PROVA SCRITTA di DISPOSITIVI ELETTRONICI del 10 Giugno 2016

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "PROVA SCRITTA di DISPOSITIVI ELETTRONICI del 10 Giugno 2016"

Transcript

1 PROVA SCRITTA di DISPOSITIVI ELETTRONICI del 0 Giugno 206 ESERCIZIO Il transistore bipolare npn nelle gure ha N Demettitore = N Dcollettore = 0 7 cm 3, N Abase = 0 6 cm 3, µ n = 0. m 2 /Vs, τ n = τ p = 0 6, µ p = m 2 /Vs, S = mm 2. Le correnti dovute all'iniezione di lacune dalla base verso l'emettitore ed il collettore (in polarizzazione diretta) non sono trascurabili; sia l'emettitore che il collettore sono lunghi. Nel circuito a sinistra, con V BE = 0.5 V e V CE = 5 V, è stata misurata I C = ma. + V BE V CE V BE V CE - ) Calcolare la lunghezza eettiva della base e le correnti ai terminali.[4] 2) Calcolare i parametri γ E, α F e β F del transistore e la lunghezza metallurgica della base.[3] 3) Nel circuito a destra è stata misurata una V CE pari a 0. V, per V BE = 0.5 V. Determinare il valore della corrente di collettore (si può assumere la lunghezza eettiva della base coincidente con quella metallurgica).[3] ESERCIZIO 2 Un transistore nmos ha il gate di tipo p +, N A = 0 6 cm 3, t ox = 30 nm, µ n = 800 cm 2 /Vs, =0µm, L=0 µm, ed è polarizzato con V GS = 5 V. Per problemi costruttivi, all'interfaccia ossido- silicio sono presenti stati interfacciali, con una densità pari a 2 0 cm 2 (ogni stato ha una carica elementare positiva +q, calcolare Q ox ). ) Per V DS = V DS Sat determinare la corrente I DS, l'andamento (espressione) del potenziale V (y) nel canale e della carica mobile Q n (y). [3] 2) Calcolare il campo elettrico nell'ossido in prossimità del Source (y = 0) ed in prossimità del Drain (y = L) (considerare Q ox!). [4] 3) Si determini l'espressione del campo elettrico nell'ossido in funzione di y (come varia in funzione di x, tra 0 e t ox?). Calcolare inoltre il campo elettrico nell'ossido per y = L/2. [3] ESERCIZIO 3 Nel circuito in gura, M e M 2 sono transistori nmos polysilicon gate, con N A = 0 6 cm 3, µ n = 0.08 m 2 /Vs. Insieme ai transistori M e M 2 sono stati fabbricati dei dispositivi di test (stessa V T H e C ox )

2 con /L =, dei quali è stata misurata la resistenza di canale per V DS piccole. La resistenza è risultata pari a R can = 363 Ω per V GS = 3 V, e R can = 806 Ω per V GS = 5 V. ) Determinare la tensione di soglia e lo spessore dell'ossido dei transistori.[4] R 0 k Rd 2 k Vdd 2 V C M M2 Vs R2 20 k Vz Rs 600 Vu 2) Supponendo il diodo zener ideale, con V Z = 5 V, determinare il valore di /L in maniera tale da avere I DS =.94 ma (arrotondare al valore intero). Determinare il punto di riposo dei transistori ( /L = 2 /L 2 ) ed il loro guadagno g m.[4] 3) Il diodo zener non è ideale, e può essere schematizzato con un modello lineare a tratti con V Z = 5 V e R Z = 80 Ω per V > V Z. Determinare come si modica il punto di riposo di M.[2]

3 ESERCIZIO Il transistore bipolare npn nelle gure ha N Demettitore = N Dcollettore = 0 7 cm 3, N Abase = 0 6 cm 3, µ n = 0. m 2 /Vs, τ n = τ p = 0 6, µ p = m 2 /Vs, S = mm 2. Le correnti dovute all'iniezione di lacune dalla base verso l'emettitore ed il collettore (in polarizzazione diretta) non sono trascurabili; sia l'emettitore che il collettore sono lunghi. Nel circuito a sinistra, con V BE = 0.5 V e V CE = 5 V, è stata misurata I C = ma. + V BE V CE V BE V CE - ) Calcolare la lunghezza eettiva della base e le correnti ai terminali.[4] 2) Calcolare i parametri γ E, α F e β F del transistore e la lunghezza metallurgica della base.[3] 3) Nel circuito a destra è stata misurata una V CE pari a 0. V, per V BE = 0.5 V. Determinare il valore della corrente di collettore (si può assumere la lunghezza eettiva della base coincidente con quella metallurgica).[3] SOLUZIONE ) Il transistore è in zona attiva diretta, poichè V BE = 0.5 V e quindi V BC = = 4.5 V. Il prolo di portatori minoritari (elettroni) in base è quindi triangolare. La corrente I C (entrante) è dovuta alla carica in base, e si può scrivere come ( = eff ): Calcoliamo: I C = qsd n δn(0) () D n = kt q µ n = δn(0) = otteniamo subito: n 2 i N Abase ( ) e V BE V T = m 3 = qsd n δn(0) I C = 2.26 µm (2)

4 Calcoliamo la corrente I B, che sarà dovuta alla carica iniettata in base (I Bn ) e all'iniezione di lacune verso l'emettitore (I Bp = I Ep ). Entrambe le componenti sono entranti nella base. Avremo: Calcoliamo: I Bn = Q B τ n D p = kt q µ p = m 2 /s L p = D p τ p = 34.5 µm I Bp = I Ep = qs D p L p = qsδn(0) 2τ n = 0.99 µa (3) n 2 i N Demettitore ( ) e V BE V T = 2.98 µa Quindi I B = I Bn + I Bp = 3.97 µa. Avremo ovviamente I E uscente e pari (in valore assoluto) alla somma I E = I B + I C = ma. 2) Avremo (I En I C ): γ E = I En I En + I Ep α F = I C I E = β F = I C I B = 252 Calcoliamo la regione di svuotamento base-collettore, e trascuriamo la regione di svuotamento base-emettitore poichè la giunzione è polarizzata in diretta: V 0BC = V T ln N AbaseN Dcollettore n 2 i BC = ( 2ɛS + q N Abase X BC BC 9/0 = 0.78 µm = V N Dcollettore metallurgica = effettiva + X BC = 3.04 µm ) (V 0 + V CB ) = 0.87 µm 3) Avremo che I C avrà una componente I Cn dovuta alla carica in base e una componente I Cp dovuta all'iniezione di lacune dalla base verso il

5 collettore. I Cn può essere calcolata dalla derivata del prolo (questa volta = metallurgica ). Avremo che la giunzione base-collettore è polarizzata in diretta con V BC = V BE V CE = = 0.4 V. Per I Cp avremo: δn(0) δn( ) I Cn = qsd n n 2 ( ) i δn(0) = e V BE V T = m 3 δn( ) = N Abase n 2 i N Abase I Cn = ma I Cp = qs D p L p n 2 i N Dcollettore ( ) e V BC V T = m 3 ( ) e V BC V T = 62 mathrmna (4) Quindi l'iniezione di corrente verso il collettore dovuta alle lacune è molto piccola, I C I Cn = 0.74 ma. ESERCIZIO 2 Un transistore nmos ha il gate di tipo p +, N A = 0 6 cm 3, t ox = 30 nm, µ n = 800 cm 2 /Vs, =0µm, L=0 µm, ed è polarizzato con V GS = 5 V. Per problemi costruttivi, all'interfaccia ossido- silicio sono presenti stati interfacciali, con una densità pari a 2 0 cm 2 (ogni stato ha una carica elementare positiva +q, calcolare Q ox ). ) Per V DS = V DS Sat determinare la corrente I DS, l'andamento (espressione) del potenziale V (y) nel canale e della carica mobile Q n (y). [3] 2) Calcolare il campo elettrico nell'ossido in prossimità del Source (y = 0) ed in prossimità del Drain (y = L) (considerare Q ox!). [4] 3) Si determini l'espressione del campo elettrico nell'ossido in funzione di y (come varia in funzione di x, tra 0 e t ox?). Calcolare inoltre il campo elettrico nell'ossido per y = L/2. [3] SOLUZIONE 2

6 ) Calcoliamo la tensione di soglia. Gli stati interfacciali generano una carica nell'ossido pari a Q ox = q0 5 = C/m 2. Quindi: ψ B = kt ( ) q ln NA = n i V C ox = = t ox F/m 2 Φ MS = E g 2q ψ B = 0.93 V 2ɛs qn A 2ψ B V T H = + 2ψ B + Φ MS =.03 C ox C ox Per V DS = V DS Sat = V GS V T H = 3.97 V la corrente è quella di saturazione: I DS = µ nc ox 2 L V 2 DS Sat = 0.72 ma (5) L'andamento del potenziale è stato ottenuto a lezione, e si può ricavare risolvendo l'equazione: I DS Sat = µ n C ox y [ (V GS V T H ) V (y) V (y)2 2 ] V (6) I conti sono svolti sulle dispense del corso: ( V (y) = (V GS V T H ) y ) L (7) La carica mobile nel canale, in funzione di y, risulta dunque: Q n (y) = C ox (V GS V T H V (y)) (8) 2) Il campo elettrico nell'ossido è costante con x ( t ox < x < 0), ed è determinato dalla carica nel silicio e dalla carica interfacciale dovuta agli stati nell'ossido: E ox = Q Si (9) La carica nel silicio si può scrivere come Q Si = Q + Q n (y): E ox (y) = Q + Q n (y) = 2ɛs qn A 2ψ B Q n(y) (0)

7 Per y = 0 avremo Q n = C ox (V GS V T H ) = C/m 2, e quindi E(0) = 37 MV/m. Per y = L Q n (y) = 0 e quindi: E ox (y) = 2ɛs qn A 2ψ B = 4.7 MV/m () 3) Basta sostituire l'espressione di Q n (y) nell'espressione del campo elettrico dell'ossido (ricordare che Q n (y) è negativa),quindi bisogna cambiare di segno): E ox (y) = E ox (y) = 2ɛs qn A 2ψ B 2ɛs qn A 2ψ B + C ox(v GS V T H V (y)) + (V GS V T H V (y)) t ox Per y = L/2 avremo V ( y) =.6 V e quindi E ox (L/2) = 98 MV/m. ESERCIZIO 3 Nel circuito in gura, M e M 2 sono transistori nmos polysilicon gate, con N A = 0 6 cm 3, µ n = 0.08 m 2 /Vs. Insieme ai transistori M e M 2 sono stati fabbricati dei dispositivi di test (stessa V T H e C ox ) con /L =, dei quali è stata misurata la resistenza di canale per V DS piccole. La resistenza è risultata pari a R can = 363 Ω per V GS = 3 V, e R can = 806 Ω per V GS = 5 V. ) Determinare la tensione di soglia e lo spessore dell'ossido dei transistori.[4] 2) Supponendo il diodo zener ideale, con V Z = 5 V, determinare il valore di /L in maniera tale da avere I DS =.94 ma (arrotondare al valore intero). Determinare il punto di riposo dei transistori ( /L = 2 /L 2 ) ed il loro guadagno g m.[4] 3) Il diodo zener non è ideale, e può essere schematizzato con un modello lineare a tratti con V Z = 5 V e R Z = 80 Ω per V > V Z. Determinare come si modica il punto di riposo di M.[2] SOLUZIONE 3

8 R 0 k Rd 2 k Vdd 2 V C M M2 Vs R2 20 k Vz Rs 600 Vu ) Per piccoli valori di V DS siamo in regime lineare, per cui (/L = ): I DS = µ n C ox (V GS V T H ) V DS V DS = R can = I DS µ n C ox (V GS V T H ) Vediamo che ci sono due incognite da determinare, C ox e V T H. Possiamo scrivere: µ n C ox (3 V T H ) µ n C ox (5 V T H ) = 363 = 806 Facendo il rapporto otteniamo: (5 V T H ) (3 V T H ) = 2 5 V T H = 6 2V T H V T H = V

9 La capacità può essere ricavata da una delle due relazioni: Quindi: µ n C ox (3 V T H ) C ox = = 363 µ n 363 (3 V T H ) C ox = C ox = t ox t ox = C ox = 20 nm 2) Per il transistore M avremo V G = V DD R 2 R +R 2 = 8 V, V S = V Z = 5 V, V GS = 8 5 = 3V. Supponendo il MOS in saturazione abbiamo: I DS = µ nc ox 2 L (V GS V T H ) 2 = 2 ma L = I DS µ nc ox (V 2 GS V T H ) 2 = 7.0 V DS = V DD R D I DS V Z = 3.2 V Quindi V DS > V GS V T H = 3 V, il transistore è correttamente polarizzato in saturazione. Per il MOS 2 avremo invece V G2 = V D = V DD R D I DS = 8.2 V. Per calcolare I DS dobbiamo impostare l'equazione in I DS : I DS = µ nc ox 2 L (V G R S I DS V T H ) 2 (2) che ha come soluzione accettabile I DS = 6 ma. Avremo che V DS2 = V DD R S I DS = 8.4 V > V GS2 V T H = = 3.4 V, quindi anche il secondo MOS è correttamente polarizzato. I g m si calcolano come: g m = µ n C ox L (V GS V T H ) = g m2 = µ n C ox L (V GS2 V T H ) =

10 Avremo dunque per il MOS : I DS =.94 ma V GS = 3 V V DS = 3.2 V e per il MOS 2: I DS2 = 6 ma V GS2 = 4.4 V V DS2 = 8.4 V 3) Se lo zener non è ideale, bisogna considerare la resistenza R Z in serie al generatore V Z. La corrente I DS può essere scritta come: I DS = µ nc ox 2 L (V G R Z I DS V Z V T H ) 2 (3) che ha come soluzione accettabile.78 ma. Quindi la corrente del primo transistore si modica di poco. Si può vericare che anche per il secondo transistore la corrente I DS subisce solo una piccola modica.

DE e DTE: PROVA SCRITTA DEL 16 Febbraio 2016

DE e DTE: PROVA SCRITTA DEL 16 Febbraio 2016 DE e DTE: PROVA SCRITTA DEL 16 Febbraio 2016 ESERCIZIO 1 (DE,DTE) Un transistore bipolare npn (N Demettitore = N Abase = 10 16 cm 3, N Dcollettore = 5 10 15 cm 3, µ n = 0.1 m 2 /Vs, τ n = τ p = 10 6, µ

Dettagli

PROVA SCRITTA di DISPOSITIVI ELETTRONICI del 19 Settembre 2018

PROVA SCRITTA di DISPOSITIVI ELETTRONICI del 19 Settembre 2018 PROVA SCRITTA di DISPOSITIVI ELETTRONICI del 19 Settembre 2018 ESERCIZIO 1 Nel circuito in gura (V CC = 8 V, R = 1 kω), il transistore npn ha N Demettitore = 10 17 cm 3 (emettitore lungo), N Abase = 10

Dettagli

DE e DTE: PROVA SCRITTA DEL 16 Settembre 2014

DE e DTE: PROVA SCRITTA DEL 16 Settembre 2014 DE e DTE: PROVA SCRITTA DEL 16 Settembre 2014 ESERCIZIO 1 (DE,DTE) Un transistore n + pn (N A = N D = 10 16 cm 3, µ n = 0.1 m 2 /Vs, µ p = 0.04 m 2 /Vs, τ n = τ p = 10 6 s, = 3 µm, S=1 mm 2 ), è polarizzato

Dettagli

ESERCIZIO 1 (DE,DTE) Un transistore bipolare npn (W met = 3 µm, N Abase = 10 16, N Dcollettore = , µ n = 0.12 m 2 /Vs, µ p = 0.

ESERCIZIO 1 (DE,DTE) Un transistore bipolare npn (W met = 3 µm, N Abase = 10 16, N Dcollettore = , µ n = 0.12 m 2 /Vs, µ p = 0. DE e DTE: PROVA SCRITTA DEL 6 Giugno 2013 ESERCIZIO 1 (DE,DTE) Un transistore bipolare npn (W met = 3 µm, N Abase = 10 16, N Dcollettore = 2 10 15, µ n = 0.12 m 2 /Vs, µ p = 0.045 m 2 /Vs, τ n = τ p =

Dettagli

ESERCIZIO 1 Il transistore bipolare in gura è caratterizzato da N Abase = cm 3,

ESERCIZIO 1 Il transistore bipolare in gura è caratterizzato da N Abase = cm 3, POVA SCITTA di DISPOSITIVI ELETTONICI del 17 Luglio 017 ESECIZIO 1 Il transistore bipolare in gura è caratterizzato da base = 5 10 15 cm 3, µ n = 0.11 m /Vs, µ p = 0.04 m /Vs, = τ p = 10 6 s, = 3 µm, S

Dettagli

PROVA SCRITTA di DISPOSITIVI ELETTRONICI del 30 Giugno 2016

PROVA SCRITTA di DISPOSITIVI ELETTRONICI del 30 Giugno 2016 PROVA SCRITTA di DISPOSITIVI ELETTRONICI del 30 Giugno 2016 ESERCIZIO 1 Considerare delle giunzioni p + n, con N D = 10 15 cm 3, µ n = 0.12 m 2 /Vs, S=1 mm 2. Il campo elettrico di break- down a valanga

Dettagli

PROVA SCRITTA di DISPOSITIVI ELETTRONICI del 6 Febbraio 2019

PROVA SCRITTA di DISPOSITIVI ELETTRONICI del 6 Febbraio 2019 PROVA SCRITTA di DISPOSITIVI ELETTRONICI del 6 Febbraio 2019 ESERCIZIO 1 In gura sono rappresentati due diodi identici: N A = 10 16 cm 3, N D = 10 15 cm 3, µ n = 0.1 m 2 /Vs, µ p = 0.03 m 2 /Vs, τ n =

Dettagli

PROVA SCRITTA di DISPOSITIVI ELETTRONICI del 27 Gennaio 2017

PROVA SCRITTA di DISPOSITIVI ELETTRONICI del 27 Gennaio 2017 PROVA SCRITTA di DISPOSITIVI ELETTRONICI del 27 Gennaio 2017 ESERCIZIO 1 Un transistore n + pn + (N Abase = 10 16 cm 3, W = 4 µm, S = 1 mm 2,µ n = 0.11 m 2 /Vs, τ n = 10 6 s) è polarizzato come in gura

Dettagli

PROVA SCRITTA di DISPOSITIVI ELETTRONICI del 24 Luglio 2019

PROVA SCRITTA di DISPOSITIVI ELETTRONICI del 24 Luglio 2019 PROVA SCRITTA di DISPOSITIVI ELETTRONICI del 24 Luglio 2019 ESERCIZIO 1 Un transistore npn a base corta è caratterizzato da: N Dem = 10 15 cm 3 (emettitore lungo), N Abase = 10 16 cm 3, N Dcoll = 10 15

Dettagli

PROVA SCRITTA di DISPOSITIVI ELETTRONICI del 9 Luglio 2018

PROVA SCRITTA di DISPOSITIVI ELETTRONICI del 9 Luglio 2018 PROVA SCRITTA di DISPOSITIVI ELETTRONICI del 9 Luglio 2018 ESERCIZIO 1 Nel circuito in gura, il diodo p + n è illuminato alla supercie. La base p + è corta, W p = 5 µm, la base n è lunga. Abbiamo: N A

Dettagli

DE e DTE: PROVA SCRITTA DEL 28 Gennaio 2016 ESERCIZIO 1 (DE,DTE) Un transistore bipolare n + pn (N Abase = cm 3, N Dcollettore = cm 3, µ

DE e DTE: PROVA SCRITTA DEL 28 Gennaio 2016 ESERCIZIO 1 (DE,DTE) Un transistore bipolare n + pn (N Abase = cm 3, N Dcollettore = cm 3, µ DE e DTE: PROA SCRITTA DEL 28 Gennaio 2016 ESERCIZIO 1 (DE,DTE) Un transistore bipolare n + pn (N Abase = 10 16 cm 3, N Dcollettore = 10 15 cm 3, µ n = 0.1 m 2 /s, τ n = 10 6, S = 1 mm 2 ) è polarizzato

Dettagli

ESERCIZIO 3 Nel circuito in gura, il transistore bipolare è un n + pn +, con N A = cm 3, τ n = 10 6 s, µ n = 0.09 m 2 /Vs, S = 1 mm 2.

ESERCIZIO 3 Nel circuito in gura, il transistore bipolare è un n + pn +, con N A = cm 3, τ n = 10 6 s, µ n = 0.09 m 2 /Vs, S = 1 mm 2. PROVA SCRITTA di DISPOSITIVI ELETTRONICI del 16 Gennaio 2019 ESERCIZIO 1 Un transistore bipolare n + pn (N Abase = 10 16 cm 3, N Dcollettore = 2 10 16 cm 3, τ n = 10 6 s, µ n = 0.1 m 2 /Vs, S=1 mm 2 )

Dettagli

PROVA SCRITTA di DISPOSITIVI ELETTRONICI del 13 Giugno 2018

PROVA SCRITTA di DISPOSITIVI ELETTRONICI del 13 Giugno 2018 POVA SCITTA di DISPOSITIVI ELETTONICI del 13 Giugno 2018 ESECIZIO 1 In gura è rappresentato un circuito, basato su un transistore bipolare n + pn +, = 2 kω. Per il transistore abbiamo N Abase = 10 16 cm

Dettagli

PROVA SCRITTA di DISPOSITIVI ELETTRONICI del 8 Gennaio 2018

PROVA SCRITTA di DISPOSITIVI ELETTRONICI del 8 Gennaio 2018 PROVA SCRITTA di DISPOSITIVI ELETTRONICI del 8 Gennaio 2018 ESERCIZIO 1 Un transistore n + pn, con N ABase = N DCollettore = 5 10 15 cm 3, µ n = 0.11 m 2 /Vs, τ n = 10 6 s, S = 1 mm 2, è polarizzato con

Dettagli

DE e DTE: PROVA SCRITTA DEL 29 Giugno 2015

DE e DTE: PROVA SCRITTA DEL 29 Giugno 2015 DE e DTE: PROVA SCRITTA DEL 29 Giugno 2015 ESERCIZIO 1 (DE,DTE) Un transistore (emettitore n + ) è caratterizzato da base = 5 10 15 cm 3, lunghezza metallurgica W met = 4 µm, τ n = 1 µs, µ n = 0.1 m 2

Dettagli

DE e DTE: PROVA SCRITTA DEL 7 Gennaio 2013

DE e DTE: PROVA SCRITTA DEL 7 Gennaio 2013 DE e DTE: PROVA SCRITTA DEL 7 Gennaio 013 ESERCIZIO 1 (DE,DTE) Un condensatore MOS è realizzato su substrato p, N A = 10 16 cm 3, t ox = 50 nm. A metà dell ossido (a t ox /) viene introdotto uno strato

Dettagli

PROVA SCRITTA di DISPOSITIVI ELETTRONICI del 15 Settembre 2017

PROVA SCRITTA di DISPOSITIVI ELETTRONICI del 15 Settembre 2017 PROVA SCRITTA di DISPOSITIVI ELETTRONICI del 15 Settembre 2017 ESERCIZIO 1 Una giunzione pn, con entrambe le basi lunghe, è caratterizzata da N A = N D = 5 10 15 cm 3, µ n = 0.11 m 2 /Vs, µ p = 0.04 m

Dettagli

DE e DTE: PROVA SCRITTA DEL 8 Giugno 2015

DE e DTE: PROVA SCRITTA DEL 8 Giugno 2015 DE e DTE: PROVA SCRITTA DEL 8 Giugno 2015 ESERCIZIO 1 (DE,DTE) Il transistore in gura è un n + pn + con base = 10 16 cm 3, τ n = 1 µs, µ n = 0.1 m 2 /Vs, S = 1mm 2. La resistenza R C = 1 kω, e V CC = 12

Dettagli

PROVA SCRITTA di DISPOSITIVI ELETTRONICI del 15 Febbraio ESERCIZIO 1 Una giunzione pn è caratterizzata da N A = cm 3, N D = cm 3,

PROVA SCRITTA di DISPOSITIVI ELETTRONICI del 15 Febbraio ESERCIZIO 1 Una giunzione pn è caratterizzata da N A = cm 3, N D = cm 3, PROVA SCRITTA di DISPOSITIVI ELETTRONICI del 15 Febbraio 2017 ESERCIZIO 1 Una giunzione pn è caratterizzata da N A = 5 10 15 cm 3, N D = 10 16 cm 3, µ n = 0.10 m 2 /Vs, µ p = 0.04 m 2 /Vs, τ n = τ p =

Dettagli

PROVA SCRITTA di DISPOSITIVI ELETTRONICI del 3 Febbraio 2018

PROVA SCRITTA di DISPOSITIVI ELETTRONICI del 3 Febbraio 2018 PROVA SCRITTA di DISPOSITIVI ELETTRONICI del 3 Febbraio 2018 ESERCIZIO 1 In gura è rappresentato un pezzo di silicio, drogato da una parte n + (N D = 10 19 cm 3, µ n+ = 0.015 m 3 ) e dall'altra n (N D

Dettagli

3) Determinare il campo elettrico per x = 50 µm (trascurare l'ampiezza

3) Determinare il campo elettrico per x = 50 µm (trascurare l'ampiezza DE e DTE: PROVA SCRITTA DEL 8 Gennaio 2016 ESERCIZIO 1 (DE,DTE) Un diodo pn è caratterizzato da: S = 1 mm 2, N A = 10 16 cm 3, N D = 10 16 cm 3, µ n = 0.1 m 2 /Vs, µ p = 0.04 m 2 /Vs, τ n = 10 5 S (nella

Dettagli

PROVA SCRITTA di DISPOSITIVI ELETTRONICI del 12 Giugno 2017

PROVA SCRITTA di DISPOSITIVI ELETTRONICI del 12 Giugno 2017 PROVA SCRITTA di DISPOSITIVI ELETTRONICI del 12 Giugno 2017 ESERCIZIO 1 Una giunzione p + n è caratterizzata da N D = 5 10 15 cm 3, µ p = 0.04 m 2 /Vs, τ p = 10 6 s, S = 1 mm 2. Questa giunzione è polarizzata

Dettagli

ESERCIZIO 1 In gura è rappresentata una giunzione p + n (S=1 mm 2, µ n = 0.1 m 2 /Vs,

ESERCIZIO 1 In gura è rappresentata una giunzione p + n (S=1 mm 2, µ n = 0.1 m 2 /Vs, PROVA SCRTTA di DSPOSTV ELETTRONC del 22 Febbraio 2019 ESERCZO 1 n gura è rappresentata una giunzione p + n (S=1 mm 2, µ n = 0.1 m 2 /Vs, µ p = 0.04 m 2 /Vs, τ p = τ n = 10 6 s). La parte n è drogata N

Dettagli

PROVA SCRITTA di DISPOSITIVI ELETTRONICI del 22 Novembre 2018

PROVA SCRITTA di DISPOSITIVI ELETTRONICI del 22 Novembre 2018 PROVA SCRITTA di DISPOSITIVI ELETTRONICI del 22 Novembre 2018 ESERCIZIO 1 Nel circuito in gura il diodo A è una giunzione Schottky a base corta, substrato n = N D = 10 15 cm 3 e W n = 5 µm. Il metallo

Dettagli

ESERCIZIO 1 Il transistore in gura è un n + pn +, con W = 3 µm, N Abase = cm 3,

ESERCIZIO 1 Il transistore in gura è un n + pn +, con W = 3 µm, N Abase = cm 3, PROVA SCRITTA di DISPOSITIVI ELETTRONICI del 8 Settembre 2016 ESERCIZIO 1 Il transistore in gura è un n + pn +, con W = 3 µm, N Abase = 10 16 cm 3, µ n = 0.1 m 2 /V s, τ n = 10 6 s, S = 1 mm 2. Trascurare

Dettagli

PROVA SCRITTA di DISPOSITIVI ELETTRONICI del 3 Luglio 2019

PROVA SCRITTA di DISPOSITIVI ELETTRONICI del 3 Luglio 2019 PROVA SCRITTA di DISPOSITIVI ELETTRONICI del 3 Luglio 2019 ESERCIZIO 1 Un diodo p + n è a base corta: W = 4 µm, N D = 10 16 cm 3, µ n = 0.1 m 2 /Vs, µ p = 0.04 m 2 /Vs, τ p = τ n = 10 6 s, S=1 mm 2. 1)

Dettagli

PROVA SCRITTA di DISPOSITIVI ELETTRONICI del 12 Giugno 2019

PROVA SCRITTA di DISPOSITIVI ELETTRONICI del 12 Giugno 2019 PROVA SCRITTA di DISPOSITIVI ELETTRONICI del 12 Giugno 2019 ESERCIZIO 1 In gura è rappresentato, a sinistra, un dispositivo costituito da una giunzione p + n e da un contatto metallico sulla parte n. Per

Dettagli

PROVA SCRITTA di DISPOSITIVI ELETTRONICI del 9 Gennaio ESERCIZIO 1 Si consideri un diodo pn con W n = W p = 500 µm, N A = N D = cm 3,

PROVA SCRITTA di DISPOSITIVI ELETTRONICI del 9 Gennaio ESERCIZIO 1 Si consideri un diodo pn con W n = W p = 500 µm, N A = N D = cm 3, PROVA SCRTTA di DSPOSTV ELETTRONC del 9 Gennaio 2016 ESERCZO 1 Si consideri un diodo pn con W n = W p = 500 µm, N A = = 10 15 cm 3, τ n = τ p = 1 µs, µ n = 1500 cm 2 /Vs, µ p = 400 cm 2 /Vs, S = 1 mm 2.

Dettagli

DE e DTE: PROVA SCRITTA DEL 4 Giugno 2012

DE e DTE: PROVA SCRITTA DEL 4 Giugno 2012 DE e DTE: PROA SCRITTA DEL 4 Giugno 2012 ESERCIZIO 1 (DE,DTE) Una giunzione pn (N A = N D = 10 16 cm 3, τ n = τ p = 10 6 s, µ n = 1000 cm 2 /s, µ p = 450 cm 2 /s, S = 1 mm 2 ) è polarizzata con = 0.5.

Dettagli

DE e DTE: PROVA SCRITTA DEL 23 Luglio ESERCIZIO 1 (DE,DTE) Un diodo p + n a base lunga, con µ n = 1100 cm 2 /Vs, µ p = 200 cm 2 /Vs,

DE e DTE: PROVA SCRITTA DEL 23 Luglio ESERCIZIO 1 (DE,DTE) Un diodo p + n a base lunga, con µ n = 1100 cm 2 /Vs, µ p = 200 cm 2 /Vs, DE e DTE: PROA SCRITTA DEL 23 Luglio 2015 ESERCIZIO 1 (DE,DTE) Un diodo p + n a base lunga, con µ n = 1100 cm 2 /s, µ p = 200 cm 2 /s, τ n = τ p = 1 µs, N A = 10 19 cm 3, N D = 5 10 15 cm 3, S = 1 mm 2

Dettagli

PROVA SCRITTA di DISPOSITIVI ELETTRONICI del 25 Luglio 2018

PROVA SCRITTA di DISPOSITIVI ELETTRONICI del 25 Luglio 2018 PROVA SCRITTA di DISPOSITIVI ELETTRONICI del 25 Luglio 2018 ESERCIZIO 1 Nel circuito in gura, il diodo p + n a destra è a base lunga con N D = 10 16 cm 3, S = 10 cm 2. Il diodo p + n a sinistra ha N D

Dettagli

DE e DTE: PROVA SCRITTA DEL 14 Febbraio 2015

DE e DTE: PROVA SCRITTA DEL 14 Febbraio 2015 DE e DTE: PROVA SCRTTA DEL 14 Febbraio 2015 ESERCZO 1 (DE,DTE) due diodi in gura sono uno a base lunga (diodo A: p + n, N D = 5 10 15 cm 3, τ n = τ p = 1 µs, µ p = 0.04 m 2 /Vs, S = 1mm 2 ) e uno a base

Dettagli

DE e DTE: PROVA SCRITTA DEL 10 Settembre 2012

DE e DTE: PROVA SCRITTA DEL 10 Settembre 2012 DE e DTE: PROVA SCRITTA DEL 10 Settembre 2012 ESERCIZIO 1 (DE,DTE) Una giunzione pn è polarizzata con V = 0.5 V. I dati della giunzione sono: N D = 10 16 cm 3, N A = 10 15 cm 3, µ n = 1100 cm 2 /Vs, µ

Dettagli

DE e DTE: PROVA SCRITTA DEL 22 Gennaio 2012

DE e DTE: PROVA SCRITTA DEL 22 Gennaio 2012 DE e DTE: PROVA SCRITTA DEL Gennaio 01 ESERCIZIO 1 (DE,DTE) Un processo per la realizzazione di transistori n-mos è caratterizzato da: N A = 10 16 cm 3, µ n canale = 800 cm /Vs, µ n bulk = 1000 cm /Vs,

Dettagli

DE e DTE: PROVA SCRITTA DEL 8 Febbraio 2012

DE e DTE: PROVA SCRITTA DEL 8 Febbraio 2012 DE e DTE: PROA SCRITTA DEL 8 Febbraio 01 ESERCIZIO 1 (DE,DTE) Una struttura n-mos ( = 10 16 cm 3, t ox = 30 nm) è realizzata con un processo polysilicon gate n +. La struttura è illuminata con luce rossa

Dettagli

DE e DTE: PROVA SCRITTA DEL 9 Gennaio 2012

DE e DTE: PROVA SCRITTA DEL 9 Gennaio 2012 DE e DTE: PROVA SCRITTA DEL 9 Gennaio 01 ESERCIZIO 1 (DE,DTE) Un transistore n-mos (N A = 10 16 cm 3, µ n = 800 cm /Vs nel canale, W = L = 5 µm, t ox = 50 nm), realizzato con un processo polysilicon gate,

Dettagli

DE e DTE: PROVA SCRITTA DEL 5 febbraio ESERCIZIO 1 (DTE) 1) Descrivere i processi e disegnare le maschere necessarie alla realizzazione

DE e DTE: PROVA SCRITTA DEL 5 febbraio ESERCIZIO 1 (DTE) 1) Descrivere i processi e disegnare le maschere necessarie alla realizzazione DE e DTE: PROVA SCRITTA DEL 5 febbraio 011 ESERCIZIO 1 (DTE) 1) Descrivere i processi e disegnare le maschere necessarie alla realizzazione del dispositivo di cui nella figura è mostrata la sezione; la

Dettagli

1) Il lato n è lungo (1 mm), mentre quello p è sicuramente corto (3 µm). Calcoliamo la regione di svuotamento per V = 0.5 V: = V.

1) Il lato n è lungo (1 mm), mentre quello p è sicuramente corto (3 µm). Calcoliamo la regione di svuotamento per V = 0.5 V: = V. ESERCIZIO 1 (DE,DTE) Una giunzione pn è caratterizzata da (W p e W n distanze tra il piano della giunzione e rispettivamente contatto p ed n): S = 1 mm, N D = 10 16 cm 3, W n = 1 mm, N A = 10 15 cm 3,

Dettagli

DE e DTE: PROVA SCRITTA DEL 26 Gennaio 2015

DE e DTE: PROVA SCRITTA DEL 26 Gennaio 2015 DE e DTE: PROVA SCRITTA DEL 26 Gennaio 2015 ESERCIZIO 1 (DE,DTE) Un transistore bipolare n + pn con N Abase = N Dcollettore = 10 16 cm 3, µ n = 0.09 m 2 /Vs, µ p = 0.035 m 2 /Vs, τ n = τ p = 10 6 s, S=1

Dettagli

DE e DTE: PROVA SCRITTA DEL 23 Giugno 2012

DE e DTE: PROVA SCRITTA DEL 23 Giugno 2012 DE e DTE: PROA SCRITTA DEL 23 Giugno 2012 ESERCIZIO 1 (DE,DTE) Un transistore bipolare npn (N D emettitore = 10 16 cm 3, N A base = 10 16 cm 3, N D collettore = 10 15 cm 3, τ n = τ p = 10 6 s, µ n = 1000

Dettagli

DE e DTE: PROVA SCRITTA DEL 16 Luglio 2012

DE e DTE: PROVA SCRITTA DEL 16 Luglio 2012 000000000 111111111 000000000 111111111 DE e DTE: PROA SCRITTA DEL 16 Luglio 01 ESERCIZIO 1 (DE,DTE) Nella figura è mostrato lo schema di massima di un transistore n-mos (condensatore MOS ideale), con

Dettagli

Esercizio U2.1 - Giunzione non brusca

Esercizio U2.1 - Giunzione non brusca Esercizio U2.1 - Giunzione non brusca Si consideri una giunzione p + -n con drogaggio uniforme nel lato p (N A = 10 19 cm 3 ) e giunzione metallurgica situata in x = 0. Il drogaggio del lato n, definito

Dettagli

Dispositivi e Tecnologie Elettroniche. Esercitazione Transistore MOS

Dispositivi e Tecnologie Elettroniche. Esercitazione Transistore MOS Dispositivi e Tecnologie Elettroniche Esercitazione Transistore MOS Esercizio 1: testo Si consideri un sistema MOS costituito da un substrato di Si con drogaggio N A = 10 16 cm 3, uno strato di ossido

Dettagli

ESERCIZIO 1. Soluzione. Per risolvere il problema utilizzo il modello di Ebers-Moll, grazie al quale potrò calcolare L E, W, L C, infatti so che

ESERCIZIO 1. Soluzione. Per risolvere il problema utilizzo il modello di Ebers-Moll, grazie al quale potrò calcolare L E, W, L C, infatti so che ESERCIZIO Su un transistor BJT pnp caratterizzato da N E = 0 8 cm 3 N B = 0 6 cm 3 N C = 0 5 cm 3 A = mm 2 vengono effettuate le seguenti misure: Tensione V CB negativa, emettitore aperto: I C = 0nA Tensione

Dettagli

Esercizio U3.1 - Tensione di soglia del MOSFET a canale n

Esercizio U3.1 - Tensione di soglia del MOSFET a canale n Esercizio U3. - Tensione di soglia del MOSFET a canale n Si ricavi dettagliatamente l espressione per la tensione di soglia di un MOSFET ad arricchimento a canale p e successivamente la si calcoli nel

Dettagli

Transistori MOS. Ing. Ivan Blunno 21 aprile 2005

Transistori MOS. Ing. Ivan Blunno 21 aprile 2005 Transistori MOS Ing. Ivan Blunno 1 aprile 005 1 Introduzione In questa dispensa verranno presentati i transistor MOS (Metal Oxide Semiconductor) di tipo N e P dal punto di vista del loro funzionamento

Dettagli

Il transistore bipolare a giunzione (BJT)

Il transistore bipolare a giunzione (BJT) Il transistore bipolare a giunzione (BJT) Il funzionamento da transistore, cioè l'interazione fra le due giunzioni pn connesse back to back, è dovuto allo spessore ridotto dell'area di base (tipicamente

Dettagli

Modello di Ebers-Moll del transistore bipolare a giunzione

Modello di Ebers-Moll del transistore bipolare a giunzione D Modello di Ebers-Moll del transistore bipolare a giunzione Un transistore bipolare è un dispositivo non lineare che può essere modellato facendo ricorso alle caratteristiche non lineari dei diodi. Il

Dettagli

Dispositivi e Tecnologie Elettroniche. Il transistore bipolare

Dispositivi e Tecnologie Elettroniche. Il transistore bipolare Dispositivi e Tecnologie Elettroniche l transistore bipolare Struttura di principio l transistore bipolare è fondamentalmente composto da due giunzioni pn, realizzate sul medesimo substrato a formare una

Dettagli

Dispositivi e Tecnologie Elettroniche. Il transistore MOS

Dispositivi e Tecnologie Elettroniche. Il transistore MOS Dispositivi e Tecnologie Elettroniche Il transistore MOS Il transistore MOS La struttura MOS a due terminali vista può venire utilizzata per costruire un condensatore integrato È la struttura base del

Dettagli

Il Sistema Metallo Ossido Semiconduttore (MOS)

Il Sistema Metallo Ossido Semiconduttore (MOS) Il Sistema Metallo Ossido Semiconduttore (MOS) E una struttura simile ad un condensatore, con queste differenze: A polarizzazione nulla la concentrazione dei portatori nel semiconduttore è assai minore

Dettagli

Dispositivi e Tecnologie Elettroniche. Esercitazione Giunzione pn

Dispositivi e Tecnologie Elettroniche. Esercitazione Giunzione pn Dispositivi e Tecnologie Elettroniche Esercitazione Giunzione pn Esercizio 1: testo Si consideri una giunzione brusca e simmetrica con drogaggio N A N D 10 17 cm 3 sezione trasversale A 0.5 mm 2 e lati

Dettagli

Nella seguente foto, possiamo vedere l'esterno di alcuni transistor:

Nella seguente foto, possiamo vedere l'esterno di alcuni transistor: IL BJT Il transistor BJT è un componente che viene utilizzato come amplificatore. Si dice amplificatore di tensione un circuito che dà in uscita una tensione più grande di quella di ingresso. Si dice amplificatore

Dettagli

slides per cortesia di Prof. B. Bertucci

slides per cortesia di Prof. B. Bertucci slides per cortesia di Prof. B. Bertucci Giunzione p-n in equilibrio: Densità di portatori maggiori maggioritari/ minoritari dai due lati della giunzione (lontano dalla zona di contatto): Nella zona di

Dettagli

ESERCIZIO 1. γ = 1 + D EN B W D B N E L E

ESERCIZIO 1. γ = 1 + D EN B W D B N E L E ESERCIZIO 1 In un un bjt npn in cui il fattore di trasporto in base è pari a 0.9995, l efficienza di emettitore è pari a 0.99938, è noto che la tensione di breakdown per valanga ha modulo pari a BV CE0

Dettagli

3.1 Verifica qualitativa del funzionamento di un FET

3.1 Verifica qualitativa del funzionamento di un FET Esercitazione n. 3 Circuiti con Transistori Rilevamento delle curve caratteristiche Questa esercitazione prevede il rilevamento di caratteristiche V(I) o V2(V1). In entrambi i casi conviene eseguire la

Dettagli

Esonero del Corso di Elettronica I 23 aprile 2001

Esonero del Corso di Elettronica I 23 aprile 2001 Esonero del Corso di Elettronica I 23 aprile 2001 1) Nell amplificatore MO di figura k=5.10-4 A/V 2, V T = 2 V, = 10K Ω, =10V, =3V. eterminare il guadagno di tensione per un segnale applicato tra gate

Dettagli

Esercizio : calcolo della conducibilita in un conduttore metallico.

Esercizio : calcolo della conducibilita in un conduttore metallico. Esercizio : calcolo della conducibilita in un conduttore metallico. Si consideri una striscia di metallo in un circuito integrato, con dimensioni:lunghezza L =.8 [mm], Area della sezione A = 4 [µm²] (micrometri

Dettagli

Esercitazione n 2: Circuiti di polarizzazione (2/2)

Esercitazione n 2: Circuiti di polarizzazione (2/2) Esercitazione n 2: Circuiti di polarizzazione (2/2) 1) Per il circuito di in Fig. 1 dimensionare R in modo tale che la corrente di collettore di Q 1 sia 5 ma. Siano noti: V CC = 15 V; β = 150; Q1 = Q2

Dettagli

ν S R B2 Prova n 1: V CC R C R B1 C C R S C S C L out R L Prove d'esame

ν S R B2 Prova n 1: V CC R C R B1 C C R S C S C L out R L Prove d'esame Prova n 1: Per il seguente circuito determinare: 1. R B1, R E tali che: I C = 0,5 ma; V E = 5 V; 2. Guadagno di tensione a piccolo segnale v out /v s alle medie frequenze; 3. Frequenza di taglio inferiore;

Dettagli

Fondamenti di Elettronica, Sez.3

Fondamenti di Elettronica, Sez.3 Fondamenti di Elettronica, Sez.3 Alessandra Flammini alessandra.flammini@unibs.it Ufficio 24 Dip. Ingegneria dell Informazione 030-3715627 Lunedì 16:30-18:30 Fondamenti di elettronica, A. Flammini, AA2018-2019

Dettagli

Stadi Amplificatori di Base

Stadi Amplificatori di Base Stadi Amplificatori di Base Biagio Provinzano Marzo 2005 Ipotesi di lavoro: i) Transistor npn acceso ed in zona attiva v BE 1 0.7V e v C >v B ii) Consideriamo un classico schema di polarizzazione con quattro

Dettagli

ELETTROTECNICA ED ELETTRONICA (C.I.) Modulo di Elettronica. Lezione 7. a.a

ELETTROTECNICA ED ELETTRONICA (C.I.) Modulo di Elettronica. Lezione 7. a.a 32586 - ELETTROTENIA ED ELETTRONIA (.I.) Modulo di Elettronica Lezione 7 a.a. 2010-2011 Bipolar Junction Transistor (BJT) Il BJT è realizzato come una coppia di giunzioni PN affiancate. Esistono due categorie

Dettagli

Transistore bipolare a giunzione (BJT)

Transistore bipolare a giunzione (BJT) ransistore bipolare a giunzione (J) Parte 1 www.die.ing.unibo.it/pers/mastri/didattica.htm (versione del 22-5-2012) ransistore bipolare a giunzione (J) l transistore bipolare a giunzione è un dispositivo

Dettagli

Soluzione del compito di Elettronica e di Elettronica Digitale del 15 gennaio 2003

Soluzione del compito di Elettronica e di Elettronica Digitale del 15 gennaio 2003 Soluzione del compito di Elettronica e di Elettronica Digitale del 5 gennaio 2003 Esercizio Calcolo di R 5, R 6 e del punto di lavoro dei transistori Per l analisi del punto di riposo prendiamo in considerazione

Dettagli

Corso di ELETTRONICA 1 (Elettronici N.O.) 17/06/2003

Corso di ELETTRONICA 1 (Elettronici N.O.) 17/06/2003 Corso di ELETTRONICA 1 (Elettronici N.O.) 17/06/2003 Si analizzi l amplificatore mostrato in figura, determinando: 1. il valore del guadagno di tensione a frequenze intermedie; 2. le frequenze di taglio

Dettagli

ESERCIZIO 1. Dati due diodi a giunzione pn aventi le seguenti caratteristiche:

ESERCIZIO 1. Dati due diodi a giunzione pn aventi le seguenti caratteristiche: ESERCIZIO 1 Dati due diodi a giunzione pn aventi le seguenti caratteristiche: DIODO A: Si, 10 18 cm 3,N D 10 15 cm 3 DIODO B: Ge, 10 18 cm 3,N D 10 15 cm 3 Valutare, giustificando quantitativamente le

Dettagli

Dispositivi elettronici Esperienze di laboratorio

Dispositivi elettronici Esperienze di laboratorio Dispositivi elettronici Esperienze di laboratorio Universitá degli Studi di L Aquila Massimo Lucresi Luigi Pilolli Mariano Spadaccini maggio 2002 Esperienza n. 1 Analisi della risposta in frequenza di

Dettagli

Dispositivi elettronici. Il transistor bipolare a giunzione (bjt( bjt)

Dispositivi elettronici. Il transistor bipolare a giunzione (bjt( bjt) Dispositivi elettronici l transistor bipolare a giunzione (bjt( bjt) Sommario l transistor bipolare a giunzione (bjt) come è fatto un bjt principi di funzionamento (giunzione a base corta) effetto transistor

Dettagli

Elettronica II Grandezze elettriche microscopiche (parte 1) p. 2

Elettronica II Grandezze elettriche microscopiche (parte 1) p. 2 Elettronica II Grandezze elettriche microscopiche (parte 1) Valentino Liberali Dipartimento di Tecnologie dell Informazione Università di Milano, 26013 Crema e-mail: liberali@dti.unimi.it http://www.dti.unimi.it/

Dettagli

Le caratteristiche del BJT

Le caratteristiche del BJT La caratteristica del BJT.doc! rev. 1 del 24/06/2008 pagina 1 di 8 LE CARATTERISTICHE DEL BJT 1 Montaggi fondamentali 1 Montaggio ad emettitore comune 1 Montaggio a collettore comune 3 Montaggio a base

Dettagli

AMPLIFICATORI INVERTENTI A SINGOLO TRANSISTORE

AMPLIFICATORI INVERTENTI A SINGOLO TRANSISTORE configurazione CE: AMPLIFICATORI INVERTENTI A SINGOLO TRANSISTORE configurazione CS: G. Martines 1 ANALISI IN CONTINUA Circuito di polarizzazione a quattro resistenze. NOTE: I parametri del modello a piccolo

Dettagli

Le caratteristiche del BJT

Le caratteristiche del BJT LE CARATTERISTICHE DEL BJT 1 Montaggi fondamentali 1 Montaggio ad emettitore comune 1 Montaggio a collettore comune 3 Montaggio a base comune 4 Caratteristiche ad emettitore comune 4 Caratteristiche di

Dettagli

Elettronica Il transistore bipolare a giunzione

Elettronica Il transistore bipolare a giunzione Elettronica Il transistore biolare a giunzione Valentino Liberali Diartimento di Fisica Università degli Studi di Milano valentino.liberali@unimi.it Elettronica Il transistore biolare a giunzione 6 maggio

Dettagli

POLITECNICO DI MILANO

POLITECNICO DI MILANO POLITECNICO DI MILANO www.polimi.it ELETTRONICA per ingegneria BIOMEDICA prof. Alberto TOSI Sommario Transistore MOSFET Struttura Equazioni caratteristiche Curve caratteristiche Funzionamento come amplificatore

Dettagli

r> 0 p< 0 stabile; r< 0 p> 0 instabile

r> 0 p< 0 stabile; r< 0 p> 0 instabile Circuiti dinamici del primo ordine I i V p. s. r C v V( s) 1 1 scv( s) + = 0; s+ V( s) = 0; p= r rc rc r> 0 p< 0 stabile; r< 0 p> 0 instabile 101 Compito a casa: dimostrare che il seguente circuito ha

Dettagli

Formulario di CIRCUITI ELETTRONICI ANALOGICI L-A

Formulario di CIRCUITI ELETTRONICI ANALOGICI L-A Formulario di CIRCUITI ELETTRONICI ANALOGICI L-A Gennaio - Marzo 2009 Identità ed equazioni relative all elettronica analogica tratti dalle lezioni del corso di Circuiti Elettronici Analogici L-A alla

Dettagli

Elettronica digitale

Elettronica digitale Elettronica digitale Componenti per circuiti logici (Cap. 3, App. A) Dispositivi elettronici per circuiti logici Diodo Transistore bipolare Transistore a effetto di campo Bipoli Componenti a 2 terminali

Dettagli

Il diodo come raddrizzatore (1)

Il diodo come raddrizzatore (1) Il diodo come raddrizzatore () 220 V rms 50 Hz Come trasformare una tensione alternata in una continua? Il diodo come raddrizzatore (2) 0 Vγ La rettificazione a semionda Il diodo come raddrizzatore (3)

Dettagli

Esercizio 1.3 Il percorso con maggiore tempo di propagazione è quello del segnale A

Esercizio 1.3 Il percorso con maggiore tempo di propagazione è quello del segnale A Copyright 006 he McGraw-Hill Companies srl SOLUZIONI DI ESERCIZI - Elettronica Digitale III ed. Capitolo Esercizio. V OH 5 V, V OL 0.5 V; NM H V OH - V IH V; NM L V IH - V IL.5 V. Esercizio.3 Il percorso

Dettagli

Struttura del condensatore MOS

Struttura del condensatore MOS Struttura del condensatore MOS Primo elettrodo - Gate: realizzato con materiali a bassa resistività come metallo o silicio policristallino Secondo elettrodo - Substrato o Body: semiconduttore di tipo n

Dettagli

Esercitazione del 21 Maggio 2008

Esercitazione del 21 Maggio 2008 Esercitazione del 1 Maggio 008 Es. 1 - pmos in configurazione drain comune 1) Con riferimento al circuito in Fig. 1, determinare le regioni di funzionamento del transistore Mp nel piano V out (V in ).

Dettagli

Dispositivi elettronici. Il transistor bipolare a giunzione (bjt( bjt)

Dispositivi elettronici. Il transistor bipolare a giunzione (bjt( bjt) Dispositivi elettronici l transistor bipolare a giunzione (bjt( bjt) Sommario l transistor bipolare a giunzione (bjt) come è fatto un bjt principi di funzionamento (giunzione a base corta) effetto transistor

Dettagli

Il transistor bipolare a giunzione (bjt(

Il transistor bipolare a giunzione (bjt( Dispositivi elettronici l transistor bipolare a giunzione (bjt( bjt) Sommario l transistor bipolare a giunzione (bjt) come è fatto un bjt principi di funzionamento (giunzione a base corta) effetto transistor

Dettagli

Esperienza n 7: CARATTERISTICHE del TRANSISTOR BJT

Esperienza n 7: CARATTERISTICHE del TRANSISTOR BJT Laboratorio IV sperienza n 7: CARATTRISTICH del TRANSISTOR BJT 1 sperienza n 7: CARATTRISTICH del TRANSISTOR BJT Caratteristica del transistor bipolare Il transistor bipolare è uno dei principali dispositivi

Dettagli

COMPITO DI ELETTRONICA I ELETTRONICI INFORMATICI ELETTRICI

COMPITO DI ELETTRONICA I ELETTRONICI INFORMATICI ELETTRICI 18-01-2003 Q3 Q4 v out Q2 M1 v s i s Dz =3 V V Z =2 V Diodo zener ideale =1 kω =1.5 kω =250 Ω =1 kω β=100 K n =µ n C ox /2=50 µa/v 2 W/L=16/0.8 V Tn = 1 V C π = C gs =10 pf C µ = C gd =1 pf C1=C2=C3=1

Dettagli

Circuiti con diodi e resistenze: Analisi e Progetto

Circuiti con diodi e resistenze: Analisi e Progetto Circuiti con diodi e resistenze: Analisi e Progetto Esercizio 1: Calcolare e descrivere graficamente la caratteristica di trasferimento del seguente circuito: 1 D 3 110 KΩ 5 KΩ 35 KΩ V z3 5 V Svolgimento

Dettagli

Generatori di Corrente Continua

Generatori di Corrente Continua Generatori di Corrente Continua Maurizio Monteduro Siamo abituati a considerare i generatori come qualcosa di ideale, come un aggeggio perfetto che attinge o eroga corrente non interessandosi di come possa

Dettagli

Elettronica II Modello del transistore bipolare a giunzione p. 2

Elettronica II Modello del transistore bipolare a giunzione p. 2 lettronica II Modello del transistore biolare a giunzione Valentino Liberali Diartimento di Tecnologie dell Informazione Università di Milano, 26013 rema e-mail: liberali@dti.unimi.it htt://www.dti.unimi.it/

Dettagli

Dispositivi unipolari Il contatto metallo-semiconduttore Il transistor JFET Il transistor MESFET Il diodo MOS Il transistor MOSFET

Dispositivi unipolari Il contatto metallo-semiconduttore Il transistor JFET Il transistor MESFET Il diodo MOS Il transistor MOSFET Dispositivi unipolari Il contatto metallo-semiconduttore Il transistor JFET Il transistor MESFET Il diodo MOS Il transistor MOSFET 1 Contatti metallo semiconduttore (1) La deposizione di uno strato metallico

Dettagli

Corso di ELETTRONICA II modulo. Ingegneria Clinica, Ingegneria Biomedica e Ingegneria dei Sistemi. Prof. Domenico Caputo. Esame del 19 febbraio 2009

Corso di ELETTRONICA II modulo. Ingegneria Clinica, Ingegneria Biomedica e Ingegneria dei Sistemi. Prof. Domenico Caputo. Esame del 19 febbraio 2009 Esame del 19 febbraio 2009 Nel circuito di figura Is è un generatore di corrente con l andamento temporale riportato nel grafico. Determinare l'evoluzione temporale della V out e disegnarne il grafico

Dettagli

Il TRANSISTOR. Il primo transistor della storia

Il TRANSISTOR. Il primo transistor della storia Il TRANSISTOR Il primo transistor della storia Inventori del Transistor Il Transistor Bipolare a Giunzione (BJT) è stato inventato nei laboratori BELL nel 1948, da tre fisici: John Bardeen Walter Brattain,

Dettagli

Elettronica II La giunzione p-n: calcolo della relazione tensione-corrente p. 2

Elettronica II La giunzione p-n: calcolo della relazione tensione-corrente p. 2 Elettronica II La giunzione p-n: calcolo della relazione tensione-corrente Valentino Liberali Dipartimento di Tecnologie dell Informazione Università di Milano, 26013 Crema e-mail: liberali@dti.unimi.it

Dettagli

Elettronica Inverter con transistore MOS; tecnologia CMOS e porte logiche combinatorie CMOS

Elettronica Inverter con transistore MOS; tecnologia CMOS e porte logiche combinatorie CMOS Elettronica Inverter con transistore MOS; tecnologia CMOS e porte logiche combinatorie CMOS Valentino Liberali Dipartimento di Fisica Università degli Studi di Milano valentino.liberali@unimi.it Elettronica

Dettagli

PRINCIPIO DI FUNZIONAMENTO

PRINCIPIO DI FUNZIONAMENTO TRANSISTOR BJT 1 PRINCIPIO DI FUNZIONAMENTO 2 SIMBOLI CIRCUITALI 5 TRANSISTOR BJT Un transistor BJT (Bipolar Junction Transistor) è concettualmente costituito da una barretta di silicio suddivisa in tre

Dettagli

BJT. Bipolar Junction Transistor

BJT. Bipolar Junction Transistor BJT Bipolar Junction Transistor BJT Ideato e fabbricato nel 1947 da Schockley, Bardeen, Brattain. E costituito da 2 giunzioni pn consecutive realizzate su un unica porzione di silicio e pertanto puo essere

Dettagli

3- CENNI SUI PRINCIPALI DISPOSITIVI BASATI SULLE GIUNZIONI p-n

3- CENNI SUI PRINCIPALI DISPOSITIVI BASATI SULLE GIUNZIONI p-n 1 3- CENNI SUI PRINCIPALI DISPOSITIVI BASATI SULLE GIUNZIONI p-n Il diodo come raddrizzatore Un semiconduttore contenente una giunzione p-n, come elemento di un circuito elettronico si chiama diodo e viene

Dettagli

Polarizzazione Diretta (1)

Polarizzazione Diretta (1) Polarizzazione Diretta () E Con la polarizzazione diretta della giunzione, la barriera di potenziale si riduce aumenta la mobilità dei portatori maggioritari e si riduce quella dei portatori minoritari

Dettagli

Cross section and top view

Cross section and top view The nmos Transistor Polysilicon Aluminum nmosfet VBS 0 and VBD 0 VB = 0 Cross section and top view Polysilicon gate Source n + L W Drain n + Bulk p+ L Top view Gate-bulk overlap t ox Gate oxide n + L n

Dettagli

DEE POLITECNICO DI BARI LABORATORIO DI ELETTRONICA APPLICATA ESERCITAZIONE 2

DEE POLITECNICO DI BARI LABORATORIO DI ELETTRONICA APPLICATA ESERCITAZIONE 2 POLITECNICO DI BARI DEE DIPARTIMENTO ELETTROTECNICA ELETTRONICA Via E. Orabona, 4 70125 Bari (BA) Tel. 080/5460266 - Telefax 080/5460410 LABORATORIO DI ELETTRONICA APPLICATA Circuito di autopolarizzazione

Dettagli