3) Determinare il campo elettrico per x = 50 µm (trascurare l'ampiezza

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "3) Determinare il campo elettrico per x = 50 µm (trascurare l'ampiezza"

Transcript

1 DE e DTE: PROVA SCRITTA DEL 8 Gennaio 2016 ESERCIZIO 1 (DE,DTE) Un diodo pn è caratterizzato da: S = 1 mm 2, N A = cm 3, N D = cm 3, µ n = 0.1 m 2 /Vs, µ p = 0.04 m 2 /Vs, τ n = 10 5 S (nella zona p), τ p = 10 7 (nella zona n).il diodo è polarizzato con V = 0.5 V. 1) Vericare la condizione di bassa iniezione e calcolare la corrente del diodo. [3] 2) Determinare il campo elettrico per x = 50 µm (trascurare l'ampiezza della regione di svuotamento).[3] 3) Determinare il campo elettrico per x = 50 µm (trascurare l'ampiezza della regione di svuotamento).[4] ESERCIZIO 2 (DE,DTE) Un transistore nmos ha il gate in polisilicio di tipo p +, N A = cm 3, µ n = 800 cm 2 /Vs a temperatura ambiente (300 K), W=10µm, L=1 µm. Vdd Vi Vu 1) Calcolare lo spessore dell'ossido anchè la tensione di soglia sia pari a 1.5 V, a temperatura ambiente.[2] 2) Il circuito si trova ad operare ad una temperatura di circa C (considerare 400 K). Calcolare la tensione di soglia per T = 400 K. SUGGE- RIMENTO: calcolare tutti i parametri (n i, ψ B,...) per T = 400 K.[4] 3) Per il circuito in gura si consideri V i = V GS = 5 V, V DD = 5 V, R = 10 kω. La mobilità µ n dipende dalla temperatura come T 3 2. Supponendo il transistore in zona lineare, calcolare la tensione di uscita a temperatura ambiente e a T = 400 K.[4] ESERCIZIO 3 (DTE) 1) Descrivere il processo LOCOS e disegnare le maschere per la fabbricazione di un transistore p-mos, con W = 3L.[5] 2) Descrivere il breakdown della giunzione drain/substrato. Descrivere inoltre come si modica il processo LOCOS per la realizzazione degli LDD.[5] ESERCIZIO 4 (DE)

2 Nel circuito in gura, Q 1 e Q 2 sono transistori bipolari con β fminimo = 300, M è un transistore nmos con V T H = 1 V, t ox = 30 nm, µ n = 0.1 m 2 /Vs, W/L = 35. 1) La base del transistore n + pn non può essere fatta più corta di 5 µm, e la mobilità dei portatori minoritari è pari a µ n = 0.1 m 2 /Vs. Determinare il tempo di vita medio dei portatori minoritari necessario per soddisfare la specica indicata.[3] Vcc Vz 2.7 V Re1 1 K Rd 2K 12 V Q1 R1 M Vu 7.1 k Rg1 C 2 K Q2 Vs R2 2.9 k Re2 500 Rg2 12 k 2) Calcolare il punto di riposo dei transistori.[5] 3) Determinare il valore minimo di R g2 che consente di polarizzare correttamente il transistore MOS.[2]

3 ESERCIZIO 1 (DE,DTE) Un diodo pn è caratterizzato da: S = 1 mm 2, N A = cm 3, N D = cm 3, µ n = 0.1 m 2 /Vs, µ p = 0.04 m 2 /Vs, τ n = 10 5 S (nella zona p), = τ p = 10 7 (nella zona n).il diodo è polarizzato con V = 0.5 V. 1) Vericare la condizione di bassa iniezione e calcolare la corrente del diodo. [3] 2) Determinare il campo elettrico per x = 50 µm (trascurare l'ampiezza della regione di svuotamento).[3] 3) Determinare il campo elettrico per x = 50 µm (trascurare l'ampiezza della regione di svuotamento).[4] SOLUZIONE 1 1) Calcoliamo i vari parametri: D n = kt q µ n = m 2 s D p = kt q µ n = m 2 s L n = L p = D n τ n = µm D p τ p = µm Verichiamo la bassa iniezione, sia per le lacune che per gli elettroni: ( ) δ p (0) = n2 i e V V T 1 = m 3 N D δ n (0) = δ p (0) e quindi avremo che δ p (0) < N D e δ p (0) > p n0 = n2 i N D, e lo stesso per δ n (0). La corrente risulta: I = qs ( Dp L p n 2 i N D + D n L n n 2 i N A ) ( ) e V V T 1 = 0.1 ma (1) 2) La lunghezza di diusione delle lacune nella parte n è pari a µm, quindi il prolo di portatori minoritari iniettati è praticamente nullo per

4 x = 50 µm, che è una distanza pari a circa 5L p. Dunque la corrente è dovuta totalmente al trascinamento degli elettroni n = N D : I = Sqµ n ne E = I = qµ n N D V/m 3) Nel caso di x = 50 µm, invece, la componente diusiva dovuta agli elettroni (minoritari) iniettati nella parte p è ancora presente. A questa si aggiunge la componende diusiva dovuta al prolo dell'eccesso dei portatori maggioritari, che nell'approssimazione di quasi-neutralità coincide con quello dei portatori minoritari: δ n (x) = δ n (0)e x Ln δ p (x) = δ n (0)e x Ln I diffusione (x) = qsd n dδ n (x) dx I diffusione (x) = qs D n D p L n ( = n2 i N A = n2 i N A n 2 i N A I diffusione ( 50µm) = A Quindi avremo: ) e V V T 1 e x Ln ( ) e V V T 1 e x Ln dδ p (x) qsd p dx ( ) e V V T 1 = qsd n D p dδ n (x) dx e x Ln I drift ( 50µm) = I I diffusione ( 50µm) = A E( µm) = I drift( 50µm) qµ p N A = 1.46 V/m ESERCIZIO 2 (DE,DTE) Un transistore nmos ha il gate in polisilicio di tipo p +, N A = cm 3, µ n = 800 cm 2 /Vs a temperatura ambiente (300 K), 1) W=10µm, CalcolareL=1 lo spessore µm. dell'ossido anchè la tensione di soglia sia pari a 1.5 V, a temperatura ambiente.[2] 2) Il circuito si trova ad operare ad una temperatura di circa C (considerare 400 K). Calcolare la tensione di soglia per T = 400 K. SUGGE- RIMENTO: calcolare tutti i parametri (n i, ψ B,...) per T = 400 K.[4]

5 Vdd Vi Vu 3) Per il circuito in gura si consideri V i = V GS = 5 V, V DD = 5 V, R = 10 kω). La mobilità µ n dipende dalla temperatura come T 3 2. Supponendo il transistore in zona lineare, calcolare la tensione di uscita a temperatura ambiente e a T = 400 K.[4] SOLUZIONE 2 1) Calcoliamo i vari parametri: ψ B = kt ( ) q ln NA = V n i Φ MS = E g 2q ψ B = dove Φ MS è positiva, poichè il gate è di tipo p +. Avremo: V V T H = 2ɛs qn A 2ψ B C ox + 2ψ B + Φ MS (2) e quindi: e quindi: C ox = 2ɛs qn A 2ψ B V T H 2ψ B Φ MS = F/m 2 (3) t ox = ɛ ox C ox = 44 nm (4) 2) Guardiamo prima i parametri che è necessario calcolare a 400 K. La concentrazione di portatori in un semiconduttore drogato è costante in tutto l'intervallo di temperature di svuotamento. Dato il drogaggio non eccessivo (10 16 cm 3 ), la concentrazione di lacune p = N A > n i (400). Verichiamolo

6 (il calcolo di n i è comunque necessario: n i = N C N V e Eg 2kT N C (400) = N C (300)( ) 3 2 = ( ) 3 2 = m 3 N V (400) = N C (300)( ) 3 2 = ( ) 3 2 = m 3 kt =300 kt = 400 (400 q = q 300) = n i (400) = m 3 Quindi n i < N A = m 3. Essenzialmente la temperatura agisce sulla V T H attraverso ψ B (e Φ MS ), cioè V T H dipende dalla posizione del livello di Fermi, che varia con T : ( ) kt = 400 NA ψ B (400 K) = ln = V q n i (400) e quindi: Φ MS = E g 2q ψ B = V V T H (400 K) = 2ɛs qn A 2ψ B C ox + 2ψ B + Φ MS = 1.35 V (5) 3) Il transistore, in zona lineare, si comporta come un resistore. A temperatura ambiente avremo: R D = 1 µ n C o x W L (V GS V T H ) = 452 Ω V u = V CC R D R D + R = 0.22 A T = 400 K dobbiamo considerare la V T H (400) e la mobilitã : ( 400 µ n (400 K) = R D = V ) 3 2 = m 2 /Vm 1 µ n C o x W L (V GS V T H ) = 281 Ω V u = V CC R D R D + R = 0.14 V

7 ESERCIZIO 3 (DTE) 1) Descrivere il processo LOCOS e disegnare le maschere per la fabbricazione di un transistore p-mos, con W = 3L.[5] 2) Descrivere il breakdown della giunzione drain/substrato. Descrivere inoltre come si modica il processo LOCOS per la realizzazione degli LDD.[5] SOLUZIONE 3 1) e 2) Si rimanda alla dispensa del Prof. Diligenti. ESERCIZIO 4 (DE) Nel circuito in gura, Q 1 e Q 2 sono transistori bipolari con β fminimo = 300, M è un transistore nmos con V T H = 1 V, t ox = 30 nm, µ n = 0.1 m 2 /Vs, W/L = 35. 1) La base del transistore n + pn non può essere fatta più corta di 5 µm, e la mobilità dei portatori minoritari è pari a µ n = 0.1 m 2 /Vs. Determinare il tempo di vita medio dei portatori minoritari necessario per soddisfare la specica indicata.[3] Vcc Vz 2.7 V Re1 1 K Rd 2K 12 V Q1 R1 M Vu 7.1 k Rg1 C 2 K Q2 Vs R2 2.9 k Re2 500 Rg2 12 k 2) Calcolare il punto di riposo dei transistori.[5]

8 3) Determinare il valore minimo di R g2 che consente di polarizzare correttamente il transistore MOS.[2] SOLUZIONE 4 1) Possiamo esprimere il β f in funzione del tempo di transito e del tempo di vita medio: β f = τ n τ t (6) Il tempo di transito τ t dipende dal coeciente di diusione D n = kt q µ n = m 2 /s e dalla lunghezza eettiva di base. Considerando la lunghezza metallurgica minima ottenibile di 5 µm, come indicato nel testo, otteniamo: τ t = W 2 2D n = s (7) e quindi il tempo di vita medio deve essere superiore a: τ n > 300 τ t = s (8) 2) Avremo: V B1 = 9.3 V V E1 = 10 V I E1 = = 2 ma 1 R 2 V B2 = 10.3 = 2.7 R 1 + R 2 V E2 = 2 V I E2 = = 4 ma Quindi I DS1 = 2 ma. Determiniamo la tensione di gate: V CC = I DS R D + I (R D + R G1 + R G2 ) V CC I DS R D I = = 0.5 ma R D + R G1 + R G2 V

9 Quindi V G = IR G2 = 6 V. Da ciò segue: I DS = µ nc ox 2 C ox = ɛ ox V GS V T H = W L (V GS V T H ) 2 = F/m 2 t ox 2I DS W = 1 V µ n C ox L Quindi V GS = 2 V, V S = V C2 = V C1 = 4 V. Avremo dunque V u = R D = 7 V, e quindi V DS = 3 V > V GS V T H. Per Q 2 avremo che I R1R2 = 9.7/10 = 0.97 ma> 4/300 = 13 µa, quindi il partitore pesante è vericato. Riassumendo: I DS = 2 ma V GS = 2 V V DS = 3 V I C1 I E1 = 2 ma I B1 max = I C1 β fmin = 6.7 µa V EB1 V γ = 0.7 V V EC1 = 10 4 = 6 V I C2 I E2 = 4 ma I B2 max = I C2 β fmin = 13 µa V BE2 V γ = 0.7 V V CE2 = 4 2 = 2 V Quindi tutti i transistori risultano correttamente polarizzati. 3) Per polarizzare correttamente il MOS dobbiamo avere innanzitutto V GS > V T H = 1 V. Avremo che V S = V C2, e per polarizzare correttamente Q 2

10 dovrã essere V C2 > V E2 +V γ = 2.7 V. Quindi la tensione di gate dovrã essere maggiore di 3.7 V, V Gmin = 2.7 V. Avremo: I = V Gmin R G2 V CC = I DS R D + V Gmin (R D + R G1 + R G2 ) R G2 R D + R G1 + R G2 = V CC I DS R D = 2.96 R G2 V Gmin R D + R G1 = 2.96R G2 R G2 = 1.35 kω Controlliamo che il MOS sia in saturazione con il valore limite R G2 = 1.35 kω: I = V CC I DS R D = 1.49 ma (9) R D + R G1 + R G2 Avremo dunque V u = R D = 5.02 V, e quindi V DS = 2.2 V > V GS V T H.

DE e DTE: PROVA SCRITTA DEL 16 Febbraio 2016

DE e DTE: PROVA SCRITTA DEL 16 Febbraio 2016 DE e DTE: PROVA SCRITTA DEL 16 Febbraio 2016 ESERCIZIO 1 (DE,DTE) Un transistore bipolare npn (N Demettitore = N Abase = 10 16 cm 3, N Dcollettore = 5 10 15 cm 3, µ n = 0.1 m 2 /Vs, τ n = τ p = 10 6, µ

Dettagli

DE e DTE: PROVA SCRITTA DEL 29 Giugno 2015

DE e DTE: PROVA SCRITTA DEL 29 Giugno 2015 DE e DTE: PROVA SCRITTA DEL 29 Giugno 2015 ESERCIZIO 1 (DE,DTE) Un transistore (emettitore n + ) è caratterizzato da base = 5 10 15 cm 3, lunghezza metallurgica W met = 4 µm, τ n = 1 µs, µ n = 0.1 m 2

Dettagli

DE e DTE: PROVA SCRITTA DEL 4 Giugno 2012

DE e DTE: PROVA SCRITTA DEL 4 Giugno 2012 DE e DTE: PROA SCRITTA DEL 4 Giugno 2012 ESERCIZIO 1 (DE,DTE) Una giunzione pn (N A = N D = 10 16 cm 3, τ n = τ p = 10 6 s, µ n = 1000 cm 2 /s, µ p = 450 cm 2 /s, S = 1 mm 2 ) è polarizzata con = 0.5.

Dettagli

DE e DTE: PROVA SCRITTA DEL 8 Giugno 2015

DE e DTE: PROVA SCRITTA DEL 8 Giugno 2015 DE e DTE: PROVA SCRITTA DEL 8 Giugno 2015 ESERCIZIO 1 (DE,DTE) Il transistore in gura è un n + pn + con base = 10 16 cm 3, τ n = 1 µs, µ n = 0.1 m 2 /Vs, S = 1mm 2. La resistenza R C = 1 kω, e V CC = 12

Dettagli

PROVA SCRITTA di DISPOSITIVI ELETTRONICI del 30 Giugno 2016

PROVA SCRITTA di DISPOSITIVI ELETTRONICI del 30 Giugno 2016 PROVA SCRITTA di DISPOSITIVI ELETTRONICI del 30 Giugno 2016 ESERCIZIO 1 Considerare delle giunzioni p + n, con N D = 10 15 cm 3, µ n = 0.12 m 2 /Vs, S=1 mm 2. Il campo elettrico di break- down a valanga

Dettagli

DE e DTE: PROVA SCRITTA DEL 16 Settembre 2014

DE e DTE: PROVA SCRITTA DEL 16 Settembre 2014 DE e DTE: PROVA SCRITTA DEL 16 Settembre 2014 ESERCIZIO 1 (DE,DTE) Un transistore n + pn (N A = N D = 10 16 cm 3, µ n = 0.1 m 2 /Vs, µ p = 0.04 m 2 /Vs, τ n = τ p = 10 6 s, = 3 µm, S=1 mm 2 ), è polarizzato

Dettagli

DE e DTE: PROVA SCRITTA DEL 23 Luglio ESERCIZIO 1 (DE,DTE) Un diodo p + n a base lunga, con µ n = 1100 cm 2 /Vs, µ p = 200 cm 2 /Vs,

DE e DTE: PROVA SCRITTA DEL 23 Luglio ESERCIZIO 1 (DE,DTE) Un diodo p + n a base lunga, con µ n = 1100 cm 2 /Vs, µ p = 200 cm 2 /Vs, DE e DTE: PROA SCRITTA DEL 23 Luglio 2015 ESERCIZIO 1 (DE,DTE) Un diodo p + n a base lunga, con µ n = 1100 cm 2 /s, µ p = 200 cm 2 /s, τ n = τ p = 1 µs, N A = 10 19 cm 3, N D = 5 10 15 cm 3, S = 1 mm 2

Dettagli

PROVA SCRITTA di DISPOSITIVI ELETTRONICI del 10 Giugno 2016

PROVA SCRITTA di DISPOSITIVI ELETTRONICI del 10 Giugno 2016 PROVA SCRITTA di DISPOSITIVI ELETTRONICI del 0 Giugno 206 ESERCIZIO Il transistore bipolare npn nelle gure ha N Demettitore = N Dcollettore = 0 7 cm 3, N Abase = 0 6 cm 3, µ n = 0. m 2 /Vs, τ n = τ p =

Dettagli

ESERCIZIO 1 (DE,DTE) Un transistore bipolare npn (W met = 3 µm, N Abase = 10 16, N Dcollettore = , µ n = 0.12 m 2 /Vs, µ p = 0.

ESERCIZIO 1 (DE,DTE) Un transistore bipolare npn (W met = 3 µm, N Abase = 10 16, N Dcollettore = , µ n = 0.12 m 2 /Vs, µ p = 0. DE e DTE: PROVA SCRITTA DEL 6 Giugno 2013 ESERCIZIO 1 (DE,DTE) Un transistore bipolare npn (W met = 3 µm, N Abase = 10 16, N Dcollettore = 2 10 15, µ n = 0.12 m 2 /Vs, µ p = 0.045 m 2 /Vs, τ n = τ p =

Dettagli

PROVA SCRITTA di DISPOSITIVI ELETTRONICI del 15 Febbraio ESERCIZIO 1 Una giunzione pn è caratterizzata da N A = cm 3, N D = cm 3,

PROVA SCRITTA di DISPOSITIVI ELETTRONICI del 15 Febbraio ESERCIZIO 1 Una giunzione pn è caratterizzata da N A = cm 3, N D = cm 3, PROVA SCRITTA di DISPOSITIVI ELETTRONICI del 15 Febbraio 2017 ESERCIZIO 1 Una giunzione pn è caratterizzata da N A = 5 10 15 cm 3, N D = 10 16 cm 3, µ n = 0.10 m 2 /Vs, µ p = 0.04 m 2 /Vs, τ n = τ p =

Dettagli

PROVA SCRITTA di DISPOSITIVI ELETTRONICI del 3 Luglio 2019

PROVA SCRITTA di DISPOSITIVI ELETTRONICI del 3 Luglio 2019 PROVA SCRITTA di DISPOSITIVI ELETTRONICI del 3 Luglio 2019 ESERCIZIO 1 Un diodo p + n è a base corta: W = 4 µm, N D = 10 16 cm 3, µ n = 0.1 m 2 /Vs, µ p = 0.04 m 2 /Vs, τ p = τ n = 10 6 s, S=1 mm 2. 1)

Dettagli

ESERCIZIO 1 In gura è rappresentata una giunzione p + n (S=1 mm 2, µ n = 0.1 m 2 /Vs,

ESERCIZIO 1 In gura è rappresentata una giunzione p + n (S=1 mm 2, µ n = 0.1 m 2 /Vs, PROVA SCRTTA di DSPOSTV ELETTRONC del 22 Febbraio 2019 ESERCZO 1 n gura è rappresentata una giunzione p + n (S=1 mm 2, µ n = 0.1 m 2 /Vs, µ p = 0.04 m 2 /Vs, τ p = τ n = 10 6 s). La parte n è drogata N

Dettagli

PROVA SCRITTA di DISPOSITIVI ELETTRONICI del 9 Luglio 2018

PROVA SCRITTA di DISPOSITIVI ELETTRONICI del 9 Luglio 2018 PROVA SCRITTA di DISPOSITIVI ELETTRONICI del 9 Luglio 2018 ESERCIZIO 1 Nel circuito in gura, il diodo p + n è illuminato alla supercie. La base p + è corta, W p = 5 µm, la base n è lunga. Abbiamo: N A

Dettagli

PROVA SCRITTA di DISPOSITIVI ELETTRONICI del 27 Gennaio 2017

PROVA SCRITTA di DISPOSITIVI ELETTRONICI del 27 Gennaio 2017 PROVA SCRITTA di DISPOSITIVI ELETTRONICI del 27 Gennaio 2017 ESERCIZIO 1 Un transistore n + pn + (N Abase = 10 16 cm 3, W = 4 µm, S = 1 mm 2,µ n = 0.11 m 2 /Vs, τ n = 10 6 s) è polarizzato come in gura

Dettagli

PROVA SCRITTA di DISPOSITIVI ELETTRONICI del 6 Febbraio 2019

PROVA SCRITTA di DISPOSITIVI ELETTRONICI del 6 Febbraio 2019 PROVA SCRITTA di DISPOSITIVI ELETTRONICI del 6 Febbraio 2019 ESERCIZIO 1 In gura sono rappresentati due diodi identici: N A = 10 16 cm 3, N D = 10 15 cm 3, µ n = 0.1 m 2 /Vs, µ p = 0.03 m 2 /Vs, τ n =

Dettagli

PROVA SCRITTA di DISPOSITIVI ELETTRONICI del 12 Giugno 2017

PROVA SCRITTA di DISPOSITIVI ELETTRONICI del 12 Giugno 2017 PROVA SCRITTA di DISPOSITIVI ELETTRONICI del 12 Giugno 2017 ESERCIZIO 1 Una giunzione p + n è caratterizzata da N D = 5 10 15 cm 3, µ p = 0.04 m 2 /Vs, τ p = 10 6 s, S = 1 mm 2. Questa giunzione è polarizzata

Dettagli

DE e DTE: PROVA SCRITTA DEL 28 Gennaio 2016 ESERCIZIO 1 (DE,DTE) Un transistore bipolare n + pn (N Abase = cm 3, N Dcollettore = cm 3, µ

DE e DTE: PROVA SCRITTA DEL 28 Gennaio 2016 ESERCIZIO 1 (DE,DTE) Un transistore bipolare n + pn (N Abase = cm 3, N Dcollettore = cm 3, µ DE e DTE: PROA SCRITTA DEL 28 Gennaio 2016 ESERCIZIO 1 (DE,DTE) Un transistore bipolare n + pn (N Abase = 10 16 cm 3, N Dcollettore = 10 15 cm 3, µ n = 0.1 m 2 /s, τ n = 10 6, S = 1 mm 2 ) è polarizzato

Dettagli

PROVA SCRITTA di DISPOSITIVI ELETTRONICI del 15 Settembre 2017

PROVA SCRITTA di DISPOSITIVI ELETTRONICI del 15 Settembre 2017 PROVA SCRITTA di DISPOSITIVI ELETTRONICI del 15 Settembre 2017 ESERCIZIO 1 Una giunzione pn, con entrambe le basi lunghe, è caratterizzata da N A = N D = 5 10 15 cm 3, µ n = 0.11 m 2 /Vs, µ p = 0.04 m

Dettagli

PROVA SCRITTA di DISPOSITIVI ELETTRONICI del 9 Gennaio ESERCIZIO 1 Si consideri un diodo pn con W n = W p = 500 µm, N A = N D = cm 3,

PROVA SCRITTA di DISPOSITIVI ELETTRONICI del 9 Gennaio ESERCIZIO 1 Si consideri un diodo pn con W n = W p = 500 µm, N A = N D = cm 3, PROVA SCRTTA di DSPOSTV ELETTRONC del 9 Gennaio 2016 ESERCZO 1 Si consideri un diodo pn con W n = W p = 500 µm, N A = = 10 15 cm 3, τ n = τ p = 1 µs, µ n = 1500 cm 2 /Vs, µ p = 400 cm 2 /Vs, S = 1 mm 2.

Dettagli

PROVA SCRITTA di DISPOSITIVI ELETTRONICI del 13 Giugno 2018

PROVA SCRITTA di DISPOSITIVI ELETTRONICI del 13 Giugno 2018 POVA SCITTA di DISPOSITIVI ELETTONICI del 13 Giugno 2018 ESECIZIO 1 In gura è rappresentato un circuito, basato su un transistore bipolare n + pn +, = 2 kω. Per il transistore abbiamo N Abase = 10 16 cm

Dettagli

ESERCIZIO 3 Nel circuito in gura, il transistore bipolare è un n + pn +, con N A = cm 3, τ n = 10 6 s, µ n = 0.09 m 2 /Vs, S = 1 mm 2.

ESERCIZIO 3 Nel circuito in gura, il transistore bipolare è un n + pn +, con N A = cm 3, τ n = 10 6 s, µ n = 0.09 m 2 /Vs, S = 1 mm 2. PROVA SCRITTA di DISPOSITIVI ELETTRONICI del 16 Gennaio 2019 ESERCIZIO 1 Un transistore bipolare n + pn (N Abase = 10 16 cm 3, N Dcollettore = 2 10 16 cm 3, τ n = 10 6 s, µ n = 0.1 m 2 /Vs, S=1 mm 2 )

Dettagli

PROVA SCRITTA di DISPOSITIVI ELETTRONICI del 19 Settembre 2018

PROVA SCRITTA di DISPOSITIVI ELETTRONICI del 19 Settembre 2018 PROVA SCRITTA di DISPOSITIVI ELETTRONICI del 19 Settembre 2018 ESERCIZIO 1 Nel circuito in gura (V CC = 8 V, R = 1 kω), il transistore npn ha N Demettitore = 10 17 cm 3 (emettitore lungo), N Abase = 10

Dettagli

ESERCIZIO 1 Il transistore bipolare in gura è caratterizzato da N Abase = cm 3,

ESERCIZIO 1 Il transistore bipolare in gura è caratterizzato da N Abase = cm 3, POVA SCITTA di DISPOSITIVI ELETTONICI del 17 Luglio 017 ESECIZIO 1 Il transistore bipolare in gura è caratterizzato da base = 5 10 15 cm 3, µ n = 0.11 m /Vs, µ p = 0.04 m /Vs, = τ p = 10 6 s, = 3 µm, S

Dettagli

1) Il lato n è lungo (1 mm), mentre quello p è sicuramente corto (3 µm). Calcoliamo la regione di svuotamento per V = 0.5 V: = V.

1) Il lato n è lungo (1 mm), mentre quello p è sicuramente corto (3 µm). Calcoliamo la regione di svuotamento per V = 0.5 V: = V. ESERCIZIO 1 (DE,DTE) Una giunzione pn è caratterizzata da (W p e W n distanze tra il piano della giunzione e rispettivamente contatto p ed n): S = 1 mm, N D = 10 16 cm 3, W n = 1 mm, N A = 10 15 cm 3,

Dettagli

PROVA SCRITTA di DISPOSITIVI ELETTRONICI del 3 Febbraio 2018

PROVA SCRITTA di DISPOSITIVI ELETTRONICI del 3 Febbraio 2018 PROVA SCRITTA di DISPOSITIVI ELETTRONICI del 3 Febbraio 2018 ESERCIZIO 1 In gura è rappresentato un pezzo di silicio, drogato da una parte n + (N D = 10 19 cm 3, µ n+ = 0.015 m 3 ) e dall'altra n (N D

Dettagli

DE e DTE: PROVA SCRITTA DEL 14 Febbraio 2015

DE e DTE: PROVA SCRITTA DEL 14 Febbraio 2015 DE e DTE: PROVA SCRTTA DEL 14 Febbraio 2015 ESERCZO 1 (DE,DTE) due diodi in gura sono uno a base lunga (diodo A: p + n, N D = 5 10 15 cm 3, τ n = τ p = 1 µs, µ p = 0.04 m 2 /Vs, S = 1mm 2 ) e uno a base

Dettagli

DE e DTE: PROVA SCRITTA DEL 7 Gennaio 2013

DE e DTE: PROVA SCRITTA DEL 7 Gennaio 2013 DE e DTE: PROVA SCRITTA DEL 7 Gennaio 013 ESERCIZIO 1 (DE,DTE) Un condensatore MOS è realizzato su substrato p, N A = 10 16 cm 3, t ox = 50 nm. A metà dell ossido (a t ox /) viene introdotto uno strato

Dettagli

DE e DTE: PROVA SCRITTA DEL 10 Settembre 2012

DE e DTE: PROVA SCRITTA DEL 10 Settembre 2012 DE e DTE: PROVA SCRITTA DEL 10 Settembre 2012 ESERCIZIO 1 (DE,DTE) Una giunzione pn è polarizzata con V = 0.5 V. I dati della giunzione sono: N D = 10 16 cm 3, N A = 10 15 cm 3, µ n = 1100 cm 2 /Vs, µ

Dettagli

DE e DTE: PROVA SCRITTA DEL 23 Giugno 2012

DE e DTE: PROVA SCRITTA DEL 23 Giugno 2012 DE e DTE: PROA SCRITTA DEL 23 Giugno 2012 ESERCIZIO 1 (DE,DTE) Un transistore bipolare npn (N D emettitore = 10 16 cm 3, N A base = 10 16 cm 3, N D collettore = 10 15 cm 3, τ n = τ p = 10 6 s, µ n = 1000

Dettagli

DE e DTE: PROVA SCRITTA DEL 8 Febbraio 2012

DE e DTE: PROVA SCRITTA DEL 8 Febbraio 2012 DE e DTE: PROA SCRITTA DEL 8 Febbraio 01 ESERCIZIO 1 (DE,DTE) Una struttura n-mos ( = 10 16 cm 3, t ox = 30 nm) è realizzata con un processo polysilicon gate n +. La struttura è illuminata con luce rossa

Dettagli

PROVA SCRITTA di DISPOSITIVI ELETTRONICI del 22 Novembre 2018

PROVA SCRITTA di DISPOSITIVI ELETTRONICI del 22 Novembre 2018 PROVA SCRITTA di DISPOSITIVI ELETTRONICI del 22 Novembre 2018 ESERCIZIO 1 Nel circuito in gura il diodo A è una giunzione Schottky a base corta, substrato n = N D = 10 15 cm 3 e W n = 5 µm. Il metallo

Dettagli

ESERCIZIO 1 Il transistore in gura è un n + pn +, con W = 3 µm, N Abase = cm 3,

ESERCIZIO 1 Il transistore in gura è un n + pn +, con W = 3 µm, N Abase = cm 3, PROVA SCRITTA di DISPOSITIVI ELETTRONICI del 8 Settembre 2016 ESERCIZIO 1 Il transistore in gura è un n + pn +, con W = 3 µm, N Abase = 10 16 cm 3, µ n = 0.1 m 2 /V s, τ n = 10 6 s, S = 1 mm 2. Trascurare

Dettagli

PROVA SCRITTA di DISPOSITIVI ELETTRONICI del 12 Giugno 2019

PROVA SCRITTA di DISPOSITIVI ELETTRONICI del 12 Giugno 2019 PROVA SCRITTA di DISPOSITIVI ELETTRONICI del 12 Giugno 2019 ESERCIZIO 1 In gura è rappresentato, a sinistra, un dispositivo costituito da una giunzione p + n e da un contatto metallico sulla parte n. Per

Dettagli

PROVA SCRITTA di DISPOSITIVI ELETTRONICI del 24 Luglio 2019

PROVA SCRITTA di DISPOSITIVI ELETTRONICI del 24 Luglio 2019 PROVA SCRITTA di DISPOSITIVI ELETTRONICI del 24 Luglio 2019 ESERCIZIO 1 Un transistore npn a base corta è caratterizzato da: N Dem = 10 15 cm 3 (emettitore lungo), N Abase = 10 16 cm 3, N Dcoll = 10 15

Dettagli

PROVA SCRITTA di DISPOSITIVI ELETTRONICI del 8 Gennaio 2018

PROVA SCRITTA di DISPOSITIVI ELETTRONICI del 8 Gennaio 2018 PROVA SCRITTA di DISPOSITIVI ELETTRONICI del 8 Gennaio 2018 ESERCIZIO 1 Un transistore n + pn, con N ABase = N DCollettore = 5 10 15 cm 3, µ n = 0.11 m 2 /Vs, τ n = 10 6 s, S = 1 mm 2, è polarizzato con

Dettagli

DE e DTE: PROVA SCRITTA DEL 5 febbraio ESERCIZIO 1 (DTE) 1) Descrivere i processi e disegnare le maschere necessarie alla realizzazione

DE e DTE: PROVA SCRITTA DEL 5 febbraio ESERCIZIO 1 (DTE) 1) Descrivere i processi e disegnare le maschere necessarie alla realizzazione DE e DTE: PROVA SCRITTA DEL 5 febbraio 011 ESERCIZIO 1 (DTE) 1) Descrivere i processi e disegnare le maschere necessarie alla realizzazione del dispositivo di cui nella figura è mostrata la sezione; la

Dettagli

DE e DTE: PROVA SCRITTA DEL 9 Gennaio 2012

DE e DTE: PROVA SCRITTA DEL 9 Gennaio 2012 DE e DTE: PROVA SCRITTA DEL 9 Gennaio 01 ESERCIZIO 1 (DE,DTE) Un transistore n-mos (N A = 10 16 cm 3, µ n = 800 cm /Vs nel canale, W = L = 5 µm, t ox = 50 nm), realizzato con un processo polysilicon gate,

Dettagli

PROVA SCRITTA di DISPOSITIVI ELETTRONICI del 25 Luglio 2018

PROVA SCRITTA di DISPOSITIVI ELETTRONICI del 25 Luglio 2018 PROVA SCRITTA di DISPOSITIVI ELETTRONICI del 25 Luglio 2018 ESERCIZIO 1 Nel circuito in gura, il diodo p + n a destra è a base lunga con N D = 10 16 cm 3, S = 10 cm 2. Il diodo p + n a sinistra ha N D

Dettagli

DE e DTE: PROVA SCRITTA DEL 22 Gennaio 2012

DE e DTE: PROVA SCRITTA DEL 22 Gennaio 2012 DE e DTE: PROVA SCRITTA DEL Gennaio 01 ESERCIZIO 1 (DE,DTE) Un processo per la realizzazione di transistori n-mos è caratterizzato da: N A = 10 16 cm 3, µ n canale = 800 cm /Vs, µ n bulk = 1000 cm /Vs,

Dettagli

DE e DTE: PROVA SCRITTA DEL 16 Luglio 2012

DE e DTE: PROVA SCRITTA DEL 16 Luglio 2012 000000000 111111111 000000000 111111111 DE e DTE: PROA SCRITTA DEL 16 Luglio 01 ESERCIZIO 1 (DE,DTE) Nella figura è mostrato lo schema di massima di un transistore n-mos (condensatore MOS ideale), con

Dettagli

DE e DTE: PROVA SCRITTA DEL 26 Gennaio 2015

DE e DTE: PROVA SCRITTA DEL 26 Gennaio 2015 DE e DTE: PROVA SCRITTA DEL 26 Gennaio 2015 ESERCIZIO 1 (DE,DTE) Un transistore bipolare n + pn con N Abase = N Dcollettore = 10 16 cm 3, µ n = 0.09 m 2 /Vs, µ p = 0.035 m 2 /Vs, τ n = τ p = 10 6 s, S=1

Dettagli

Dispositivi e Tecnologie Elettroniche. Esercitazione Transistore MOS

Dispositivi e Tecnologie Elettroniche. Esercitazione Transistore MOS Dispositivi e Tecnologie Elettroniche Esercitazione Transistore MOS Esercizio 1: testo Si consideri un sistema MOS costituito da un substrato di Si con drogaggio N A = 10 16 cm 3, uno strato di ossido

Dettagli

Esercizio U2.1 - Giunzione non brusca

Esercizio U2.1 - Giunzione non brusca Esercizio U2.1 - Giunzione non brusca Si consideri una giunzione p + -n con drogaggio uniforme nel lato p (N A = 10 19 cm 3 ) e giunzione metallurgica situata in x = 0. Il drogaggio del lato n, definito

Dettagli

Esercizio U3.1 - Tensione di soglia del MOSFET a canale n

Esercizio U3.1 - Tensione di soglia del MOSFET a canale n Esercizio U3. - Tensione di soglia del MOSFET a canale n Si ricavi dettagliatamente l espressione per la tensione di soglia di un MOSFET ad arricchimento a canale p e successivamente la si calcoli nel

Dettagli

Dispositivi e Tecnologie Elettroniche. Esercitazione Giunzione pn

Dispositivi e Tecnologie Elettroniche. Esercitazione Giunzione pn Dispositivi e Tecnologie Elettroniche Esercitazione Giunzione pn Esercizio 1: testo Si consideri una giunzione brusca e simmetrica con drogaggio N A N D 10 17 cm 3 sezione trasversale A 0.5 mm 2 e lati

Dettagli

slides per cortesia di Prof. B. Bertucci

slides per cortesia di Prof. B. Bertucci slides per cortesia di Prof. B. Bertucci Giunzione p-n in equilibrio: Densità di portatori maggiori maggioritari/ minoritari dai due lati della giunzione (lontano dalla zona di contatto): Nella zona di

Dettagli

Transistori MOS. Ing. Ivan Blunno 21 aprile 2005

Transistori MOS. Ing. Ivan Blunno 21 aprile 2005 Transistori MOS Ing. Ivan Blunno 1 aprile 005 1 Introduzione In questa dispensa verranno presentati i transistor MOS (Metal Oxide Semiconductor) di tipo N e P dal punto di vista del loro funzionamento

Dettagli

Esercizio : calcolo della conducibilita in un conduttore metallico.

Esercizio : calcolo della conducibilita in un conduttore metallico. Esercizio : calcolo della conducibilita in un conduttore metallico. Si consideri una striscia di metallo in un circuito integrato, con dimensioni:lunghezza L =.8 [mm], Area della sezione A = 4 [µm²] (micrometri

Dettagli

Semiconduttori intrinseci

Semiconduttori intrinseci Semiconduttori intrinseci Rappresentazione bidimensionale di un cristallo di silicio a 0 K Rappresentazione bidimensionale di un cristallo di silicio a temperatura ambiente (300 K) In equilibrio termodinamico,

Dettagli

ESERCIZIO 1. Soluzione. Per risolvere il problema utilizzo il modello di Ebers-Moll, grazie al quale potrò calcolare L E, W, L C, infatti so che

ESERCIZIO 1. Soluzione. Per risolvere il problema utilizzo il modello di Ebers-Moll, grazie al quale potrò calcolare L E, W, L C, infatti so che ESERCIZIO Su un transistor BJT pnp caratterizzato da N E = 0 8 cm 3 N B = 0 6 cm 3 N C = 0 5 cm 3 A = mm 2 vengono effettuate le seguenti misure: Tensione V CB negativa, emettitore aperto: I C = 0nA Tensione

Dettagli

Il Sistema Metallo Ossido Semiconduttore (MOS)

Il Sistema Metallo Ossido Semiconduttore (MOS) Il Sistema Metallo Ossido Semiconduttore (MOS) E una struttura simile ad un condensatore, con queste differenze: A polarizzazione nulla la concentrazione dei portatori nel semiconduttore è assai minore

Dettagli

RACCOLTA DI ESERCIZI

RACCOLTA DI ESERCIZI 1 ACCOLTA DI ESECIZI 1) Deflessione elettrostatica 1) Un elettrone posto all interno di un sistema di placche di deflessione orizzontali e verticali come in figura viene accelerato da due campi elettrici

Dettagli

Dispositivi e Tecnologie Elettroniche. Il transistore MOS

Dispositivi e Tecnologie Elettroniche. Il transistore MOS Dispositivi e Tecnologie Elettroniche Il transistore MOS Il transistore MOS La struttura MOS a due terminali vista può venire utilizzata per costruire un condensatore integrato È la struttura base del

Dettagli

Il semiconduttore è irradiato con fotoni a λ=620 nm, che vengono assorbiti in un processo a due particelle (elettroni e fotoni).

Il semiconduttore è irradiato con fotoni a λ=620 nm, che vengono assorbiti in un processo a due particelle (elettroni e fotoni). Fotogenerazione -1 Si consideri un semiconduttore con banda di valenza (BV) e banda di conduzione (BC) date da E v =-A k 2 E c =E g +B k 2 Con A =10-19 ev m 2, B=5, Eg=1 ev. Il semiconduttore è irradiato

Dettagli

Elettronica II La giunzione p-n: calcolo della relazione tensione-corrente p. 2

Elettronica II La giunzione p-n: calcolo della relazione tensione-corrente p. 2 Elettronica II La giunzione p-n: calcolo della relazione tensione-corrente Valentino Liberali Dipartimento di Tecnologie dell Informazione Università di Milano, 26013 Crema e-mail: liberali@dti.unimi.it

Dettagli

Fondamenti di Elettronica, Sez.3

Fondamenti di Elettronica, Sez.3 Fondamenti di Elettronica, Sez.3 Alessandra Flammini alessandra.flammini@unibs.it Ufficio 24 Dip. Ingegneria dell Informazione 030-3715627 Lunedì 16:30-18:30 Fondamenti di elettronica, A. Flammini, AA2018-2019

Dettagli

ESERCIZIO 1. Dati due diodi a giunzione pn aventi le seguenti caratteristiche:

ESERCIZIO 1. Dati due diodi a giunzione pn aventi le seguenti caratteristiche: ESERCIZIO 1 Dati due diodi a giunzione pn aventi le seguenti caratteristiche: DIODO A: Si, 10 18 cm 3,N D 10 15 cm 3 DIODO B: Ge, 10 18 cm 3,N D 10 15 cm 3 Valutare, giustificando quantitativamente le

Dettagli

Dispositivi e Tecnologie Elettroniche. Il transistore bipolare

Dispositivi e Tecnologie Elettroniche. Il transistore bipolare Dispositivi e Tecnologie Elettroniche l transistore bipolare Struttura di principio l transistore bipolare è fondamentalmente composto da due giunzioni pn, realizzate sul medesimo substrato a formare una

Dettagli

Ñ 3 µ n = 0.1 Ñ 2»Î τ n = 10 6 µ p = Ñ 2»Î τ p = 10 6 S = 1

Ñ 3 µ n = 0.1 Ñ 2»Î τ n = 10 6 µ p = Ñ 2»Î τ p = 10 6 S = 1 Ì ÈÊÇÎ Ë ÊÁÌÌ Ä ¾ ÒÒ Ó ¾¼½ Ë Ê Á ÁÇ ½ Ì µ Ä ÙÒÞ ÓÒ n + p Ò ÙÖ N A = 10 16 Ñ 3 µ n = 0.1 Ñ 2»Î τ n = 10 6 µ p = 0.045 Ñ 2»Î τ p = 10 6 S = 1 ÑÑ 2 µ Ø ÒÞ ÙÒÞ ÓÒ ¹ÓÒØ ØØÓ a = 30 µñ ÐÐÙÑ Ò Ø ÙÒ ÓÖÑ Ñ ÒØ ÓÒ

Dettagli

ESERCIZIO 1. γ = 1 + D EN B W D B N E L E

ESERCIZIO 1. γ = 1 + D EN B W D B N E L E ESERCIZIO 1 In un un bjt npn in cui il fattore di trasporto in base è pari a 0.9995, l efficienza di emettitore è pari a 0.99938, è noto che la tensione di breakdown per valanga ha modulo pari a BV CE0

Dettagli

Dispositivi e Tecnologie Elettroniche. Esercitazione Proprietà di trasporto nei semiconduttori

Dispositivi e Tecnologie Elettroniche. Esercitazione Proprietà di trasporto nei semiconduttori Dispositivi e Tecnologie Elettroniche Esercitazione Proprietà di trasporto nei semiconduttori Esercizio 1: testo Si consideri un campione di Si uniformemente drogato tipo n con una concentrazione N D =

Dettagli

Ñ 3 µ n = 0.1 Ñ 2»Î τ n = 10 6 µ p = Ñ 2»Î τ p = 10 6 S = 1. p+ n

Ñ 3 µ n = 0.1 Ñ 2»Î τ n = 10 6 µ p = Ñ 2»Î τ p = 10 6 S = 1. p+ n Ì ÈÊÇÎ Ë ÊÁÌÌ Ä ÒÒ Ó ¾¼½ Ë Ê Á ÁÇ ½ Ì µ Ä ÙÒÞ ÓÒ p + n Ò ÙÖ N D = 10 16 Ñ 3 µ n = 0.1 Ñ 2»Î τ n = 10 6 µ p = 0.045 Ñ 2»Î τ p = 10 6 S = 1 ÑÑ 2 ÐÙÒ µ ÔÓÐ Ö ÞÞ Ø Ò Ö ØØ ÓÒ = 0.3 κ ½µ Ø ÖÑ Ò Ö Ð ÓÖÖ ÒØ Ò

Dettagli

Corso di ELETTRONICA 1 (Elettronici N.O.) 17/06/2003

Corso di ELETTRONICA 1 (Elettronici N.O.) 17/06/2003 Corso di ELETTRONICA 1 (Elettronici N.O.) 17/06/2003 Si analizzi l amplificatore mostrato in figura, determinando: 1. il valore del guadagno di tensione a frequenze intermedie; 2. le frequenze di taglio

Dettagli

Il transistore bipolare a giunzione (BJT)

Il transistore bipolare a giunzione (BJT) Il transistore bipolare a giunzione (BJT) Il funzionamento da transistore, cioè l'interazione fra le due giunzioni pn connesse back to back, è dovuto allo spessore ridotto dell'area di base (tipicamente

Dettagli

Trasporto in Semiconduttori e Metalli - Esercizi con soluzioni

Trasporto in Semiconduttori e Metalli - Esercizi con soluzioni Trasporto in Semiconduttori e Metalli - Esercizi con soluzioni Fisica della Materia Condensata Dipartimento di Matematica e Fisica Università degli Studi Roma Tre A.A. 2016/2017 Trasporto in Semiconduttori

Dettagli

Elettronica II La giunzione p-n: calcolo del potenziale di giunzione p. 2

Elettronica II La giunzione p-n: calcolo del potenziale di giunzione p. 2 Elettronica II La giunzione pn: calcolo del potenziale di giunzione Valentino Liberali Dipartimento di Tecnologie dell Informazione Università di Milano, 26013 Crema email: liberali@dti.unimi.it http://www.dti.unimi.it/

Dettagli

Esercizio 1.3 Il percorso con maggiore tempo di propagazione è quello del segnale A

Esercizio 1.3 Il percorso con maggiore tempo di propagazione è quello del segnale A Copyright 006 he McGraw-Hill Companies srl SOLUZIONI DI ESERCIZI - Elettronica Digitale III ed. Capitolo Esercizio. V OH 5 V, V OL 0.5 V; NM H V OH - V IH V; NM L V IH - V IL.5 V. Esercizio.3 Il percorso

Dettagli

Elettronica II Grandezze elettriche microscopiche (parte 1) p. 2

Elettronica II Grandezze elettriche microscopiche (parte 1) p. 2 Elettronica II Grandezze elettriche microscopiche (parte 1) Valentino Liberali Dipartimento di Tecnologie dell Informazione Università di Milano, 26013 Crema e-mail: liberali@dti.unimi.it http://www.dti.unimi.it/

Dettagli

Sommario. Come funziona il Diodo? Giunzione PN a circuito aperto Giunzione PN: polarizzazione diretta Giunzione PN: polarizzazione inversa

Sommario. Come funziona il Diodo? Giunzione PN a circuito aperto Giunzione PN: polarizzazione diretta Giunzione PN: polarizzazione inversa l Diodo Sommario Cos è il Diodo? Concetti di base sulla fisica dei Semiconduttori Silicio ntrinseco Corrente di Deriva e Corrente di Diffusione Silicio Drogato P o N Giunzione PN Come funziona il Diodo?

Dettagli

Struttura del condensatore MOS

Struttura del condensatore MOS Struttura del condensatore MOS Primo elettrodo - Gate: realizzato con materiali a bassa resistività come metallo o silicio policristallino Secondo elettrodo - Substrato o Body: semiconduttore di tipo n

Dettagli

il diodo a giunzione transistori ad effetto di campo (FETs) il transistore bipolare (BJT)

il diodo a giunzione transistori ad effetto di campo (FETs) il transistore bipolare (BJT) Contenuti del corso Parte I: Introduzione e concetti fondamentali richiami di teoria dei circuiti la simulazione circuitale con SPICE elementi di Elettronica dello stato solido Parte II: Dispositivi Elettronici

Dettagli

Scritto Appello II, Materia Condensata. AA 2017/2018

Scritto Appello II, Materia Condensata. AA 2017/2018 Scritto Appello II, Materia Condensata. AA 017/018 19/0/018 Coloro che hanno superato il primo esonero dovranno svolgere gli esercizi 3 e 4 in un tempo massimo di due ore (il punteggio sarà riportato in

Dettagli

Il BJT Bipolar Junction Transistor: comportamento statico

Il BJT Bipolar Junction Transistor: comportamento statico Dispositivi Elettronici La il transistore giunzione bipolare PN (BJ) Il BJ Bipolar Junction ransistor: comportamento statico E costituito da due giunzioni PN polarizzate in modo diretto od inverso: Interdizione:

Dettagli

Nella seguente foto, possiamo vedere l'esterno di alcuni transistor:

Nella seguente foto, possiamo vedere l'esterno di alcuni transistor: IL BJT Il transistor BJT è un componente che viene utilizzato come amplificatore. Si dice amplificatore di tensione un circuito che dà in uscita una tensione più grande di quella di ingresso. Si dice amplificatore

Dettagli

Regione di svuotamento: effetti polarizzazione

Regione di svuotamento: effetti polarizzazione Regione di svuotamento: effetti polarizzazione L applicazione di una tensione modifica il potenziale interno. Assumendo che tutta la tensione risulti applicata alla regione di svuotamento basta sostituire

Dettagli

COMPITO DI ELETTRONICA I ELETTRONICI INFORMATICI ELETTRICI

COMPITO DI ELETTRONICA I ELETTRONICI INFORMATICI ELETTRICI 18-01-2003 Q3 Q4 v out Q2 M1 v s i s Dz =3 V V Z =2 V Diodo zener ideale =1 kω =1.5 kω =250 Ω =1 kω β=100 K n =µ n C ox /2=50 µa/v 2 W/L=16/0.8 V Tn = 1 V C π = C gs =10 pf C µ = C gd =1 pf C1=C2=C3=1

Dettagli

Regolazione della potenza: lineare vs. switching

Regolazione della potenza: lineare vs. switching Regolazione della potenza: lineare vs. switching TRANSISTOR DI POTENZA Caratteristiche desiderate: - bassa resistenza R on - elevata frequenza di commutazione - elevata impedenza di ingresso - stabilità

Dettagli

Temperatura ed Energia Cinetica (1)

Temperatura ed Energia Cinetica (1) Temperatura ed Energia Cinetica (1) La temperatura di un corpo è legata alla energia cinetica media dei suoi componenti. Per un gas perfetto si ha: Ek = ½ me vm2 ; Ek = 3/2 kt ; k = costante di Boltzmann

Dettagli

TRANSISTOR DI POTENZA

TRANSISTOR DI POTENZA TRANSISTOR DI POTENZA I transistor di potenza sono principalmente utilizzati nel controllo dei motori, in campo automobilistico, negli alimentatori, negli stadi finali degli amplificatori (audio, RF, ).

Dettagli

ESERCIZIO 1. Soluzione

ESERCIZIO 1. Soluzione ESERCIZIO 1 Soluzione Per stabilire quanto deve valere Rx, dato che ho la tensione massima che deve cadere ai suoi capi (20), è sufficiente calcolare quanto vale la corrente che la attraversa. Questa corrente

Dettagli

Dispositivi unipolari Il contatto metallo-semiconduttore Il transistor JFET Il transistor MESFET Il diodo MOS Il transistor MOSFET

Dispositivi unipolari Il contatto metallo-semiconduttore Il transistor JFET Il transistor MESFET Il diodo MOS Il transistor MOSFET Dispositivi unipolari Il contatto metallo-semiconduttore Il transistor JFET Il transistor MESFET Il diodo MOS Il transistor MOSFET 1 Contatti metallo semiconduttore (1) La deposizione di uno strato metallico

Dettagli

Bipolar Junction Transistors

Bipolar Junction Transistors Bipolar Junction Transistors Struttura di un BJT ideale I C I E Collector (N) Base (P) Emitter (N) I B V BE V CE I E Emitter (P) Base (N) Collector (P) I B V EB V EC I C sandwich NPN o PNP la Base è molto

Dettagli

Dispositivi elettronici. Il transistor bipolare a giunzione (bjt( bjt)

Dispositivi elettronici. Il transistor bipolare a giunzione (bjt( bjt) Dispositivi elettronici l transistor bipolare a giunzione (bjt( bjt) Sommario l transistor bipolare a giunzione (bjt) come è fatto un bjt principi di funzionamento (giunzione a base corta) effetto transistor

Dettagli

Esercitazione n 2: Circuiti di polarizzazione (2/2)

Esercitazione n 2: Circuiti di polarizzazione (2/2) Esercitazione n 2: Circuiti di polarizzazione (2/2) 1) Per il circuito di in Fig. 1 dimensionare R in modo tale che la corrente di collettore di Q 1 sia 5 ma. Siano noti: V CC = 15 V; β = 150; Q1 = Q2

Dettagli

Dispositivi elettronici. Il transistor bipolare a giunzione (bjt( bjt)

Dispositivi elettronici. Il transistor bipolare a giunzione (bjt( bjt) Dispositivi elettronici l transistor bipolare a giunzione (bjt( bjt) Sommario l transistor bipolare a giunzione (bjt) come è fatto un bjt principi di funzionamento (giunzione a base corta) effetto transistor

Dettagli

Scritto Appello III, Materia Condensata. AA 2017/2018

Scritto Appello III, Materia Condensata. AA 2017/2018 Scritto Appello III, Materia Condensata. AA 2017/2018 21/06/2018 1 Esercizio 1 Sia un A un solido monoatomico che cristallizza in una struttura cubica a facce centrate con lato del cubo a e velocità del

Dettagli

CAMERE A IONIZZAZIONE A STATO SOLIDO

CAMERE A IONIZZAZIONE A STATO SOLIDO CAMERE A IONIZZAZIONE A STATO SOLIDO Di principio, degli elettrodi depositati su un cristallo isolante consentono di realizzare un contatore a ionizzazione. Rispetto al gas: Piu denso piu sottile (300

Dettagli

Esperienza n 7: CARATTERISTICHE del TRANSISTOR BJT

Esperienza n 7: CARATTERISTICHE del TRANSISTOR BJT Laboratorio IV sperienza n 7: CARATTRISTICH del TRANSISTOR BJT 1 sperienza n 7: CARATTRISTICH del TRANSISTOR BJT Caratteristica del transistor bipolare Il transistor bipolare è uno dei principali dispositivi

Dettagli

Il transistor bipolare a giunzione (bjt(

Il transistor bipolare a giunzione (bjt( Dispositivi elettronici l transistor bipolare a giunzione (bjt( bjt) Sommario l transistor bipolare a giunzione (bjt) come è fatto un bjt principi di funzionamento (giunzione a base corta) effetto transistor

Dettagli

I dispositivi elettronici. Dispense del corso ELETTRONICA L

I dispositivi elettronici. Dispense del corso ELETTRONICA L I dispositivi elettronici Dispense del corso ELETTRONICA L Sommario I semiconduttori La giunzione pn Il transistor MOS Cenni sul principio di funzionamento Modellizzazione Fenomeni reattivi parassiti Top-down

Dettagli

Indice. 1. Fisica dei semiconduttori La giunzione pn...49

Indice. 1. Fisica dei semiconduttori La giunzione pn...49 i Indice 1. Fisica dei semiconduttori...1 1.1 La carica elettrica...1 1.2 Tensione...2 1.3 Corrente...5 1.4 Legge di Ohm...6 1.5 Isolanti e conduttori...12 1.6 Semiconduttori...15 1.7 Elettroni nei semiconduttori...18

Dettagli

3- CENNI SUI PRINCIPALI DISPOSITIVI BASATI SULLE GIUNZIONI p-n

3- CENNI SUI PRINCIPALI DISPOSITIVI BASATI SULLE GIUNZIONI p-n 1 3- CENNI SUI PRINCIPALI DISPOSITIVI BASATI SULLE GIUNZIONI p-n Il diodo come raddrizzatore Un semiconduttore contenente una giunzione p-n, come elemento di un circuito elettronico si chiama diodo e viene

Dettagli

ELETTRONICA II. Prof. Dante Del Corso - Politecnico di Torino. Parte A: Transistori in commutazione Lezione n. 3 - A - 3:

ELETTRONICA II. Prof. Dante Del Corso - Politecnico di Torino. Parte A: Transistori in commutazione Lezione n. 3 - A - 3: ELETTRONICA II Prof. Dante Del Corso - Politecnico di Torino Parte A: Transistori in commutazione Lezione n. 3 - A - 3: Transistori MOS in commutazione Elettronica II - Dante Del Corso - Gruppo A - 8 n.

Dettagli

Esercizio 1 Grandezze tipiche delle caratteristiche dei MOS

Esercizio 1 Grandezze tipiche delle caratteristiche dei MOS Esercizio Grandezze tipiche delle caratteristiche dei MOS Supponiamo di avere una tecnologia MOS con: ensione di alimentazione, dd 5 ensione di soglia, t Dimensione minima minlminfµm. I file di tecnologia

Dettagli

Soluzione del compito di Elettronica e di Elettronica Digitale del 15 gennaio 2003

Soluzione del compito di Elettronica e di Elettronica Digitale del 15 gennaio 2003 Soluzione del compito di Elettronica e di Elettronica Digitale del 5 gennaio 2003 Esercizio Calcolo di R 5, R 6 e del punto di lavoro dei transistori Per l analisi del punto di riposo prendiamo in considerazione

Dettagli

Ricavo della formula

Ricavo della formula Dispositivi e Circuiti Elettronici Ricavo della formula E F i E F = k B T ln N A n i Si consideri la relazione di Shockey: ( ) EFi E F p = n i exp k B T Si osservi anche che per x = il semiconduttore è

Dettagli

V [V]

V [V] ESERCIZIO 1 Si consideri il seguente grafico, corrispondente ad una caratteristica di un diodo pn non ideale. Si valuti: La corrente di saturazione inversa Il coefficiente di idealità Dire inoltre se questa

Dettagli

Scritto Appello IV, Materia Condensata. AA 2017/2018

Scritto Appello IV, Materia Condensata. AA 2017/2018 Scritto Appello IV, Materia Condensata AA 017/018 17/07/018 1 Esercizio 1 Un metallo monovalente cristallizza nella struttura cubica a corpo centrato La densità degli elettroni del metallo è n el = 65

Dettagli

Elettronica Il transistore bipolare a giunzione

Elettronica Il transistore bipolare a giunzione Elettronica Il transistore biolare a giunzione Valentino Liberali Diartimento di Fisica Università degli Studi di Milano valentino.liberali@unimi.it Elettronica Il transistore biolare a giunzione 6 maggio

Dettagli

Compito di Elettronica I 23/01/2002

Compito di Elettronica I 23/01/2002 Compito di Elettronica I 23/01/2002 VC VC R C C3 v s + > R E vo r i ut V C =3 V V C =5 V =100 KΩ =200 KΩ =300 KΩ R C =2.5 KΩ R E =1.3 KΩ =2.5 KΩ β=100 C π =10 pf C µ =1 pf ==C3=1 µf!"il punto di lavoro

Dettagli