011 Amplificazione Amplificare un segnale significa produrre un segnale in uscita (output) con la stessa forma d onda del segnale

Dettagli

Fondamenti di Elettronica, Sez.4

Fondamenti di Elettronica, Sez.4 Fondamenti di Elettronica, Sez.4 Alessandra Flammini alessandra.flammini@unibs.it Ufficio 24 Dip. Ingegneria dell Informazione 030-3715627 Lunedì 16:30-18:30 Fondamenti di elettronica, A. Flammini, AA2018-2019

Dettagli

Progettazione Analogica e Blocchi Base

Progettazione Analogica e Blocchi Base Progettazione Analogica e Blocchi Base Lucidi del Corso di Circuiti Integrati Università di Cagliari Dipartimento di Ingegneria Elettrica ed Elettronica Laboratorio di Elettronica (EOLAB) Blocchi base

Dettagli

Elettronica Inverter con transistore MOS; tecnologia CMOS e porte logiche combinatorie CMOS

Elettronica Inverter con transistore MOS; tecnologia CMOS e porte logiche combinatorie CMOS Elettronica Inverter con transistore MOS; tecnologia CMOS e porte logiche combinatorie CMOS Valentino Liberali Dipartimento di Fisica Università degli Studi di Milano valentino.liberali@unimi.it Elettronica

Dettagli

DE e DTE: PROVA SCRITTA DEL 23 Giugno 2012

DE e DTE: PROVA SCRITTA DEL 23 Giugno 2012 DE e DTE: PROA SCRITTA DEL 23 Giugno 2012 ESERCIZIO 1 (DE,DTE) Un transistore bipolare npn (N D emettitore = 10 16 cm 3, N A base = 10 16 cm 3, N D collettore = 10 15 cm 3, τ n = τ p = 10 6 s, µ n = 1000

Dettagli

DE e DTE: PROVA SCRITTA DEL 14 Febbraio 2015

DE e DTE: PROVA SCRITTA DEL 14 Febbraio 2015 DE e DTE: PROVA SCRTTA DEL 14 Febbraio 2015 ESERCZO 1 (DE,DTE) due diodi in gura sono uno a base lunga (diodo A: p + n, N D = 5 10 15 cm 3, τ n = τ p = 1 µs, µ p = 0.04 m 2 /Vs, S = 1mm 2 ) e uno a base

Dettagli

DE e DTE: PROVA SCRITTA DEL 16 Luglio 2012

DE e DTE: PROVA SCRITTA DEL 16 Luglio 2012 000000000 111111111 000000000 111111111 DE e DTE: PROA SCRITTA DEL 16 Luglio 01 ESERCIZIO 1 (DE,DTE) Nella figura è mostrato lo schema di massima di un transistore n-mos (condensatore MOS ideale), con

Dettagli

COMPITO DI ELETTRONICA I

COMPITO DI ELETTRONICA I 22-01-2007 V DD M3 M4 R 2 C1 Q2 < C2 v O > r i Q1 R 3 r o R L i s + R 1 V DD =3 V R 1 =3 kω R 2 =2 MΩ R 3 = 15 kω R L =1 kω β=100 K p ==µ p C ox /2=20 µa/v 2 W/L=40/2 V Tp =-1 V C π = C GS =10 pf C µ =

Dettagli

Elettronica digitale

Elettronica digitale Elettronica digitale Componenti per circuiti logici (Cap. 3, App. A) Dispositivi elettronici per circuiti logici Diodo Transistore bipolare Transistore a effetto di campo Bipoli Componenti a 2 terminali

Dettagli

Esercitazione del 21 Maggio 2008

Esercitazione del 21 Maggio 2008 Esercitazione del 1 Maggio 008 Es. 1 - pmos in configurazione drain comune 1) Con riferimento al circuito in Fig. 1, determinare le regioni di funzionamento del transistore Mp nel piano V out (V in ).

Dettagli

CORSO DI ELETTRONICA DELLE TELECOMUNICAZIONI

CORSO DI ELETTRONICA DELLE TELECOMUNICAZIONI CORSO DI EETTRONICA DEE TEECOMUNICAZIONI 8 UGIO 004 DOMANDE DI TEORIA ) Per descrivere le prestazioni di rumore di un circuito pilotato con una data impedenza (ad esempio 50Ω) è sufficiente un parametro,

Dettagli

Nome: Fabio Castellini Sesta esperienza Data: 19/05/2015 I FILTRI PASSIVI

Nome: Fabio Castellini Sesta esperienza Data: 19/05/2015 I FILTRI PASSIVI Nome: Fabio Castellini Sesta esperienza Data: 19/05/2015 I FILTRI PASSIVI Un filtro passivo in elettronica ha il compito di elaborare un determinato segnale in ingresso. Ad esempio una sua funzione può

Dettagli

Amplificatori Differenziali

Amplificatori Differenziali Amplificatori Differenziali nei simboli non si esplicitano gli alimentatori DC, cioè Normalmente i circuiti che realizzano l amplificatore differenziale e operazionale non contengono un nodo elettricamente

Dettagli

Microelettronica Indice generale

Microelettronica Indice generale Microelettronica Indice generale Prefazione Rigraziamenti dell Editore Guida alla lettura Parte I Elettronica dello stato solido e dispositivi XV XVII XVIII Capitolo 1 Introduzione all elettronica 1 1.1

Dettagli

DE e DTE: PROVA SCRITTA DEL 10 Settembre 2012

DE e DTE: PROVA SCRITTA DEL 10 Settembre 2012 DE e DTE: PROVA SCRITTA DEL 10 Settembre 2012 ESERCIZIO 1 (DE,DTE) Una giunzione pn è polarizzata con V = 0.5 V. I dati della giunzione sono: N D = 10 16 cm 3, N A = 10 15 cm 3, µ n = 1100 cm 2 /Vs, µ

Dettagli

PROVA SCRITTA di DISPOSITIVI ELETTRONICI del 3 Luglio 2019

PROVA SCRITTA di DISPOSITIVI ELETTRONICI del 3 Luglio 2019 PROVA SCRITTA di DISPOSITIVI ELETTRONICI del 3 Luglio 2019 ESERCIZIO 1 Un diodo p + n è a base corta: W = 4 µm, N D = 10 16 cm 3, µ n = 0.1 m 2 /Vs, µ p = 0.04 m 2 /Vs, τ p = τ n = 10 6 s, S=1 mm 2. 1)

Dettagli

I transistor in alta frequenza

I transistor in alta frequenza Capitolo 16 I transistor in alta I modelli lineari per i dispositivi a due porte descritti al par. 6.4 sono astrazioni matematiche, analoghe ai teoremi di Thèvenin e Norton. Questi modelli sono stati utilizzati

Dettagli

Capitolo IV. Transistori ad effetto di campo

Capitolo IV. Transistori ad effetto di campo Capitolo IV Transistori ad effetto di campo In questo capitolo si tratteranno i transistori ad effetto di campo (FET). Come nel caso dei BJT la tensione tra due terminali del FET controlla la corrente

Dettagli

PROVA SCRITTA di DISPOSITIVI ELETTRONICI del 13 Giugno 2018

PROVA SCRITTA di DISPOSITIVI ELETTRONICI del 13 Giugno 2018 POVA SCITTA di DISPOSITIVI ELETTONICI del 13 Giugno 2018 ESECIZIO 1 In gura è rappresentato un circuito, basato su un transistore bipolare n + pn +, = 2 kω. Per il transistore abbiamo N Abase = 10 16 cm

Dettagli

{ v c 0 =A B. v c. t =B

{ v c 0 =A B. v c. t =B Circuiti RLC v c t=ae t / B con τ=rc e { v c0=ab v c t =B Diodo La corrente che attraversa un diodo quando questo è attivo è i=i s e v /nv T n ha un valore tra e. Dipende dalla struttura fisica del diodo.

Dettagli

Fondamenti di Elettronica Ing. AUTOMATICA e INFORMATICA - AA 2010/ Appello 09 Febbraio 2012

Fondamenti di Elettronica Ing. AUTOMATICA e INFORMATICA - AA 2010/ Appello 09 Febbraio 2012 Fondamenti di Elettronica Ing. AUTOMATICA e INFORMATICA - AA 2010/2011 3 Appello 09 Febbraio 2012 Indicare chiaramente la domanda a cui si sta rispondendo. Ad esempio 1a) Esercizio 1. R 1 = 20 kω, R 2

Dettagli

Dispositivi elettronici Esperienze di laboratorio

Dispositivi elettronici Esperienze di laboratorio Dispositivi elettronici Esperienze di laboratorio Universitá degli Studi di L Aquila Massimo Lucresi Luigi Pilolli Mariano Spadaccini maggio 2002 Esperienza n. 1 Analisi della risposta in frequenza di

Dettagli

Appunti di ELETTRONICA Amplificatore operazionale (amp. Op oppure A. O.) - +

Appunti di ELETTRONICA Amplificatore operazionale (amp. Op oppure A. O.) - + Appunti di ELETTRONICA Amplificatore operazionale (amp. Op oppure A. O.) - + µa741 Cos'è l'amplificazione: Amplificare un segnale significa aumentarne il livello e di conseguenza la potenza. Il fattore

Dettagli

PROVA SCRITTA di DISPOSITIVI ELETTRONICI del 30 Giugno 2016

PROVA SCRITTA di DISPOSITIVI ELETTRONICI del 30 Giugno 2016 PROVA SCRITTA di DISPOSITIVI ELETTRONICI del 30 Giugno 2016 ESERCIZIO 1 Considerare delle giunzioni p + n, con N D = 10 15 cm 3, µ n = 0.12 m 2 /Vs, S=1 mm 2. Il campo elettrico di break- down a valanga

Dettagli

Indice. Cap. 1 Il progetto dei sistemi elettronici pag. 1

Indice. Cap. 1 Il progetto dei sistemi elettronici pag. 1 Indice Cap. 1 Il progetto dei sistemi elettronici pag. 1 1.1 Oggetto dello studio 1 1.2 Concezione, progetto e produzione del sistema elettronico 5 1.3 Il circuito di interfaccia di ingresso 13 1.4 Il

Dettagli

Out. Gnd. ELETTRONICA GENERALE, FONDAMENTI DI ELETTRONICA Appello d esame del 27/10/2017

Out. Gnd. ELETTRONICA GENERALE, FONDAMENTI DI ELETTRONICA Appello d esame del 27/10/2017 Cognome Nome Mat. Data / / 1) La barriera di potenziale (tensione V0 di built-in) in un diodo dipende da... ( )a corrente applicata al diodo ( )b tensione applicata al diodo ( )c temperatura 2) In un transistore

Dettagli

Elaborazione analogica (1)

Elaborazione analogica (1) Elaborazione analogica (1) Alimentatore bilanciato Amplificatore operazionale Configurazioni di base Amplificatori differenziali Amplificatori differenziali per strumentazione Misura di differenza di potenziale

Dettagli

Questa parte tratta le problematiche del pilotaggio low-side di carichi di potenza: Pilotaggio low-side con MOS. Pilotaggio low-side con BJT

Questa parte tratta le problematiche del pilotaggio low-side di carichi di potenza: Pilotaggio low-side con MOS. Pilotaggio low-side con BJT Interruttori allo stato solido 1 Questa parte tratta le problematiche del pilotaggio low-side di carichi di potenza: con MOS con BJT Velocità di commutazione MOS Velocità di commutazione BJT 2 2003 Politecnico

Dettagli

Amplificatori alle alte frequenze

Amplificatori alle alte frequenze mplificatori alle alte frequenze lle alte frequenze, le capacità parassite dei dispositivi non sono più trascurabili ed esse provocano una diminuzione più o meno rapida del guadagno; noi studieremo, a

Dettagli

Laboratorio di Elettronica II. Esperienza 3. Progetto di un amplificatore con BJT

Laboratorio di Elettronica II. Esperienza 3. Progetto di un amplificatore con BJT Laboratorio di Elettronica II Esperienza 3 Progetto di un amplificatore con BJT 1 Attività Progetto e verifica al simulatore di un amplificatore, date le specifiche funzionali desiderate: Progetto preliminare

Dettagli

PROVA SCRITTA di DISPOSITIVI ELETTRONICI del 12 Giugno 2019

PROVA SCRITTA di DISPOSITIVI ELETTRONICI del 12 Giugno 2019 PROVA SCRITTA di DISPOSITIVI ELETTRONICI del 12 Giugno 2019 ESERCIZIO 1 In gura è rappresentato, a sinistra, un dispositivo costituito da una giunzione p + n e da un contatto metallico sulla parte n. Per

Dettagli

PROVA SCRITTA DI CIRCUITI ELETTRONICI ELEMENTARI (D.M. 270/04) 27/01/2017 [A] PROVA SCRITTA DI FONDAMENTI DI ELETTRONICA (D.M

PROVA SCRITTA DI CIRCUITI ELETTRONICI ELEMENTARI (D.M. 270/04) 27/01/2017 [A] PROVA SCRITTA DI FONDAMENTI DI ELETTRONICA (D.M PROVA SCRITTA DI CIRCUITI ELETTRONICI ELEMENTARI (D.M. 270/04) 27/01/2017 [A] PROVA SCRITTA DI FONDAMENTI DI ELETTRONICA (D.M. 270/04) 27/01/2017 [B] ESERCIZIO 1 [A] [B] DATI: β = 100; k = 4 ma/v 2 ; VTH

Dettagli

Amplificatori a FET. Amplificatore a source comune (C.S.) Vdd. Rd R1. C2 out C Rg in. out

Amplificatori a FET. Amplificatore a source comune (C.S.) Vdd. Rd R1. C2 out C Rg in. out Amplificatori a FET Per realizzare un amplificatore a FET, il dispositivo va polarizzato regione attiva (cioè nella regione a corrente costante, detta anche zona di saturazione della corrente). Le reti

Dettagli

Amplificatori. Gli amplificatori. Enzo Gandolfi. Laboratorio di Fisica dei dispositivi elettronici III modulo 1

Amplificatori. Gli amplificatori. Enzo Gandolfi. Laboratorio di Fisica dei dispositivi elettronici III modulo 1 Gli amplificatori Enzo Gandolfi Laboratorio di Fisica dei dispositivi elettronici III modulo 1 Amplificatore Un amplificatore può essere visto come una scatola nera collegata ad un alimentatore che riceve

Dettagli

Coppia differenziale MOS con carico passivo

Coppia differenziale MOS con carico passivo Coppia differenziale MOS con carico passivo tensione differenziale v ID =v G1 v G2 e di modo comune v CM = v G1+v G2 2 G. Martines 1 Coppia differenziale MOS con carico passivo Funzionamento con segnale

Dettagli

Banda passante di un amplificatore

Banda passante di un amplificatore Banda passante di un amplificatore Amplificatore ideale da 40 db con cella RC passa basso e passa alto. La cella passa basso determina la fequenza di taglio superiore fh, mentre la cella passa alto determina

Dettagli

ELETTRONICA II. Caratteristiche I C,V CE. Transistori in commutazione - 2 I C. Prof. Dante Del Corso - Politecnico di Torino

ELETTRONICA II. Caratteristiche I C,V CE. Transistori in commutazione - 2 I C. Prof. Dante Del Corso - Politecnico di Torino ELETTRONICA II Caratteristiche I C,V CE Prof. Dante Del Corso - Politecnico di Torino I C zona attiva Parte A: Transistori in commutazione Lezione n. 2 - A - 2: Transistori BJT in commutazione zona di

Dettagli